
velink - A Blockchain-based Shared Mobility
Platform for Private and Commercial Vehicles

utilizing ERC-721 Tokens
Dominic Pirker∗†, Thomas Fischer∗†, Harald Witschnig†, Christian Steger∗

Email: {dominic.pirker, thomas.fischer3, harald.witschnig}@infineon.com, steger@tugraz.at
∗Institute for Technical Informatics, Graz University of Technology, Graz, Austria

†Development Center Graz, Infineon Technologies AG, Graz, Austria

Abstract—Transportation of people and goods is important
and crucial in the context of smart cities. The trend in regard
of people’s mobility is moving from privately owned vehicles
towards shared mobility. This trend is even stronger in urban
areas, where space for parking is limited, and the mobility is
supported by the public transport system, which lowers the
need for private vehicles. Several challenges and barriers of
currently available solutions retard a massive growth of this
mobility option, such as the trust problem, data monopolism,
or intermediary costs.

Decentralizing mobility management is a promising approach
to solve the current problems of the mobility market, allowing
to move towards a more usable internet of mobility and smart
transportation. Leveraging blockchain technology allows to cut
intermediary costs, by utilizing smart contracts. Important in
this ecosystem is the proof of identity of participants in the
blockchain network. To proof the possession of the claimed
identity, the private key corresponding to the wallet address
is utilized, and therefore essential to protect. In this paper, a
blockchain-based shared mobility platform is proposed and a
proof-of-concept is shown. First, current problems and state-
of-the-art systems are analyzed. Then, a decentralized concept
is built based on ERC-721 tokens, implemented in a smart
contract, and augmented with a Hardware Security Module
(HSM) to protect the confidential key material. Finally, the system
is evaluated and compared against state-of-the-art solutions.

Index Terms—shared mobility, blockchain, smart contract,
Ethereum, token, ERC-721, HSM

I. INTRODUCTION

Shared mobility services are expanding over the last years,
especially in urban areas, where less people own private
vehicles. Goal of this rapidly growing concept is to make
it convenient for consumers to access vehicles of any kind,
whenever they need. Besides avoiding the expenses for buying
a vehicle, other aspects in regard of cost-saving are insurance,
parking, and many more. Another problem solved with this
concept, at least partly, is the problem of scare space, due to
the high quantity of parked vehicles in the city, since privately
owned vehicles are less in use- than in idle-mode.

Unfortunately, the concept of shared mobility as it is
designed now, not only brings advantages. Many providers
as well as new modes of transport are pushing into the
market. This leads to an uncontrolled growths of available
transportation offers. Consumer of these services are having
difficulties to get best out of this ecosystem, since many

...

...

...

User

Authority

A
p

pl
ic

at
io

n
s

Pr
ov

id
er

s
(+

 v
e

h
ic

le
s)

P
la

tf
o

rm
s

A

A

A

B

B

B

N

N

N

Fig. 1. Current ecosystem with distinct applications and platforms for each
shared mobility provider (A, B, ... N)

different service providers - each with their own application
- are available to choose, as highlighted in Fig. 1. Not only
the time consuming registration process for every provider, but
also the non-existent overview of prices impede people from
using these services.

Furthermore, the rapid growth of new mobility services
within cities raises concerns regarding their huge impact on
the cities infrastructure. Thus, big providers are getting more
and more powerful, since they have all the data to comprehend
the impact on traffic, people’s behavior, and their new habits.
Based on that, they can foster their enlargement and reach
monopolism, which shall be avoided in this and any other
area. Central and hierarchical concepts promote the growth of
monopolism, which lead to the decision to design the concept
proposed in this work in a decentralized manner.

Third problem for consumers of the shared mobility market
is that intermediaries need to be paid for acting as a mid-
dleman. This could be avoided by designing the architectures
based on the concept of decentralization.

Within this work, renting and sharing is considered equiv-
alent, since for both there need to be an owner and a tenant.

The main contributions of this work are:
• Design of a secured and decentralized architecture for a

shared mobility platform, enabled by extending vehicles
with an HSM to protect important key material.

This is the full version of a paper which appears in 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). 
The proceedings version is available online at: https://doi.org/10.1109/CSP51677.2021.9357605



• Implementation of a proof-of-concept.
• Evaluation of the designed system, including comparison

to available state-of-the-art solutions.

II. BACKGROUND

Blockchain is an emerging technology which started in 2008
with the cryptocurrency Bitcoin. Nowadays the decentralized
network concept is utilized in a broad range of applications.
This is mainly enabled with smart contracts. A smart contract
is a computer program running as part of the network protocol,
such as Ethereum. A description of smart contracts is given
in [1]. With smart contracts, tokenization of assets is enabled.
Additionally, required interaction for the given application is
defined. The most used standards for Ethereum tokens are the
ERC-20 Token Standard and the ERC-721 Token Standard [2].
In order to create these tokens, they have to be minted, as
physical coins. Therefore, smart contracts need to define a
function to mint these tokens. Within this work, the focus
is on the ERC-721 tokens, since they are utilized in the
proposed concept. They are non-fungible and mostly represent
unique digital entities. ERC-721 is a free and open standard
to build non-fungible tokens on the Ethereum blockchain [3].
The ERC-721 standard defines a minimum interface to allow
unique tokens to be managed, owned, and traded [3]. Most
prominent example for ERC-721 tokens are CryptoKitties,
which are gamified collectables [2].

III. RELATED WORK

The shared mobility market is already dominated by big
players in various areas, whose system design is based on a
centralized architecture. In Germany, ShareNow is the dom-
inating company, with 4.2 million registered users by 2019
[4]. In [5], security related threats, which are mostly present
in centralized systems are analyzed. Examples for those threats
are [5]: unauthorized access; Denial of Service (DoS) and
Distributed Denial of Service (DDoS) attacks; sensor related
issues; data transfer issues; IoT web security; information
sharing and storage.

Many of them are solvable by leveraging decentralized
architectures, if implemented and designed properly. In [5],
important features consolidating the role of blockchain in In-
ternet of Vehicles (IoV) are listed. Examples are immutability,
decentralization, consensus, security, transparency, and many
more. A detailed description and their effect are elaborated
in [5]. Due to these features, solving many current threats,
this work is focusing on decentralized architectures, hence
ShareNow is not analyzed. In the remaining section, state-
of-the-art systems and concepts are summarized.

In [6], five concept are analyzed, where the most promising
concepts are HireGo and DAV.

• The first one is based on Ethereum smart contracts,
with the design disadvantage, that the vehicle token is
transferred to the tenant, which leads to an ownership
loss during the time where the rental is active.

• The latter concept is not only focusing on cars, but also on
trucks, drones, and more to build a network of ultimately
connected self-driving vehicles [7].

Besides the concepts analyzed in [6], four additional con-
cept are considered as state-of-the-art for the given problem
statement within the shared mobility ecosystem. In [4], two
different concepts for a privacy-preserving blockchain-based
system for car sharing are described, where both leveraging
zero-knowledge protocols. Several parties, such as authorities
and industry, are considered to be part of the ecosystem.

• The first solution is based on zkSNARKS, a zero-
knowledge protocol utilized at the Ethereum platform.
As a toolbox for zkSNARKS, ZoKrates was used [4].
The concept consists of three phases: initialization phase,
attribute issuance, and attribute disclosure. The first phase
is responsible for environment setup, key generation,
contract deployment, and issuer registration for industry
and authorities. In the second phase, credentials for user
data are issued. The last phase is for finally using the
service and has two main objectives. First, the user is
revised for being the real owner, and second, attributes
such as validity of driving license are verified [4].

• Second concept described in [4] is leveraging the Hy-
perledger Indy framework. The proposed system setup is
designed to implement two distinct blockchain networks
for authorities and industry respectively. Each party can
derive attributes to be proven by the verifier for consum-
ing a service, such as renting a car [4]. The user has
to request membership credentials for both blockchain
network, and store them in their digital wallet. Then the
proof details are read from the car, which is acting as
a verifier. A composite proof is constructed accordingly
and presented to the car. Then, access to the car is granted
or denied respectively.

• The proposed concept in [6] introduces a blockchain-
based car-sharing platform, built upon the Ethereum
blockchain. It is based on two different token types,
the non-fungible token type ERC-721 and the fungible
token type ERC-20. The difference is explained in [2].
First token represent car assets, second represents unlock
tokens, which are bought with ETH. Additionally, the
defined token of the latter type is used to reward users
when using this system. To reduce costs of Ethereum
transactions, the car image is stored at InterPlanetary File
System (IPFS). As a consequence, only the IPFS URI
needs to be stored in the blockchain network [6].

• Another concept is Cryptober, a blockchain-based, se-
cure, and cost-optimal car rental platform [8]. This con-
cept requires car, owner, and tenant to be registered at
the platform. When renting a car, the tenant checks the
database of available cars and afterwards contacts the
owner. In [8], the modality of communication is not
defined. The involved parties are required to meet at
a mutual decided location for checking the condition
of the car and to define parameters such as maximum



speed and maximum distance. In case both agree with
the conditions, a start block is generated containing
the before defined rules. After the ride, both parties
meet again and a finish block is generated. Besides the
basic ride, emergency cases are also considered, but they
are not focus for this work. The underlying blockchain
network is not specified in the context of [8].

IV. CONCEPT AND ARCHITECTURE

This chapter proposes velink, a blockchain-based shared
mobility platform, running on Ethereum and utilizing ERC-
721 tokens, for users and vehicles.

The following requirements for the system design have been
identified:

• High level of security, by integrating an HSM for storing
confidential key material and signing transactions.

• Simple participation on the platform for users and
providers.

• Avoid monopolism in regard of data and market share.

A. Overview

The concept proposed in this work is based on an Ethereum
smart contract. Fig. 2 depicts the system design. All parties
involved in the car sharing procedure are interacting with the
smart contract. The following sections describe the procedures
required to happen prior and during renting a vehicle.

Ethereum
Smart 

Contract

(view only)

*needs to be verified

Include
Transaction UserRegistering*

Vehicle
Registering

Owns

Sign

Using

Check
Permissions Ride-data

Logging

Blockchain Network City/Authority

Provider

User (App)

Vehicle

HSM Sign

VehicleToken

UserToken

Fig. 2. Overview of architecture design of proposed shared mobility platform

B. Registration Procedure

User and vehicle need to be registered in the blockchain
network in order to participate in the system. The provider
needs to be trusted, but the procedure to ensure this is
out of scope in this work. For private vehicles, the vehicle
owner is considered as provider. All trusted providers register
their vehicles by triggering their vehicles to call the function
MintVehicleToken(...) of the smart contract. This function
generates the vehicle token, as explained in the background
section. The result is an ERC-721 token, hereafter referred to
as vehicle token, owned by the vehicle itself. The vehicle is
equipped with an HSM to store confidential key material, as
depicted in Fig. 2. The registration procedure is depicted in
Fig. 3. Before generating the vehicle token, the vehicle must

have an address to be accessible via the blockchain network.
Therefore the HSM is utilized to generate a key pair consisting
of a public and a private key. The private key is randomly
generated and used to sign transactions. The address of the
vehicle is derived from the public key and hereafter referred
to as wallet address. This wallet contains the vehicle token.
To proof the possession of the vehicle (token), the private key
is utilized. The private key never leaves the HSM, since a
compromised private key leads to an ownership loss.

2.2
Include VehicleToken

1.4
Send (VehiclePubKey)

1.1
TriggerGenKeyPair

2.1
MintVehicleToken

Transfer (VehiclePubKey)2.3
Success
(TxHash)

1.2
GenKeyPair

(Include
Transaction)

1.3
Return

(VehiclePubKey)
Ethereum

Smart 
Contract

(view only)
Blockchain Network City/Authority

Vehicle

HSM
Provider

VehicleToken

Fig. 3. Vehicle registration procedure triggered by provider

As stated in the beginning, the user (tenant) needs to be
registered too, in order to get access to vehicles. The general
procedure is equivalent to the vehicle registration, but the user
data, such as validity of driving license, needs to be verified
before a user token is minted. Therefore several options are
possible. One option is to have an authority checking the
details before registering. Another possibility is to reuse an
existing account from a shared mobility provider and generate
a user token based on this information. This approach is the
most convenient for the end user, since registration and the
validation of driving licenses is already done, and no addi-
tional interaction is required. For this approach, the provider
triggers the MintUserToken(...) function of the smart contract
and transfers the ownership to the user. Again, the provider
needs to be trusted by the user. Ideally, an HSM for storing
the confidential key material, is utilized in the smart phone
application, as in the vehicle.

C. Unlocking Procedure

After successful registration of user and provider, the system
is operational. The unlocking procedure is depicted in Fig. 4.

The user sends the wallet address, derived from the corre-
sponding public key, via Bluetooth to the vehicle. The vehicle
is responsible for checking the permissions of the user. The
advantage of having this step performed by the vehicle instead
of the smart phone application, is the lower vulnerability
against attacks. The CheckPermission(...) function of the smart
contract is triggered with wallet addresses of user and vehicle
as input parameters. User parameters such as driving license
or permitted vehicle types are checked, and the corresponding
authorizations are returned to the vehicle. In case the user is
authenticated as an authorized user, the transaction for vehicle



2.3
Transfer VehicleToken

(view only)

(Include
Transaction)

1.1
Send

(UserPubKey)

1.2
Received

2.1 + 2.3
CheckPermission(PubKeys*)

Transfer(RideData*)

2.4
Success

3.1
Unlock

3.2
Success

Ethereum
Smart 

Contract

Blockchain Network

Vehicle

HSM

2.2
Sign

User (App)

City/Authority

UserToken

VehicleToken

Fig. 4. Unlocking and permission validation procedure

unlocking is generated by triggering the VehicleUnlock(...)
function of the smart contract. This results in sending the
vehicle token to the vehicle itself, with modified parameters
such as user, lock state, time stamp, or GPS position. With
this measure, the vehicle never loses the ownership of the
corresponding token. For generating the transaction signature,
the securely stored private key of the vehicle, is utilized. Then,
the transaction is transferred to the blockchain network and
included in the next block, if the signature is valid. In case of
success, the transaction hash is returned and the vehicle gets
unlocked.

For locking the vehicle again, the procedure is equivalent,
except two differences. First, the LockVehicle(...) function is
called instead of the UnlockVehicle(...) function. Second, the
vehicle token parameters are set respectively.

D. Smart Contract and Tokenization

In the proposed concept, the following non-fungible tokens,
including their parameters are defined in the smart contract:

• UserToken: mintedBy, mintedAt, allowedVehicle
• VehicleToken: mintedBy, mintedAt, vehicleType, lock-

State, currentUser, position, etc.

Each token has a corresponding MintToken(...) function,
defined in the smart contract. In addition to that and the
interface defined in standard [3], following functions are
implemented in the smart contract:

• CheckPermission: Used to validate the permission of the
user to unlock and drive the corresponding vehicle.

• VehicleUnlock: Changes the lock state of the vehicle and
sets the current user parameter.

• VehicleLock: Equivalent to VehicleUnlock, but sets the
status to locked and clears current user.

• GetVehicleLockStatus: Return current status of corre-
sponding vehicle.

The system functionality is partitioned between smart con-
tract, host controller and HSM, as depicted in Table I.

TABLE I
PARTITIONING OF APPLICATION FUNCTIONALITY

Smart Contract Host Controller HSM
MintVehicleToken DeriveWalletAddress GenerateKeyPair

MintUserToken BuildTransaction GetPublicKey
TransferToken GetSignedTransaction GenerateSignature

GetVehicleLockStatus SendTransaction
CheckPermission GetPermission

VehicleUnlockRaw VehicleUnlock
VehicleLockRaw VehicleLock

E. Privacy Enhancement

A key challenge of utilizing the blockchain technology for
enterprise applications is data confidentiality, as stated in [9].
Several privacy preserving methods based on blockchain are
already existent and explained in [4]. All explained schema are
leveraging zero knowledge proofs, such as zkSNARKS, for a
secured exchange of tokenized assets without a trusted third
party. In [9], weaknesses and challenges of existing models are
analyzed. The main challenges of these systems are the initial
setup phase, which is prone to manipulation, and the lack of
flexibility, since the application for many real world use cases
is restricted [9]. This means, a zero knowledge proof such as
zkSNARKS needs to be implemented and adopted properly,
in order to successfully protect the privacy of participating
parties. In [9], a novel schema for zero knowledge proof,
solving weaknesses of state-of-the-art schema, is introduced.
In this concept, privacy enhancement is not addressed but the
chosen architecture allows the integration.

V. PROOF-OF-CONCEPT

To show the feasibility, a proof-of-concept was imple-
mented. The demonstrator and the test transaction performed
in the Ropsten Testnet are depicted in Fig. 5. It is built around
an HSM from Infineon Technologies AG, which is visible in
Fig. 5 in the car’s trunk.

Fig. 5. Proof-of-concept with implemented HSM and test transactions
performed in Ropsten Testnet (https://ropsten.etherscan.io/)

The demonstrator shows the unlocking and locking pro-
cedure of a shared car, based on the Ethereum blockchain,
as depicted in Fig. 4. The registration of the user and the



vehicle is considered as a precondition, which has to happen
before. Those steps were performed with Ethereum Remix,
an interface for Ethereum-based blockchains. As described in
Section IV-B, the registration of user and vehicle results in a
respective token creation.

A. Components

The demonstrator mainly consists of three parts:
• Smart phone: Used to scan via Bluetooth for vehicles

in the vicinity of the user and to trigger the (un)locking
procedure as depicted in Fig. 6.

• Car: Represented by a toy car, equipped with a Raspberry
Pi Zero W and an HSM. The Raspberry Pi is communi-
cating with the utilized blockchain network.

• Blockchain and smart contract: Ethereum blockchain and
smart contract defining the functionality as described in
Section IV-D.

Fig. 6. Proof-of-concept end user smart phone application for scanning and
unlocking vehicles with steps: scan, select, unlock, and success

B. Architecture

The demonstrator architecture is depicted in Fig. 7. For the
smart phone, apps for Android and iOS were developed, to
communicate with the vehicle via Bluetooth. The Raspberry
Pi is hosting a Python application with four distinct functional-
ities based on the following libraries: smart contract interaction
(Web3.py); visualization (gpio lib); Bluetooth interaction (py-
bleno); and HSM interaction (wrapper for host library). The
HSM host library is written in C, therefore a Python wrapper
is required. The host library was auto-generated with an RPC
framework introduced in [10]. With that framework, extensive
development costs are saved, by just specifying the header
file instead manually writing the entire host library. The smart
contract is written in Solidity and published with Infura onto
the Ropsten Testnet, which is typically used for development.

C. Procedure

The procedure starts on the smart phone with scanning for
Bluetooth devices in the vicinity. The Raspberry Pi in the toy
car is broadcasting the preset UUID with a 100ms interval.
When selecting the corresponding Bluetooth device in the
smart phone application, a write request, including the public
wallet address of the user, is triggered. In the demo application
the data is send in plain, but a simple symmetric encryption
scheme shall be utilized for further use.

Car (Raspberry Pi)

Application (Python)

Smart Contract
Web3.py

Visualization
gpio

Bluetooth
pybleno

HSM interaction
hostlib wrapper

HSM interaction
hostlib (in C)

Smart 
Contract
Solidity

Mobile Phone
Android

Car
open/close

GPIO

HSM
Blockchain 

Security2Go 
starter kit R2

I²C

Auto-generated 
with RPC 

framework

Bluetooth

Ethereum Testnet
Ropsten

Fig. 7. Demonstrator architecture

With the write request, the CheckPermission function of the
smart contract is triggered by the Raspberry Pi. If a success
message is returned, the transaction as described in Sec. IV-C,
is built. Afterwards the HSM signs the transaction with the
private key preserved within the HSM. Then, the transaction
is transmitted to the Ropsten Testnet and if signed successfully
included into the next block.

In the successful case, the transaction hash is returned and
the wing doors of the toy car are opened. In the blockchain
network, the successful unlocking procedure results in sending
the vehicle token to the vehicle’s wallet address itself with
changed parameters lock state and current user.

VI. EVALUATION

A. Threat Model

Considering the entire solution and the document [11],
where a structured research on the attack surface of
blockchains is conducted, the threat model is split into three
attack targets: blockchain structure; peer-to-peer system; and
blockchain applications. The first two attack targets are out-
of-scope of this work, since the focus is on the application.
Following the structured research in [11], the most influencing
attacks for blockchain applications are: wallet theft; double-
spending; and replay attacks, since they result in revenue loss,
theft, and info loss.

The focus of this work is to prevent wallet theft, even though
countermeasures for double-spending and replay attacks are
also in place. The latter attack is no longer a problem on
Ethereum based blockchains, since the Ethereum Improvement
Proposal (EIP) 155 and the hard fork Spurious Dragon, where
the transaction hash also includes the chain id as stated in
[12]. Double-spending is avoided, since during the unlocking
procedure the lock state of the vehicle is validated via the
smart contract. Before a vehicle is possible to unlock again,
it has to be locked first.

The measures against wallet theft are explained during the
comparison to the state-of-the-art solutions.

B. Comparison

In this sub-section the proposed concept is evaluated against
state-of-the-art solutions for various aspects, such as security,



TABLE II
STRUCTURED COMPARISON OF STATE-OF-THE-ART SYSTEMS LISTED IN RELATED WORK (SEC. III)

HireGo [6] DAV [7] ZoKrates [4] Indy [4] Two token types [6] Cryptober [8] velink
Blockchain Ethereum Ethereum Ethereum Hyperledger Ethereum not specified Ethereum

Token type ERC-20 (pay) ERC-20 none none ERC-20 (reward) none ERC-721ERC-721 (car) ERC-721 (car)
Vehicle (token) ownership Tenant Vehicle - - Vehicle - Vehicle

Key protection SW SW SW SW SW SW HSM
Maturity level Alpha version Demonstrator Concept Concept Demonstrator Concept Demonstrator

complexity, and flexibility. In Table II, a structured comparison
is conducted.

The utilized vehicle token is representing the vehicle’s digi-
tal twin with respective parameters. Only required parameters
for demonstration are implemented in the proof-of-concept,
but they are extensible. To prevent miss-use of the vehicle, the
security perspective is crucial, therefore a state-of-the-art HSM
is integrated to protect the key material required for the identity
control. Other options such as cloud wallets, hot wallets,
or software wallets are available, but compared to hardware
wallets they are vulnerable against viruses and other attacks
[13], even though the blockchain network itself is tamper-proof
by design. In [13], attacks and threats against various wallets
are analyzed, and hardware wallets as dedicated cryptographic
devices are considered as the most secure.

Another important aspect is complexity. While the proposed
concept is only incorporating essential parties, other concepts
make the system more complex than required. One system
proposed in [4], is intending to implement a membership
provider, which is not necessary to be operational. Unneces-
sary complexity is also introduced in [6], where unlock tokens
need to be bought first, instead of directly using ETH. HireGo
brings the design disadvantage of transferring the vehicle token
to the tenant, which results in an ownership loss and hence
miss-use is eased [6].

Considering the system explained in [8], tenant and owner
need to be in the same place, which lacks in flexibility in
regard of the renting procedure. Another promising approach
for the future is the DAV network, which is trying to lay
the foundations for a decentralized transportation infrastruc-
ture, focusing on autonomous vehicles [7]. An open-source
approach is utilized, but for the shared mobility use case, no
details regarding the renting procedure are available.

Further, an evaluation of the setup phase for each listed
solution was attempted, but they are not clearly specified in
the related resources.

VII. CONCLUSION AND FUTURE WORK

In this work we proposed an HSM supported, blockchain-
based vehicle sharing platform leveraging non-fungible ERC-
721 tokens. Besides focusing on the interaction between tenant
and vehicle, the security perspective is essential. The evalu-
ation has shown, that the proposed solution has an extensive
advantage in regard of security. In the proof-of-concept the
feasibility was proofed in order to extend the implementation
and cooperate with potential partners.

Next steps are to implement the payment and privacy
enhancement procedures into the current available proof-of-
concept. Further, adopting the system to public transportation
and also to the novel flying taxi approach will be analyzed.

VIII. ACKNOWLEDGMENT

This project has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 826610. The JU
receives support from the European Unions Horizon 2020
research and innovation programme and Spain, Austria, Bel-
gium, Czech Republic, France, Italy, Latvia, Netherlands.

REFERENCES

[1] “Smart Contracts and Solidity,” [Online; accessed 2020-08-
20]. Available: https://github.com/ethereumbook/ethereumbook/blob/
develop/07smart-contracts-solidity.asciidoc#what-is-a-smart-contract

[2] M. d. Angelo and G. Salzer, “Tokens, Types, and Standards: Iden-
tification and Utilization in Ethereum,” in 2020 IEEE International
Conference on Decentralized Applications and Infrastructures (DAPPS),
2020, pp. 1–10.

[3] “ERC-721,” [Online; accessed 2020-08-26]. Available: http://erc721.org/
[4] I. Gudymenko, A. Khalid, H. Siddiqui, M. Idrees, S. Clau, A. Luckow,

M. Bolsinger, and D. Miehle, “Privacy-preserving Blockchain-based
Systems for Car Sharing Leveraging Zero-Knowledge Protocols,” in
2020 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS), 2020, pp. 114–119.

[5] G. Tripathi, M. Abdul Ahad, and M. Sathiyanarayanan, “The Role of
Blockchain in Internet of Vehicles (IoV): Issues, Challenges and Oppor-
tunities,” in 2019 International Conference on contemporary Computing
and Informatics (IC3I), 2019, pp. 26–31.

[6] V. Valatn, K. Kotl, R. Bencel, and I. Kotuliak, “Blockchain Based Car-
Sharing Platform,” in 2019 International Symposium ELMAR, 2019.

[7] N. T. Copel and Ater, “DAV White Paper,” Tech. Rep., 2018, [Online;
accessed 2020-08-17]. Available: https://dav.network/whitepaper.pdf

[8] V. Hassija, M. Zaid, G. Singh, A. Srivastava, and V. Saxena, “Cryptober:
A Blockchain-based Secure and Cost-Optimal Car Rental Platform,”
in 2019 Twelfth International Conference on Contemporary Computing
(IC3), 2019, pp. 1–6.

[9] M. Harikrishnan and K. V. Lakshmy, “Secure Digital Service Payments
using Zero Knowledge Proof in Distributed Network,” in 2019 5th Inter-
national Conference on Advanced Computing Communication Systems
(ICACCS), 2019, pp. 307–312.

[10] T. Fischer, C. Lesjak, D. Pirker, and C. Steger, “RPC Based Framework
for Partitioning IoT Security Software for Trusted Execution Environ-
ments,” in 2019 IEEE 10th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), 2019.

[11] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and
D. Mohaisen, “Exploring the Attack Surface of Blockchain: A Com-
prehensive Survey,” IEEE Communications Surveys Tutorials, vol. 22,
no. 3, pp. 1977–2008, 2020.

[12] “EIP-155,” [Online; accessed 2020-09-18]. Available: https://github.
com/ethereum/EIPs/blob/master/EIPS/eip-155.md

[13] H. Rezaeighaleh and C. C. Zou, “New secure approach to backup cryp-
tocurrency wallets,” in 2019 IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–6.

https://github.com/ethereumbook/ethereumbook/blob/develop/07smart-contracts-solidity.asciidoc#what-is-a-smart-contract
https://github.com/ethereumbook/ethereumbook/blob/develop/07smart-contracts-solidity.asciidoc#what-is-a-smart-contract
http://erc721.org/
https://dav.network/whitepaper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

	Introduction
	Background
	Related Work
	Concept and Architecture
	Overview
	Registration Procedure
	Unlocking Procedure
	Smart Contract and Tokenization
	Privacy Enhancement

	Proof-of-Concept
	Components
	Architecture
	Procedure

	Evaluation
	Threat Model
	Comparison

	Conclusion and Future Work
	Acknowledgment
	References



