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ABSTRACT 

The first phase of this study aimed to evaluate the environmental impact of combined sewer overflow 

(CSO) events originated from 35 spillways on the Rio Vallescura catchment (Central Italy) and to 

understand their contribution to the deterioration of the coastal bathing water quality. A specific 

analytical campaign was carried out in the sewer system and a dynamic rainfall-runoff simulation 

model was developed and integrated with a water quality model and further validated. The 

simulations led to identify the most critical spills in terms of flow rate and selected pollutant loads 

(i.e. suspended solids, biochemical oxygen demand, chemical oxygen demand, total Kjeldahl 

nitrogen, Escherichia coli). Specifically, the E. coli release in the water body due to CSO events 

represented almost 100% of the different pollutant sources considered. In the second phase, the 

applicability of various disinfection methods was investigated on the CSOs introduced into the 

catchment. On site physical (UV) and lab-scale chemical (peracetic acid (PAA), performic acid 

(PFA), ozone) disinfectant agents were tested on microbial indicators including E. coli and intestinal 

enterococci. PFA and ozone were more effective on the removal of both bacteria (above 3.5 log units) 

even at low concentration and with short contact time; whereas, PAA showed a moderate removal 

efficiency (around 2.5 log units) only for E. coli. The highest removal efficiency was achieved in the 

on-site UV unit and none of the indicator bacteria was detected in the final effluent after the sand 

filtration and UV treatment. Finally, potential scenarios were developed in comparison to the baseline 

scenario for the management and treatment of CSOs where a mitigation of E. coli loads from 28% to 

73% was achieved on the receiving water body, and a comparative cost assessment of the disinfection 

methods was provided for in situ treatment of the most critical spillway. 

 

Keywords: combined sewer overflow; disinfection; Escherichia coli; microbial contamination; 

modelling; bathing water quality 

 

 



3 
 

1. Introduction 

Most older town and city centers are drained by combined sewer systems, which raises concerns 

regarding combined sewer overflows (CSOs) for many metropolitan cities in Europe and the US 

(Gasperi et al., 2010; Lund et al., 2014). In combined sewer systems, municipal wastewater and 

rainwater are collected and carried to wastewater treatment plant (WWTP) in a single network. In the 

event of intense precipitation, the flow of this line might exceed the capacity of the sewer system and 

consequently the excess flow, so called CSO, is directly discharged into water bodies (Botturi et al., 

2020).  

Contaminations due to CSO events can be originated from the dilution of sewage by rainwater, 

internal contribution by in-sewer sediment re-suspension and external contribution by runoff 

(Madoux-Humery et al., 2013). Pollution loads in CSOs are mainly characterized by solids, organic 

matter, nutrients, metals, organic compounds and pathogenic microorganisms (Montserrat et al., 

2013). Main CSO impacts on receiving water bodies include: (i) oxygen depletion due to the 

biodegradation of organic matter carried by the untreated wastewater, (ii) elevated turbidity that 

causes the reduction of photosynthetic primary production, (iii) increase in the concentration of some 

organic micropollutants and metals, and (iv) pathogenic microbial contamination (Passerat et al., 

2011). In fact, during intense rain periods, a sudden microbial contamination may occur due to 

untreated CSO releases (Jalliffier-Verne et al., 2016), resulting in an increment of more than a 2 log 

factor in the concentrations of Escherichia coli and enterococci in the receiving water bodies (Al 

Aukidy and Verlicchi, 2017). Passerat et al. (2011) estimated that sewer sediments were responsible 

to contribute to about 75% of the solid matter, 10-70% of the E. coli, and 40-80% of the intestinal 

enterococci that were discharged by CSO events. Enteric viruses are stable in aquatic environments 

and they can be transported over long distances with storm water runoff after rainfall events (Hata et 

al., 2014). Currently, a method for the quantitative calculation of the occurrence and impact of storm 

water overflows at EU or Member State level does not exist (Milieu, 2016). However, there are 

different methods typically applied at the local scale like the Blue Flag (Foundation for 



4 
 

Environmental Education) in Italy. Since the pollutant loads originated from CSOs are one reason to 

exceed threshold values of these local guidelines, states and municipalities need to make greater 

efforts to develop storm water management strategies to reduce them (Tondera et al., 2019; Venditto 

et al., 2020) and carry out specific water safety plan (Carducci et al., 2020). All above mentioned 

reasons create a high-priority need to minimize the environmental risks of CSO events, which 

represents a great challenge for public utilities due to the high number of CSOs in urban catchments 

(Launay et al., 2016). Finally, the last assessment of the EU Urban Wastewater Treatment Directive 

(271/91/EC) has highlighted the critical impact related to CSOs which are responsible for discharging 

to the EU water bodies loadings of BOD, N, P and coliforms much higher than 5 million population 

equivalent (PE). 

The occurrence of overflow events are particularly damaging the urban catchments in Mediterranean 

countries with low river flow patterns, unable to dilute the undesired inputs (Montserrat et al., 2013). 

In fact, the Mediterranean region is foreseen to suffer from elevated CSO events in the next years as 

most climate change models conclude that the Mediterranean countries will be more affected by 

summer droughts, severe storms and higher flood frequency (Murla et al., 2016).  In Italy, only few 

regions set out guidelines for the management of rainwater and these guidelines differ between the 

regions. For instance, Lombardia Region (North Italy) requires local treatment systems or specific 

storage tanks for every overflow (Lombardia Regional Regulation n°6, 2019). The Emilia-Romagna 

Region (North-East Italy) also suggests collecting and treating the first 2.5-5 mm of rain on the 

impervious surface. Similarly, the Marche Region (Central Italy) recommends to separately collect 

and treat the first rainfall of 5 mm uniformly distributed on the entire draining surface. The regional 

regulation of Marche states that the discharge into the sea must happen off the coast defense works 

parallel to the coast, or in the shoreline, but only if there are no defense works at less than 400 m 

(Piano Tutela Acque, 2010). Meanwhile, recent studies revealed that extreme precipitation events 

showed no positive nor negative trends related to the annual maximum rainfall in the Marche Region 

(Gentilucci et al., 2019; Soldini and Darvini, 2017). Hence, the unpredictability of extreme 
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precipitation regimes eventually increases the risk and impact of CSOs in those regions and requires 

taking action on the management of such pollution loads.  

Up to date, only few conventional monitoring campaign has provided knowledge on the level of 

pollutant loads in urban CSO events (Copetti et al., 2019), while the collected data are often used 

without any consideration of the large uncertainties in the environmental measurements (Marchis et 

al., 2013). Moreover, no specific indication is given in cases where the CSO is directly released into 

the sea. While few comprehensive studies exist in the literature focusing on big catchment areas (Fong 

et al., 2010; Quijano et al., 2017), small catchments should not be overlooked since they may have 

the most drastic effect on the coastal bathing water quality.  In a study took place in a coastal area of 

the Emilia-Romagna Region, 5 CSO events were characterized with respect to hydraulic and pollutant 

loads (Al Aukidy and Verlicchi, 2017). It was found out that the modest water volume discharged by 

all CSO outfalls contains 90% of the microbial load. One of the alternatives to assess the impact of 

pollutant loads on receiving water bodies can be water quality modelling, that is a useful approach to 

address mitigation and management of CSOs. The fate and effect of pollutants within the river 

catchment can be simulated using hydraulic modelling limits (Björklund et al., 2018; Morales et al., 

2017; Taghipour et al., 2019). This approach can help to understand the role of CSOs to alter the 

hydrodynamics and water quality of receiving water bodies under different precipitation events 

(Quijano et al., 2017) and further complement monitoring and addressing the limitations of analytical 

methods to some extent (Björklund et al., 2018). Furthermore, the integrated models need to be 

properly calibrated/validated with focus on the impacts, which should be mitigated (Riechel et al., 

2016). While developing an overflow scenario, the knowledge and the integration of different 

parameters enable a better and deeper comprehension on the real mechanism that could have impacts 

on the environment. Four different levels were identified by (Malgrat, 2013) based on the quantity 

and quality of the data available for CSO control policies. The application of hydrologic/hydraulic 

models allow to reach only a “desirable” N2 level; whereas the integration of the quality data (spilled 

concentration) together with hydraulic models represent a “good” N3 level. In order to reach the 
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“optimum” level, the assignment of the intermittent concentration in receiving water must be 

implemented. The outputs of these models can help to develop pollution mitigation scenarios and to 

obtain the best performance configuration for a further scale-up and application. 

In fact, the bathing water quality can be maintained by instant disinfection of inflowing CSO water 

(Chhetri et al., 2016). To date, various disinfection methods at lab- and/or pilot-scale were proposed 

for the removal of pathogens from CSOs, such as peracetic acid (Chhetri et al., 2016), performic acid 

(Chhetri et al., 2014; Tondera et al., 2016), hypochlorite (McFadden et al., 2017),  ozone (Tondera et 

al., 2015) and UV (Gibson et al., 2017, 2016). However, the applicability and frequency of a 

disinfection method applied for CSOs are often site-specific due to high variability of the pollution 

load in CSOs and therefore need optimization to assess the effectiveness of the chosen disinfectant 

agent.  

The present study integrated and further experimentally validated dynamic rainfall-runoff simulation 

and water quality models to create a CSO pattern of a small catchment (Rio Vallescura in the 

Municipality of Porto San Giorgio - Marche Region, Italy) based on different precipitation scenarios 

and pollutant loads. 35 spillways were characterized that were responsible for the CSO events in the 

catchment area. Most critical spillways were further identified which cause most of the fecal bacteria 

contamination and loss of excellent bathing water quality in Porto San Giorgio. Based on the 

simulations, chemical and physical disinfection methods were proposed and in situ and ex situ tested 

in order to eliminate microbial contamination. In the final step, possible mitigation scenarios were 

developed for the most critical spillways to minimize their impact on the receiving water body. While 

the existing literature has mostly focused on either modelling or treatment of CSOs, hereby in this 

paper we presented a comprehensive assessment that can help to to provide technical support and 

data for controlling CSOs and further support regulatory and policy decisions.  

2. Materials and methods 

2.1. Study area 
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The Rio Vallescura is a small-medium canal located in the Marche Region, in Central Italy, which 

corresponds a river catchment of 9.16 km² at an average height above sea level of 118 m. The length 

of the canal is more than 8 km, starting from the upstream from Fermo old town until it reaches the 

coastal area of Porto San Giorgio and flows directly into the Adriatic Sea. The average meteorological 

pattern during the sampling days was as follows: temperature: 245.8 oC, precipitation: 0 mm, 

humidity: 61.816.5%, pressure: 1014.64.3 atm.  

In addition to its own catchment area drainage, the study area receives critical CSOs that serve urban 

and agricultural areas. The existence of few industrial sources with low environmental impact (i.e. 

car washing) do not represent any major contributions in terms of pollutant loads, so the wastewater 

is mainly originated from domestic sources. The drainage system works by gravity, without any use 

of pumping, and conveys the sewer into a principal collector placed to Rio Vallescura, in which 

secondary pipelines arriving from the nearby hills are also connected and ends up in Lido di Fermo 

WWTP. The WWTP has a design capacity of 50,000 PE coming through three main collectors, one 

from Vallescura that includes approximately 7,227 PE, another one from the south that collects flow 

of Porto San Giorgio and the last one from the north of Lido di Fermo. Wastewater treatment scheme 

is composed of preliminary treatment units, conventional activated sludge process, secondary 

sedimentation, filtration and finally disinfection; while the sludge section includes thickening, aerobic 

digestion and dewatering processes.  

Each CSO infrastructure was analyzed in terms of design characteristics to understand how these 

overflows work: the overflow occurred thanks to a circular side opening in the sewer well. Only the 

spillways with ratios lower than 2, between pulling water before overflow and internal diameter of 

outgoing pipeline, were considered for the modelling phase. The environmental impact of CSOs 

occurred from 35 spillways in the drainage system was further identified as shown in Fig. 1. The 

degree of incidence due to overflows for each selected pollutant was evaluated, while utmost 

importance was given to fecal bacteria contamination leading to the loss of excellent bathing water 

quality in Porto San Giorgio.  
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2.2.Water quality modelling 

The assessment of hydraulic operation of the drainage system was done using the Storm Water 

Management Model (SWMM), the open-source software developed by United States Environmental 

Protection Agency (EPA). SWMM is used for planning, analysis, and design related to stormwater 

runoff, combined and sanitary sewers, and other drainage systems (EPA, 2020). This dynamic 

rainfall-runoff simulation model is widely used to evaluate the runoff quantity and quality for single 

event or long-term simulation (Rossman, 2015). A quantitative assessment was conducted in the 

preliminary phase by implementing the urban drainage network that included the setting of hydraulic 

structure (i.e. pipes dimension) as well the knowledge of river basin hydrological characteristics. In 

order to verify the data accuracy, the calibration of the model was required both in dry and wet 

periods. This evaluation was done by comparing the measured values to the results extrapolated by 

SWMM. A flow meter was placed in the point S282 (as indicated in Fig. 1) to provide hydraulic 

influent daily flow into the sewage system. The average value of 1506 m³/d was obtained from the 

specific elaboration of the data meter during the period considered (from 4th June to 12th June 2019), 

that identified a specific influent flow value of 136 liters per person per day. The latter provided the 

total discharged flow by 7,227 PE, inserted as input in SWMM, and specific simulation was run to 

verify the correspondence between flow meter data and output model. Qualitative calibration was 

performed by entering the concentrations measured during the sampling campaign in the four most 

upstream points (S272, W409, S276, S280) in SWMM and then checking that the model output in 

the downstream spillway (S282) could be compared to the laboratory analysis values. Regarding the 

wet period evaluation, that took place in March-April 2019, the same procedure was applied 

considering that the flow meter was in another point (S273) and provided an average value of 1791 

m³/d. 

Model evaluation was carried out using percent bias (PBIAS) that compares the simulated data with 

the observed one, providing information about overestimation (positive PBIAS) and underestimation 
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(negative PBIAS) of the calibrated model (Gupta et al., 1999). The calculation was done applying the 

following equation: 

PBIAS = 
(YOBS−YSIM)

YOBS
 * 100 

where PBIAS = deviation of pollutant concentration and mass [percentage]; 𝑌𝑂𝐵𝑆 = mean value 

measured in field [expressed as mg/l for concentration and as kg/d for mass]; and 𝑌𝑆𝐼𝑀 = output value 

simulated by SWMM [expressed as mg/l for concentration and as kg/d for mass]. COD and TKN 

concentration and mass results assure the accuracy of the following simulations with PBIAS values 

between 5.06% - 7.30%, a rating performance lower than the 10% that can be considered “very good” 

(Moriasi et al., 2007). 

2.3.Simulations conditions 

The impact of the pollutants in the environment was considered as composed of three main sources: 

CSO loads, load of the users not connected to the sewer system and WWTP effluent. The simulations 

under dry and wet conditions were carried out also using pollutant loads determined for CSOs as well 

as the influent of Lido di Fermo WWTP. The rainfall data were obtained from the database of the 

“Centro Funzionale Multirischi della Protezione Civile” which manages the monitoring network of 

Marche Region. The rainfall amount collected by drainage system was evaluated considering the 

historical storm events of the territory and data extrapolation concerning the closest rainfall 

monitoring stations located in Fermo and Porto Sant’Elpidio. The data were downloaded from the 

“Portale del Sistema Informativo Regionale Meteo-Idro-Pluviometrico Sirmip on-line” (Regione 

Marche, 2020). Three return times (RT) were considered for rainfall height calculation, representing 

the probability that a harmful event occurs in each area within a specified period. These rainfall 

heights are equal to 12.8 mm for RT = 1 y, 41 mm for RT = 5 y and 48.7 mm for RT = 10 y. To have 

a continuously rainfall scenario, a “typical year” was calculated through a statistical evaluation. 

Accordingly, all the precipitation data from 1999 to 2019 (e-Supplementary file) were analyzed to 

identify the most representative year that deviated less than the average value of the period 
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considered. In addition to the rainfall statistical evaluation, the seasonal variability of pollutant loads 

between the summer and winter periods as well as physical-chemical characterization of the rainfall 

events was also considered. Typical concentrations of runoff water were evaluated both for the entire 

precipitation event and for the first flush (initial surface runoff of a rainstorm) as given in Table 1. 

The impact of storm water runoff linked to dwellings that are not connected to the public sewage 

system (4% of the total users in the basin) was also considered and modelled. 
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Table 1. Main pollutants concentration in runoff water for both first flush and entire rainfall event, estimated and elaborated from different 

references. 

 COD BOD5 N-NH4 TKN TSS E. coli Coliform 
Reference 

mg/l mg/l mg/l mg/l mg/l mpn/100ml mpn/100ml 

First flush 

112.98 20.89     55976 
(Maestre et al., 

2004) 

210 680.5   737.5   (Papiri and Barco, 

2003; Papiri, 2015) 

  0.8  70.96   (Maestre and Pitt, 

2005) 

Mean ± 

standard 

deviation 

161 ± 69 351 ± 466 0.8  404 ± 471  55976  

Entire 

rainfall 

65.92 12.53     46238 
(Maestre et al., 

2004) 

176 10.3  1.4 173  6879 
(Ciaponi et al., 

2014) 

56.5 9   84  5500 (Metcalf & Eddy) 

111.1 140.5   222.1   Papiri and Barco, 

2013; Papiri, 2015) 

46.45 8.05 0.52  44.36 1750 4062 
(Maestre and Pitt, 

2005) 

Mean ± 

standard 

deviation 

91 ± 53 36 ± 58 0.52 1.4 131 ± 81 1750 15670 ± 20411  
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2.4. Disinfection tests 

Different disinfection agents were selected and ex situ or in situ tested to reduce the microbial 

pollution in CSOs. Chemical disinfection was conducted at lab-scale by using performic acid (PFA), 

peracetic acid (PAA) and ozone; meanwhile UV-treatment system was tested on-site.  

The influent wastewater was taken from Lido di Fermo WWTP and diluted at a ratio of 1:4 (v:v) to 

simulate the most critical CSO conditions according to the regional legislations which introduce a 

minimum permitted ratio (P ratio) between peak flow in rainy weather and average dry flow, equal 

to 4 (Piano Tutela Acque, 2010). The disinfection tests included: i) PAA at a concentration of 2, 4 

and 6 mg/L with contact time of 5, 10 and 20 min; ii) PFA at a concentration of 2 and 4 mg/L with 

contact time of 5, 10 and 20 min; iii) ozone at a concentration of 10 and 20 mg/L with contact time 

of 7 and 15 min. 

The on-site disinfection test was carried out using two filtration units in parallel followed by a small 

UV system (illustrated in Fig. 2) to remove TSS and to increase UV transmittance. The sand filter 

consisted of a rigid PVC cylinder, with 150 cm high, and a nominal diameter of 20 cm and at the 

bottom, PVC sleeve attached to the side outlet of the effluent (HRT = 8-10 min). The cylindrical tube 

was filled with sand up to 120 cm, a type of sand with an average diameter of 1 mm and range of 

dimensional variability between 0.8 and 1.2 mm. At the end of the cylinder coarse gravel was placed 

to avoid the compaction of the sand on the bottom and to dissipate the energy of the jet of the influent 

flow. The belt filter consisted of a rigid PVC cylinder for temporary containment of the influential 

and a nylon filter disc with a mesh size of 250 μm. Following the filtration units, a UV lamp was 

placed (Viqua, model D4) with the dimension of 50 cm of height, 10 cm of diameter and a working 

volume of 2.85 l.  The UV disinfection tests included: i) sand filtration and UV dose of 85, 128 and 

256 mJ/cm² with contact time of 34, 51 and 103 sec, respectively; ii) belt filtration and UV dose of 

85 and 256 mJ/cm² with contact time of 34 and 103 sec, respectively. The treatment efficiencies were 

determined by log removals of E. coli and intestinal enterococci. 
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2.5.Analytical methods 

All physical-chemical analyses were carried out according to the Standard Methods for the 

Examination of Water and Wastewater (APHA, 2012). Microbiological analyses were conducted in 

accordance with the official analytical methods of the Italian legislation, issued by the IRSA-CNR 

Institute for Water Research of the Italian National Research Council Agency for the Protection of 

the Environment and Technical Services (IRSA-APAT, 2003). In particular, E. coli was analyzed 

according to Method 7030F, and intestinal enterococci were done according to Method 7040C.  

2.6.Statistical analysis 

The statistical significance between the disinfectant concentration and the contact time in the 

disinfection tests was determined using one-way analysis of variance (ANOVA). The level of 

significance was taken as p < 0.05.  

3. Results 

3.1. Output of the calibrated model 

The calibration was done by using the data only obtained from the dry period, since the data from the 

wet period result much lower than those one sampled in the dry period due to the increase in the flow 

rate following of a storm event, that causes a dilution effect. All the data measured in the samples 

taken from the influent and effluent of the WWTP and in the points (S282-S280-S276-W409-S272) 

are given in the e-Supplementary file. In order to obtain an average wastewater characterization 

under the same conditions, the flow rate peak ratios at every concentration was applied. The average 

values for the measured pollutant concentrations in the WWTPinf , WWTPeff and at the spillways are 

given in Table 2.



14 
 

Table 2. Mean value and standard deviation of the data measured in the samples taken from the influent (WWTPinf) and effluent (WWTPeff) at the 

WWTP and at the spillways inside the sewerage (S282-S280-S276-W409-S272). 

 

Sample 

T pH COD N-NH4 TKN 
N-

NO2 
N-NO3 

Total 

N 
TSS BOD5 

Total 

P 
P-PO4 Cl SO4 E. coli 

Intestinal 

enterococ

ci 

°C - mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l 
UFC/100

ml 

UFC/100

ml 

WWTPinf  7.3 ± 

0.2 

320 ± 

131 
48 ± 12 62 ± 18 0 

0.24 ± 

0.5 

62 ± 

18 

188 ± 

53 
270 6.7 

15.6 

±20 

117.5 

±23 

66 ± 

31 

3046667 

± 

3514902 

900000 ± 

989949 

WWTPeff    0 0 0 6 0    0 150 74   

S282 
20 ± 

1.29 

7.5 ± 

0.08 

551 ± 

318 
50 ± 15 76 ± 27 0 0.34 

77 ± 

26 

371 

±197 

370 

±220 
 4.3 ± 

2.6 

98 ± 

39 

50 ± 

12 

9280000 

± 

8084058 

3250000 

± 

1626345 

S280 
23 ± 

1.2 

7.7 ± 

0.15 

453 ± 

115 
66 ± 4.7 

86 ± 

12.6 
0 

0.97 ± 

1.1 

87 ± 

13 

257 ± 

71 

380 ± 

42 
 4.4 ± 

1.1 

115 

±13.6 

49 

±6.8 

7700000 

± 

4794789 

 

S276 
24 ± 

1.9 

7.5 ± 

0.2 
362 ± 67 40 ± 5.9 55 ± 13 0 

0.49 ± 

0.8 

56 ± 

14 

240 

±102 

280 

±28.3 
 2.9 ± 

0.9 

137± 

14 

62 

±15.2 

4966667 

± 702377 
 

W409 
25 ± 

1.8 

7.6 ± 

0.3 
444 ± 68 40 ± 8.2 

54 ± 

6.7 
0 

0.68 ± 

0.1 

55 ± 

6.6 

216 

±130 

295 ± 

78 
 1.8 ± 

2.5 

81 ± 

18 

38 ± 

17 

3600000 

± 

4101219 

 

S272 
24 ± 

0.8 

7.5 ± 

0.1 

495 ± 

164 
39 ± 1.1 

56 ± 

1.4 
0 

0.72 ± 

1.0 

57 ± 

0.4 

324 ± 

54 

335 

±91.9 
 3.5 ± 

1.6 

191 

±0.15 

45 ± 

19 

2050000 

± 

2050609 
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The extrapolation of the results by SWMM provided indications on both quantitative and qualitative 

overflows relative to their impact on the environment. It was possible thanks to simulation scenarios 

referred to a return time of one year, five years, ten years and the typical year. For all these scenarios, 

the real P ratio was simulated to verify the accomplishment of the regional regulation (see e-

Supplementary file).  Hydraulic impact on the sewer system for great RTs (5 y and 10 y) implied a 

flooding for 44% and 50% of the all 153 wells, respectively. Differently, for a return time of one year 

this portion remained at 3%, hence the greatest events with return times of five and ten years, the 

flooded volume was included in the CSO volume. This means that for strong events (5 y and 10 y of 

RTs), the sewer is not sufficient. In order to avoid underestimation of the total impact, the flooded 

flow was considered as an overflow. The results highlighted the activation of 14 in 35 spillways for 

smallest return time, while that of were 25 for the other two return times. The E. coli were mainly 

originated from the discharge of the utilities connected to the sewer (10^14 UFC/d), even if the value 

associated to the runoff of the rainwater turned out to be still high (10^11 UFC/d). The cumulative 

discharge load in terms of TSS was greater than the quantity to be treated in WWTP for all return 

times. For COD and BOD5, this happened only for very critical situations of return time of five and 

ten years. The overflow load mainly affected COD (46%-84%), TSS (57%-89%) and BOD5 (29%-

69%) coming from storm water runoff on impermeable surfaces. Instead, TKN and E. coli loads had 

an impact with at a range varying from 7% to 35% and were derived mainly from utilities connected 

to the sewer. Considering that in the typical year there were about 201 rain events (including minor 

events) there were several activations of the spillways that went from a minimum of once to a 

maximum of 69 times per year, with an average of 24 active spillways per year. The flows and 

concentrations coming from the CSOs are shown in Fig. 3. Among the 24 active spillways only 4 of 

these were identified as the most harmful in terms of volume and pollutant discharges, as follow: 

S277 (25.3% of volume and 29% of E. coli load); S279 (9.1% of volume and 8.4% of E. coli load); 

S280 (8.5% of volume and 15.5% of E. coli load); S283 (13% of volume and 33.8% of E. coli load). 
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The contribution of the other pollutants was also significant in these four spillways, corresponding to 

74.4%, 57.7%, 56.3% and 59.7% for TKN, COD, TSS and BOD5, respectively. The degree of 

incidence due to overflows for each selected pollutant was further evaluated and is shown in Fig. 4 

for TKN, COD, TSS, BOD5 and E. coli. The load associated to the users that were not connected to 

the sewer system turned out to be much smaller than the overflow, less than 4% for all simulations 

especially regarding the E. coli that has the impact less than 1%. The contribution of BOD5 on the 

environment was associated with the WWTP effluent (55%) as well as the overflows (42%), and the 

same for COD with 62% for effluent and 36% for spillways activation. E. coli and TKN, on the other 

hand, had different origins, in fact, E. coli was derived almost entirely from the CSOs (99.2%), while 

TKN was associated mainly with the discharge of the effluent (95). Finally, the TSS was mainly 

associated with the CSOs (69%), but also had a contribution from to the WWTP effluent (29%). 

3.2. CSO treatment 

The disinfection tests were conducted to assess the performance of various chemical and/or physical 

agents and to identify the most efficient treatment system to be applied in possible mitigation 

scenarios of CSO impacts in the Vallescura basin. Fig. 5a, b, c and d show the log removals of E. 

coli and intestinal enterococci at different concentrations of disinfection agents, ranging from 2 and 

6 mg/l for PAA and PFA; 10 and 20 mg/l for ozone and 85 and 256.5 mJ/cm2 for UV. 

The PAA disinfection tests were effective only on the E. coli removal with the log reduction of 2.5 

for 2 mg/l and 2.7 for 4 mg/l, respectively. The application of PAA for intestinal enterococci showed 

poor effects with low log removal of 0.1-0.4. The application of PFA was found to be the most 

effective chemical disinfection agent in the lab tests, both for the removal of E. coli and intestinal 

enterococci. At the concentration of 2 mg/l, PFA allowed to reach a log removal of 4.6, while a 

maximum value of 3.7 was obtained for intestinal enterococci. Finally, ozone disinfection showed 

high removal efficiency only for E. coli with the log reduction of 3.9; meanwhile that of was 1.6 for 

intestinal enterococci. The on-site UV disinfection; on the other hand, showed the highest removal 

when applied in combination with the sand filter, reaching up to 8.2 and 6.7 units for E. coli and 
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intestinal enterococci at a high dose of 256.5 mJ/cm2. The application of the belt filter before the UV 

showed comparatively less efficiency, with 4.6 and 3.8 log removal for E. coli and intestinal 

enterococci, respectively. The concentration of the final effluent was 40 CFU/100 ml for E. coli and 

100 CFU/100 ml for intestinal enterococci after belt filtration + UV disinfection; whereas no 

indication of E. coli and intestinal enterococci was detected after the sand filtration + UV disinfection 

configuration. 

The effect of contact time on the disinfection efficiency of PAA, PFA and ozone, was evaluated both 

for E. coli and intestinal enterococci considering the log reduction obtained in the function of specific 

dose (Dose = contact time x concentration). The removal results for PAA and PFA are given in Fig. 

5e and f, respectively. Although the effect of contact time on the PAA and PFA treatments was not 

significant at all for all the concentrations (p > 0.05), PFA disinfection yielded high removal 

efficiency even at low doses, mainly for E. coli tests that obtained 3.8 log reduction at a dose of 10 

mg/l*min. The PFA disinfection was also efficient on the removal of intestinal enterococci, whereas 

higher removal was obtained at high doses, as the log removal increased from 1.7 at the dose of 10 

mg/l*min to 2.9 at the dose of 80 mg/l*min. The PAA disinfection was not efficient compared to 

PFA, with low log reduction units for intestinal enterococci (never higher than 1 log unit) and 

moderate values for E. coli, only at higher doses (log reduction of 1.3 at 10 mg/l*min dose and 2.5 at 

120 mg/l*min). Finally, the disinfection efficiency of ozone at different doses are given in Fig. 5g. 

High log removal was achieved especially for E. coli up to 3.9 at the lowest dose of 70 mg/l*min. 

Moreover, there was a significant change in the removal of intestinal enterococci with the contact 

time (p < 0.05), while comparatively lower disinfection efficiency was obtained and only at higher 

doses, with log removals of 1.5 and 2.3 at a dose of 70 mg/l*min and 300 mg/l*min, respectively. 

3.3. Mitigation scenarios 

Following the integrated simulations, four spillways (S277, S279, S280, S283) were identified with 

the highest impact on the environment corresponding to total 86.5% of the E. coli discharged by the 

CSOs. Possible minimization scenarios were developed and illustrated in Fig. 6 to cease the impact 
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of these spillways through disinfection in the WWTP and in proximity of the overflows.  In the first 

scenario, wastewater from S283 (the last spillway before the WWTP) is treated at the WWTP up to 

the maximum capacity available; while the Scenario 2 includes both Scenario 1 and in situ treatment 

at the two most critical spillways (S280 and S277). The maximum volume available at the WWTP 

was found as 2038 m³ and allowed to collect around 57% of the total annual overflow of S283. The 

WWTP equalization allowed treating 529 m3 of the accumulated volume every day, so 

approximately 3.8 days were needed to discharge all the volume. Finally, using the capacity available 

at the WWTP, it is possible reduce the E. coli load by 28% in the Scenario 1 compared to the baseline 

case. Furthermore, the removal can be increased to 35% by easily adding new storage tanks in the 

WWTP. In the Scenario 2, in addition to the outline of Scenario 1, in situ UV treatment was 

considered with sand filter that ensures E. coli load reduction of 100% for both CSOs, which 

simulated a final E. coli removal up to 73%. 

3.4. Cost assessment of possible disinfection solutions 

An economic assessment was done considering in situ treatment of the overflow from spillway S277 

during the typical year (average flow of 106,276 m3/y). The application of all different disinfection 

methods used in this study was considered, and the final operating expenses (OPEX) and capital 

expenditures (CAPEX) were estimated from literature case studies with similar operating conditions 

as given in Table 3.  

Table 3. Overview of operating (OPEX) and investment (CAPEX) costs for different disinfection 

methods. 

Disinfectio

n agent 

Concentration 

or dose 

Contact 

time 

(min) 

Trasmittance 

(%) 

OPEX 

(€/m3) 

CAPEX 

(€/m3) * 
Note Reference 

Ozone 1-4.3 mg/l 20 - 
0.0045 ± 

0.0038 

0.0032 ± 

0.004 
 

(Collivignarelli 

et al., 2000; 

Mundy et al., 

2018) 

UV 19-70 
mWs/

cm2 
n.a.** n.a. 

0.0032 ± 

0.0044 

0.0054 ± 

0.0052 

Pretreat

ment 

unit is 

(DEMOWARE, 

2016; 

Heinonen-

Tanski et al., 
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not 

included 

2003; Wojtenko 

et al., 2003) 

PFA 1.5-2 mg/l n.a. - 
0.0143 ± 

0.0058 

0.00223 ± 

0.00217 

 

(Collivignarelli 

et al., 2000; 

DEMOWARE, 

2016; 

Luukkonen et 

al., 2015; 

Luukkonen and 

Pehkonen, 

2017) 

PAA 1-5 mg/l n.a. - 
0.023 ± 

0.019 
 

(Brady, 2009; 

Collivignarelli 

et al., 2000; 

Luukkonen et 

al., 2015; 

Luukkonen and 

Pehkonen, 

2017) 

* CAPEX was annualized considering a period of 20 years at an interest rate of 8% (EPA, 2003). 

 ** n.a.: not analyzed. 

Applying the obtained economic data, the final OPEX and CAPEX for different disinfection solutions 

are presented in Table 4. Maximum operating costs were found for PAA and PFA as 2,444 ± 2,019 

€/y and 1,520 ± 616 €/y, respectively, which are mostly related to the chemical agent costs. The price 

of PFA and PAA are approximately 830 €/t for PFA solution (9%) and 1100-1200 €/t for PAA 

solution (12%) (Luukkonen and Pehkonen, 2017). UV disinfection had the lowest operation cost; 

however, higher investment costs were obtained both for UV and ozone (up to 11,061 € and 7513 €, 

respectively) and can be attributed to more complex installation necessities.  

 

Table 4. OPEX and CAPEX estimated from literature cost for the present case study. 

Disinfection 

agent 
Concentration  

Contact time 

(min) 

Transmittance 

(%) 

Flux 

(m3/y) 

OPEX 

(€/y) 

CAPEX 

(€) 

Ozone 
10-

20 
mg/l 7-15 - 

106276 

478 ± 404 3339 ± 

4174 

UV 
85-

256 

mWs/c

m2 
0.6-1.7 40 

340 ± 468 5635 ± 

5426 

PFA 2-4 mg/l 5-20 - 
1520 ± 

616 2327 ± 

2264 
PAA 2-6 mg/l 5-20 - 

2444 ± 

2019 
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4. Discussion 

Hydrodynamic and water quality models in streams have been extensively applied in different 

domains and scales to analyse the impact of CSOs in urban streams (Quijano et al., 2017; Riechel et 

al., 2016; Taghipour et al., 2019). Most of the studies regarding the modelling and/or controlling of 

CSOs focus on the indicator bacteria such as E. coli and intestinal enterococci since they are crucial 

indicator parameters for fecal matter and stated in the EC Bathing Water Directive (2006/7/EC). This 

directive clearly defines the conditions for a surface water body to be legally used as bathing water 

and how the water quality must be monitored. Surface waters classified as bathing water have to at 

least fulfil a “sufficient” quality in order to keep the status as bathing water (limit values for a 

sufficient water quality are 330 CFU (in 100 ml) for intestinal enterococci and 900 CFU (in 100 ml) 

for E. coli based on 90 percentile evaluation (Tondera et al., 2016). In this regard, disinfection is 

required to ensure the compliance with microbiological limits for the effluent discharges into the 

environment (in this case the effluent is represented by the CSOs) and to avoid mass loads of 

pathogens in receiving water bodies to comply with the bathing water quality.  

The efficiency of the disinfection systems depends on several factors: contact time, pH, temperature, 

concentration and type of microorganisms, disinfectant concentration, presence of interfering 

substances with TSS. The results of this particular study highlighted that the on-site UV disinfection 

test at a high dose (256.5 mJ/cm2) was by far the most effective treatment on the removal of both E. 

coli and intestinal enterococci from CSO. The advantages of UV disinfection compared to the 

chemical agents, include no by-products, no chemical residual, and relatively compact size. However, 

the level of disinfection that can be achieved is often limited by particle-associated organisms in CSO 

water and the UV transmittance of CSOs can be as low as 30% and the TSS can reach 200 mg/l 

(Gibson et al., 2017); hence, the use of a pretreatment unit is utmost important to increase disinfection 

efficiency. Two pilot-scale disinfection units comprised of ozone and UV were tested by (Tondera et 

al., 2015) on CSOs; where the ozone was found to be more effective than UV (ozone: 3.1-3.4 log, 

UV: 1.7-2.2 log) on the reduction of E. coli, coliform bacteria and intestinal enterococci. On the other 
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hand, ozone yielded lower outflow values for the majority of the all investigated bacteria, viruses and 

parasites at the tested doses and no further increase in efficiency was found with enhanced dose for 

UV or ozone. This differentiation could be due to the presence of solid particles and thus particle-

associated organisms, since filtration was used in our study to remove TSS. UV irradiation cannot 

properly penetrate in water due to turbidity. 

In case of using a chemical agent, PFA is recommended as the PAA treatment only removed E. coli 

at a considerable level. Although comparatively higher removal efficiencies of E. coli and intestinal 

enterococci were achieved by PFA at increased contact time, the increase was not significant at all, 

hence shorter retention time can be selected. Accordingly, a CSO treatment condition at 2 mg/l PFA 

is recommended with short contact time for E. coli and with long contact time for intestinal 

enterococci. On the other hand, if the target pathogen is only E. coli and PAA treatment is preferred, 

treating CSO at low concentration (i.e. 2 mg/l) but at long retention time (i.e. 20 min) is highly 

recommended. Similar results were reported for the disinfection of CSO. PFA was found to be a more 

efficient disinfectant at low doses with short contact time, and treatment conditions for CSO as 2 mg/l 

PFA with 20 min contact time or 2 mg/l PAA with 360 min contact time was recommended (Chhetri 

et al., 2014). Although PAA is a strong disinfectant and allows to reach optimal disinfection 

efficiency, the necessity for longer contact time makes its application more challenging in local CSO 

treatment. Moreover, the degradation of PAA releases hydrogen peroxide in the treated water and its 

toxicity to organisms needs to be further considered. However, effective concentrations for aquatic 

organisms are reported as low as 2.4 mg/l (Chhetri et al., 2014). Whereas the degradation of PFA also 

releases specific by-products in the treated water, only formic acid and water are produced and neither 

of them is toxic to aquatic fauna. What must be considered is that PFA is an unstable product and 

needs to be generated on-the-spot (Chhetri et al., 2014). In another study (Tondera et al., 2016), pilot-

scale PFA treatment was conducted to the overflow stream after a CSO storage tank, and the 

concentrations of E. coli, coliform bacteria and intestinal enterococci were below the detection limit 

with a contact time of 10 min. Similarly, in this study, PFA was more effective on the intestinal 
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enterococci removal at longer contact time. From this point of view, PFA disinfection can be 

considered at long contact time to efficiently react with all targeted organisms (McFadden et al., 

2017) compared the disinfection efficiency of PAA and hypochlorite on CSO-like wastewater and 

for a water matrix containing a pure E. coli culture without any pretreatment. The disinfection by 

PAA was found to be more efficient than disinfection by hypochlorite for all solids size fractions; 

while the disinfection efficiency was reported to decrease above pH 7.5. The matrix of the CSO waster 

(i.e. TSS) is critical here for the selection of an organism-targeted disinfection that put the use of a 

pretreatment section forward; since the disinfection agent as well as operating conditions differ and 

affect the treatment efficiency drastically. 

The pollutant loads discharged by intermittent CSO outfalls were analyzed and compared to those 

released by the local WWTP in another coastal area in North-east Italy (Al Aukidy and Verlicchi, 

2017). The authors highlighted that the CSO microbiological load (i.e. E. coli and enterococci) was 

much higher (>90%) than that of the WWTP, particularly during periods of heavy rain in the summer. 

UV disinfection was further recommended for the effluent of the most critical CSO outfall in terms 

of discharged microbial load. A pilot-scale compact advanced treatment system for CSOs was 

recently developed and validated by (Botturi et al., 2020) that consisted of a dynamic rotating belt 

filter, adsorption on granular activated carbon and UV disinfection steps. The system achieved high 

removal of 91.7%, 69.9% and 100% for TSS, COD and E. coli, respectively, while moderate nutrient 

removal efficiencies (41.6% N and 18.9% P) were obtained. Such combined systems propose a great 

potential for the treatment of critical CSOs to meet water quality in recreational and touristic areas. 

Economic assessment of disinfection systems is not straightforward and related costs cannot be easily 

compared due to the varying application techniques and type of disinfectants. Each alternative should 

be evaluated based on the characteristics of a particular site and the physical-chemical properties of 

the flux to be treated (EPA, 1999; Luukkonen and Pehkonen, 2017). In previous years, chlorine has 

traditionally been used to provide disinfection due to its low cost. Since 1970s, growing awareness 

of the adverse environmental impacts has fostered a strong interest in alternative disinfection 
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technologies for CSOs (EPA, 2003). Other chemical and physical agents as UV, ozone, PAA and 

PFA has been tested in different studies both for CSO and wastewater disinfection.  

The on-site application of the disinfection systems needs a specific survey on the area to understand 

the possibility of implementation in terms of available environment close to the spillway, equipment 

and facilities. This can be more challenging for UV and ozone, whose configuration require a more 

careful evaluation of the boundary conditions, related to the specific equipment necessities. 

Considering the chemical disinfection with PAA and PFA, the operating conditions of the case studies 

in Table 3 (concentrations of 1.5-2 mg/l and 1-5 mg/l, for PFA and PAA, respectively) are similar to 

the ones tested in this study (concentrations of 2-4 mg/l and 2-6 mg/l, for PFA and PAA, respectively). 

Furthermore, regarding the ozone treatment, the doses obtained from the literature overview were 

comparable with this paper. On the other hand, the cases on the UV disinfection shows lower 

operating values when compared to the present study (maximum 70 mWs/cm2 in the literature and a 

range of 85-256 mWs/cm2 in the present study), but the specific transmittance of the literature cases 

are not defined, which affects the final efficiency of the system. 

5. Conclusion 

An integrated catchment-wide hydraulic-water quality modelling and impact assessment approach 

for CSO control measures were developed at an urban catchment in the Central Italy by the calibration 

and validation with overflow-based monitoring data. The simulations showed that among the three 

sources of environmental pollution considered, E. coli generated by CSO accounted for most of the 

pollutant loads and could have a contribution to the deterioration of the coastal bathing water quality. 

In this regard, various disinfection tests were designed and implemented targeting the mitigation of 

microbial loads from CSOs. An on-site treatment with the UV disinfection coupled with sand 

filtration unit provided no microbial indicators as E. coli and intestinal enterococci in the effluent; 

meanwhile PFA treatment also yielded high removal efficiencies and is recommended in the case of 

using a chemical disinfectant agent even at low doses with short contact time. Possible mitigation 

scenarios were further outlined for estimating the impact of treatment on the CSO events in the 
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catchment as follows: (1) a baseline scenario, (2) Scenario 1 including a potential treatment of a 

spillway in the WWTP and (3) Scenario 2 including Scenario 1 and additionally in situ treatment of 

the two most critical spillways by sand filter + UV disinfection configuration. The results of Scenario 

2 highlighted a final E. coli removal up to 73%. The cost assessment of the disinfection agents on the 

most critical spillway in Scenario 2 also favored UV and PFA based on the OPEX and CAPEX 

(+OPEX), respectively. Similar approaches can address the needs of municipalities/water utilities to 

develop mitigation policies for these overflow events and help to maintain bathing water quality.  
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Figure Captions 

Fig. 1. Modelled study area in Rio Vallescura (Marche Region, Central Italy). Discharge points of 

spillways (red points) and Lido di Fermo WWTP (green point), sampling points (yellow points) and 

the sewer system (black line). 

Fig. 2. On-site treatment using UV disinfection system coupled with two parallel filtration units (belt 

filtration and sand filtration).  

Fig. 3. Total flow and pollutant concentration in the overflow based on the SWMM model (typical 

year simulation). 

Fig. 4. % of incidence of the different source of pollution for TKN, COD, TSS, BOD5 and E. coli. 

Fig. 5. Effect of treatment concentration on the removal of E. coli and intestinal enterococci by a) 

peracetic acid (PAA) b) performic acid (PFA) c) ozone (O3), d) ultraviolet (UV) with sand filter. 

Effect of treatment dose on the removal of E. coli and intestinal enterococci by e) peracetic acid 

(PAA) f) performic acid (PFA) g) ozone (O3). 

Fig. 6. E. coli load discharged by CSO outfalls for three case scenarios. Base case: actual scenario 

(no accumulation at the WWTP and no local treatment system); Scenario 1) The wastewater out from 

S283 is treated at the WWTP up to the maximum capacity available; Scenario 2) SCENARIO 1 + in 

situ treatment at the two other more critical spillways identified (S280 and S277). 


