λ Andromedae: Driving a post-main sequence wind from a solar-mass star

D. Ó Fionnagáin^{*}, A. A. Vidotto, P. Petit, C. Neiner, W. Manchester IV, C. P. Folsom, G. Hallinan

Summary

- The first surface magnetic field map¹ for the star λ And (G8 IV; RS CVn)
- Simulated wind using both coronal and Alfvén-wave driven models³
- Constrained our simulations using archival radio observations² of the star
- Placed tight constraints on stellar mass-loss rate: 3×10^{-9} M $_{\odot}$ yr¹
- Future radio observations to constrain emission mechanisms?

Wind Models & Radio Emission

- Tested parameter space for AWSoM in the case of λ And
- 1st time this code has been used to model post-MS stellar winds.
- We assumed the cluster of lower flux radio detections (Fig. 2) are due to quiescent thermal wind emission.
 - Alfvén wave-driven winds produce very weak thermal radio emission
 - Coronal winds produce stronger thermal radio emission
 - Due to differences in density structure in wind
- Results suggest hot coronal wind is most likely in this scenario

Ó Fionnagáin et al. 2021, MNRAS; arXiv: 2011.02406

^{*}1. NUI Galway, Ireland. 2. Trinity College Dublin, Ireland 🖾 dualta.ofionnagain@nuigalway.ie 🔰 @dualta93

Figure 1: Radial surface magnetic field for λ And

G

Bath & Wallerstein (1976)

Figure 3: AWSoM simulation of λ And showing wind velocity distribution (blue plane). Dipolar magnetic field. Large Alfvén surface (black line). We calculated thermal radio flux density from such a wind and found it too low to match above observations.

Frequency (GHz)