Accurate and Precise Effective Temperatures for Cool Stars

n.j.miller1@keele.ac.uk

@nikkehmiller

Nicola J. Miller and P. F. L. Maxted (Keele University, United Kingdom)

Eclipsing binary stars as benchmarks-

Stars with accurate (±50 K), direct measurements of T_{eff} are essential for testing and calibrating stellar models.

The logg-T_{eff} parameter space populated by stars in the Geneva-Copenhagen Survey & Kepler LEGACY samples is only very sparsely 4.5 covered by reliable Teff standard stars. More benchmark stars are needed!

Long-period eclipsing binaries (EBs) with high quality light curves and radial velocities can provide independent measures of mass M and radius R to better than 1% accuracy.

A new approach to measuring fundamental effective temperatures-

- Takes information about angular diameters (θ) and bolometric flux ($f_{O,b}$) to obtain fundamental effective temperature (1)
- Angular diameters derived from R and parallax from Gaia
- Bolometric flux generated by using Legendre polynomials ($P_i(x)$) to **distort model SEDs**, which determine realistic small-scale features, to fit multi-bandpass photometric data, which determine broad shape (2)
- Best fit found by sampling posterior probability distribution with MCMC.

$$f_{0,b} = f_{0,1} + f_{0,2} = \frac{\sigma_{\text{SB}}}{4} \left[\theta_1^2 T_{\text{eff},1}^4 + \theta_2^2 T_{\text{eff},2}^4 \right]$$
 (1)
$$\tilde{f}_{\lambda,i} = f_{\lambda,i}^m \times \Delta_i(x) = f_{\lambda,i}^m \times \left(d_{0,i} + \sum_{j=1}^{N_{\Delta}} d_{j,i} P_j(x) \right)$$
 (2)

Wide availability of high quality multi-wavelength photometry from e.g. TESS — potential to create **benchmark** catalog of EBs with accurate, independent Teff measurements

distribution after

MCMC sims

Wavelength [Å]

 $[10^{-}]$

0.00

 $\bigcirc 0.00$

-0.25

-0.25

(±0.01 mag) essential

- Flux ratios in near-UV useful to constrain shape of model SEDs
- Choice of input model (Teff, [Fe/H]) has no significant effect

CPD-54 810

Paper II tests the limits of the method with a recently discovered EB with similar Teff components and fewer photometric observations.

Miller et al. 2021 (in prep)

NB. Gaia DR2 Teff derived using surface brightness ratio from TESS light curves

Summary

We can measure T_{eff} for stars in EBs accurate to < 1%

- Method requires UV flux (ideally light curves), Gaia parallaxes and multi-band light curves
- Plenty of newly-discovered EBs suitable for method
- Now applying for telescope time to obtain spectroscopy and multi-band light curves for more systems!