

Quantifying the Habitable Histories of Stellar Systems

Noah Tuchow¹ and Jason Wright¹

¹Department of Astronomy and Astrophysics, Pennsylvania State University, Penn State Center for Exoplanets and Habitable Worlds,

Penn State Extraterrestrial Intelligence Center

Introduction

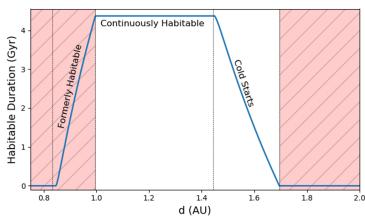
What type of stars are the best targets in a search for Biosignatures?

- Astronomers have a qualitative understanding of which stars make good targets
 - Not massive stars, giants, neutron stars, white dwarfs?
 - Yes: Sun-like, older FGK stars
- We want to quantify and formalize this intuition
- Potentially useful for prioritizing target stars for future missions

Formulation for Long-term Habitability Metrics

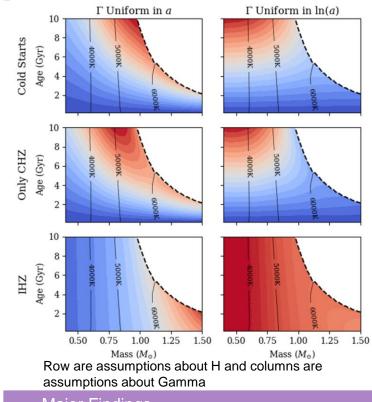
$$B = \int \int H(a,t) \Gamma(a,R_p) da \, dR_p$$

- Γ(a,R) is the distribution of planets in semimajor axis and radius
- **H(a,t)** is the probability of biosignature emergence as a function of distance and time.


Possible Forms of Gamma

- Can use any realistic form for distribution of Earth-like planets
- We consider two contrasting forms:
 - Uniform in a
 - Uniform in In(a)

Possible Forms of H


- All planets in current instantaneous habitable zone (IHZ) have same chance of hosting biosignatures (naïve, often implicitly assumed)
- More physical assumptions depend on the time spent in the habitable zone (see section below)
 - Probability of hosting biosignatures is proportional to time spent in the continuously habitable zone (CHZ)
 - H is proportional to time spent in the habitable zone (including Cold Starts)

Habitable Duration

- Time spent in habitable zone as a function of distance
- Continuously Habitable planets stay in habitable zone for duration of stars lifetime
- Cold starts enter habitable zone after forming outside of it

Comparison of Different Metrics

Major Findings

- Different assumptions about H and Gamma affect what populations of stars are preferred
- Using only the current day habitable zone leads to misleading priorities in a search for biosignatures
- To assess long-term habitability one requires precise stellar evolutionary tracks
- This work served to introduce a framework for calculating biosignature yields that we will use in future studies.