
Convective turbulent viscosity acting on equilibrium tidal flows:
new frequency scaling of the effective viscosity

Craig Duguid, Adrian Barker, Chris Jones
Contact me : (sccd@leeds.ac.uk, SlackID: U017AA7C8TA, https://zoom.us/j/9641573928?pwd=U1IrK09qUkhjVEtiMWpBUk40M3Yrdz09), 

Turbulent convection is thought to act as
an effective viscosity (𝜈𝐸) in damping tidal
flows in stars and giant planets. However,
the efficiency of this mechanism has long
been debated, particularly in the regime
of fast tides, when the tidal frequency (𝜔)
exceeds the turnover frequency of the
dominant convective eddies 𝜔𝑐 .

Background

How does the effective viscosity (𝜈𝐸) scale with 𝜔?

• Zahn [1] adapted mixing length theory by considering the
mixing length as how far an eddy can travel in one tidal
period.

• Goldreich and Nicholson [2] considered a similar argument
but assumed a Kolmogorov cascade, resonant eddies provide
the dominant contribution to the effective viscosity.

Goldreich (quadratic reduction)

𝜈𝐸 ∝ 𝜔−2

It is essential to determine which (if any) of these prescriptions is correct. This is because for Hot

Jupiters, 𝜔 ∼ Τ1 2 (days-1) and 𝜔𝑐 ∼ Τ1 20 (days-1) → 𝜔 ≫ 𝜔𝑐, and both scalings differ significantly in
their predictions for the orbital decay of the planet.

We consider a small patch of the convective region of the host star, where the large-scale tidal flow is
represented by an oscillatory background shear flow. The convection is modelled using the Rayleigh-
Bénard setup, adopting the Boussinesq approximation. The nondimensional equations are:

The effective viscosity (𝜈𝐸) can be evaluated by
equating the rate at which the shear does work on the
flow with a viscous dissipation rate for the tidal flow:

Model

model
𝝂𝑬

prescription
𝑄⋆
′ 𝝉𝒂

(years)

constant time lag 1 ∼ 105 ∼ 106

constant 𝑄⋆
′ 𝜔−1 ∼ 106 ∼ 109

Quadratic reduction 𝜔−2 ∼ 108 ∼ 1011

To highlight this we can crudely estimate the
inspiral time (𝜏𝑎) (and stellar 𝑄⋆

′ ) using each
of the three prescriptions for a Jupiter mass
planet on a one day aligned circular orbit
around a slowly rotating sun-like star. This is
analogous to WASP-12b [4].

Effective viscosity dependence and spatial structure
Left top - we show the scaled frequency dependence
of the scaled effective viscosity for various strengths
of convection in domains of size (8,8,1). Note –
triangles represent negative values (antidissipation).

In the high frequency regime we observe agreement
with Goldreich and Nicholson in the scaling law.

There is a significant frequency range with a new
𝜔−0.5 power law (not previously predicted or
observed).

The scaled effective viscosity (𝛼𝑝𝑟𝑜𝑝) is larger than

1/3 (from kinetic theory) which is typically used.

Left bottom - comparisons of the effective viscosity
trend with the frequency (temporal) spectrum (Γ) of
the kinetic energy and Reynolds stress.

Note significant amplitude dependence in the high
frequency regime.

Below – Plot showing which spatial wavenumbers
provide contributions to the Reynolds stress (left)
and effective viscosity (right). It is clear that the large
scales (smaller wavenumber) dominate the
contributions.

Tidal shear flow:

Boundary conditions:

Box size:

1.High frequency 𝜔−2

• Can be “explained” through asymptotic analysis
• −𝜈𝐸 is possible (antidissipation)
• Amplitude dependence 

2.Low frequencies independent of 𝜔
• Dissipation is more efficient than the naïve 𝛼𝑝𝑟𝑜𝑝 = 1/3 from kinetic theory

3.New scaling law with -0.5 exponent
• Scaling exponent in agreement with the power law in the frequency spectrum

4.The energetically dominant modes contribute the 
most to the effective viscosity
• Resonance in the frequency spectrum may be important

See our papers [5] and [6] for further details…. Or ask me!

Key takeaways

Zahn (constant 𝑸′)

𝜈𝐸 ∝ 𝜔−1
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