UNIVERSITY OF EXERCISES

$\overset{\circ}{\mathsf{R}}$ The Enigma of Hydrogen Emission in $\overset{\circ}{\mathsf{R}}$

Summary

- CTTSs are known for their hydrogen emission lines, magnetospheric accretion and mass outflow¹.
- By comparing synthetic hydrogen profiles from the RT code TORUS² with observations of CTTSs, we aim to constrain and provide insight into the physics.
- Our initial parameter study indicates that the existing line broadening mechanisms are insufficient to account for the observed hydrogen emission.

Tom J. G. Wilson

S. Matt, T. J. Harries & G. J. Herczeg

tjgw201@exeter.ac.uk

1

TomAstroWilson

Radiative Transfer Model

Accretion funnel

 $\dot{M}_{acc} = 10^{-7}, 10^{-8}, 10^{-9} \,\dot{\mathrm{M}}_{\odot}$ $T_{acc} = 6500, 7500, 8500, 9500 \,\mathrm{K}$

Observations

- Figure shows line profiles for 29 T Tauri stars (columns) from the ESO Archive,³ selected to have an $\Delta\dot{M}_{acc}\sim10^4$. The stars are ordered by H α peak intensity.
- High resolution: $R \sim 1100$ (infrared) and $R \sim 1800$ (optical) spectra from VLT's X-Shooter, observed in Jan 2010.
- Near simultaneous observations of H α (top), Pa β (middle), and Br γ (bottom). The x-axis is velocity with a range of 600 to $-600~{\rm km s}^{-1}$.
- A strong correlation of shape and intensity is seen between the infrared lines, but not between $H\alpha$ and the infrared observations.

Comparison

- The figure shows the FWHM vs. half width at 10% maxima (HW10%). The synthetic observations are clipped so that the H α data points lie near the observed parameter space.
- Synthetic and observed $H\alpha$ lines show a good accord between the measured parameters of Reipurth classification, 4 W_{λ} , FWHM, and HW10%.
- Synthetic lines for Pa β and Br γ are found to be too narrow and Stark broadening is unable to account for the difference. This suggests another form of broadening needs to be invoked.
- Inverse P-Cygni profiles are commonly predicted by the simulations for Paβ and Brγ yet this is not reflected in the observations.⁵

This research

has made use of

the ESO Science

Archive Facility.

the services of

- Folha, D. F. M. & Emerson, J. P. Near infrared hydrogen lines as diagnostic of accretion and winds in T Tauri stars. A&A 365, 90–109 (2001)
- 2. Harries, T. J., Haworth, T. J., Acreman, D., Ali, A. & Douglas, T. The TORUS radiation transfer code. Astronomy and Computing 27, 63–95 (2019)
 - Based on observations collected under ESO programme 084.C-1095(A)
 Reipurth, B., Pedrosa, A. & Lago, M. T. V. T. Hα emission in pre-main sequence stars. I. an atlas of line profiles. Astronomy and Astrophysics Supplement 120, 229–256 (1996).
 - 5. Folha, D. F. M. & Emerson, J. P, (2001)