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Effective V|sc05|ty dependence and spatial structure
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It is essential to determine which (if any) of these prescriptions is correct. This is because for Hot — 107 ¢ §N Note significant amplitude dependence in the high

Jupiters, w ~ 1/, (days™) and w, ~ 1/,, (days?) = w > w,, and both scalings differ significantly in B = = W 3 frequency regime.
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We consider a small patch of the convective region of the host star, where the large-scale tidal flow is . —2 < 3 Hoe 10

represented by an oscillatory background shear flow. The convection is modelled using the Rayleigh- 1 H Igh frequency W 220 :‘i 0 0
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flow with a viscous dissipation rate for the tidal flow:

See our papers [5] and [6] for further details.... Or ask me!
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