Use voice conversion for pseudonymisation?

Rob van Son

Netherlands Cancer Institute ACLC, University of Amsterdam

Amsterdam Center for Language and Communication

DELAD 28 January 2021

Rob van Son

Sharing speech data

- Is needed for progress in speech science&technology
- Privacy is a concern, especially for pathological speech
- Is pseudonymization possible?
 - Remove identity
 - Retain linguistic & para-linguistic features
 - What are the trade-offs?
- Applications:
 - Demonstrations for live audience
 - Operation of the study of th
 - Fully Open Data
 - Secure processing in the cloud

[1]

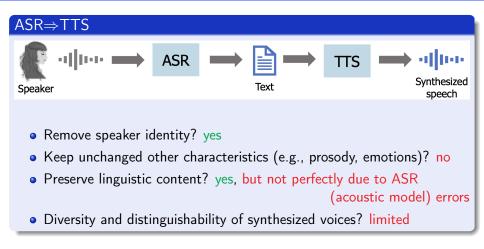
Pseudonymizing speech data

- Anonymous¹means: not identifiable by anyone
- Pseudonymous means: identifiable with extra information
- The literature can be summarized as:
 - Anonymous data is not useful
 - Useful data is not anonymous
- Before Pseudonymous speech can be shared, demonstrate:
 - Security
 - 2 Usefulness

¹There is a lot of legal ambiguity and uncertainty here, see [4]

[2, 3, 4]

Approaches to Pseudonymizing speech data



Use voice conv

Approaches to Pseudonymizing speech data

Signal processing

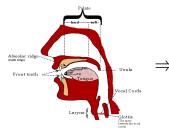
- Remove speaker identity? less well
- Keep unchanged other characteristics (e.g., prosody, emotions)? yes
- Preserve linguistic content? yes
- Diversity and distinguishability of synthesized voices? limited

Partition identity in speech	
 Inherent features 	
derived from a speaker's anatomy and physiology	(vocal tract length)
 Learned features 	
acquired during language learning and use	(dialect, accent)
• Linguistic features	
depend on the message and pragmatics	(register)

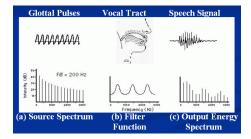
Pseudonymization targets

- inherent features
- *learned* features

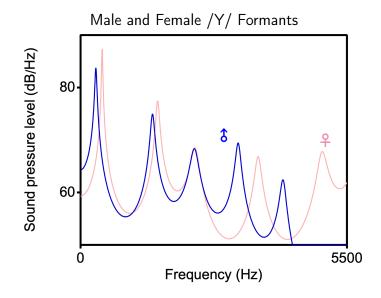
Speaker Identity: Anatomy to Sound



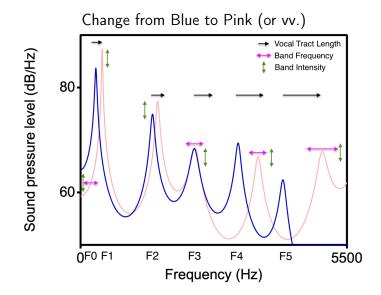
Vocal Tract Tube Model



Example Pseudonymization: Signal processing



Example Pseudonymization: Signal processing



- Estimate source Vocal Tract length (VTL) from formants (requires ~300 seconds of speech)
- Change recording to target VTL, pitch, speed [6]: Change gender: 75, 600, 1.2, 120, 1, 0.9

(Praat)

[5]

- Shift bands F_0 , F_3 - F_5 to target frequencies
- (De-)amplify bands F_0 - F_5 to target intensities
- \Rightarrow create sound with desired F_x formant frequency and intensity
- \Rightarrow splice F_x band into target sound

https://robvanson.github.io/PseudonymizeSpeech

The voices of the speakers A and B have been changed. Which one do you think is the unknown speaker X?

https://robvanson.github.io/akouste/ABX_ListeningExp.html

Rob van Son	Use voice conversion for pseudonymisation?
-------------	--

The voices of the speakers A and B have been changed. Which one do you think is the unknown speaker X?

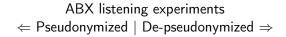
https://robvanson.github.io/akouste/ABX_ListeningExp.html

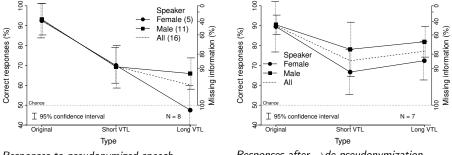
Rob van Son	Use voice conversion for pseudonymisation?
-------------	--

The voices of the speakers A and B have been changed. Which one do you think is the unknown speaker X?

https://robvanson.github.io/akouste/ABX_ListeningExp.html

Rob v





Responses to pseudonvmized speech

Responses after \rightarrow de-pseudonymization 15F/15M speakers for each Type, 90 in total

[0]

Original: AB are original recordings, Short VTL: AB pseudonymized to a short vocal tract length, Long VTL: AB pseudonymized to a long vocal tract length.

(cubmitted) ~

Dubagunta et al. (submitted)		lol
Rob van Son	Use voice conversion for pseudonymisation?	11 / 32

Results for human listeners

- \bullet >80% of identifying information can be removed from speech
- Speech quality is good to near natural

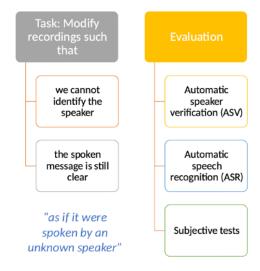
But many questions remain

- Is Pseudonymization reversible?
- Is Automatic Speaker Identification still possible?
- Are para-linguistic features preserved?
- Are speech pathologies preserved?

Promote the development of privacy preservation tools for speech technology

Voice Privacy Challenge 2020: Task

Given: Utterances, speaker labels, transcriptions



Slide courtesy S. Pavankumar Dubagunta

Evaluation metrics

- Privacy: Automatic Speaker Verification (ASV_{eval}) Equal Error Rate - EER = $P_{fa}(\theta_{EER}) = P_{miss}(\theta_{EER})$
- Utility: Automatic Speech Recognition (ASR_{eval}) Word error rate - WER = $100 \cdot \frac{N_{sub} + N_{del} + N_{ins}}{N_{ref}}$
- Subjective listening tests
- Utility: Para-linguistic speech classification

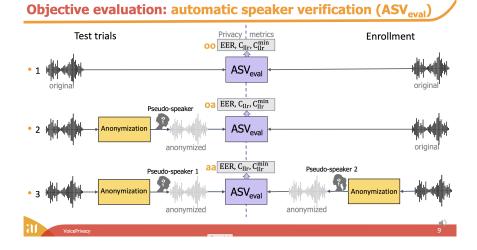
(Not yet)

[9]

N. Tomashenko et al. 2020; URL: www.voiceprivacychallenge.org

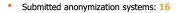
Rob van Son

fa: false alarm rate



Participants

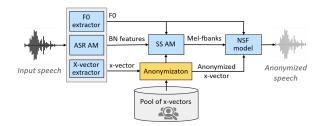
- Registered teams: 25 (more than 45 participants) from 13 countries
- Teams submitted valid results: 7 (+1 contribution related to evaluation models)
 - deadline-1: submissions from 6 teams
 - deadline-2: submissions from 3 teams



 Post-evaluation analysis (submission of the anonymized dataset for training evaluation models): 4

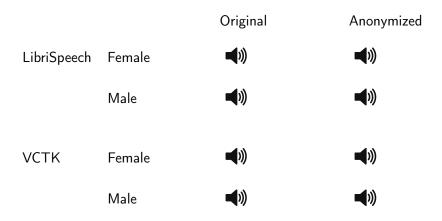
Team	Country	Status
Idiap-NKI	Switzerland	academic
Biometric Vox	Spain	non-academic
DA-IICT Speech Group	India	academic
Team SDU	Turkey	academic
PingAn	USA	non-academic
AIS-lab JAIST	Japan / Thailand	academic
BlackBox@CMU	USA	academic
Motorola Solutions	USA	non-academic
MultiSpeech	France	academic
Orange ITAAC Team	France	non-academic
Oxford System Security Lab	UK	academic
Preech	USA	academic
Sigma Technologies S.L.U.	Spain	both
TMU	Japan	academic
loenix	USA	non-academic
VTouch	China	academic
VIAX	China	academic
PhoneClearly.com	USA	non-academic
Kyoto Team	Japan	academic
PSUT	Jordan	academic
TJU-VP	China	academic
EAM AAU ANONYMOUS	Denmark	academic
TalkMeUp	USA	both
Fearghal Sheehan	Ireland	academic

Baseline 1 Anonymization using x-vectors and neural waveform models



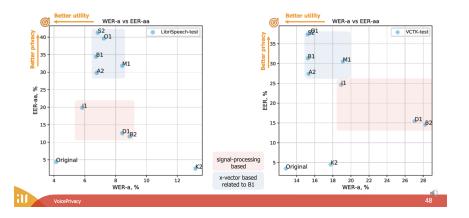
- ASR AM: Automatic speech recognition acoustic model (to extract BN (bottle-neck) features)
- SS AM: Speech synthesis acoustic model
- NSF: Neural source-filter model

Voice Privacy Challenge: Baseline examples

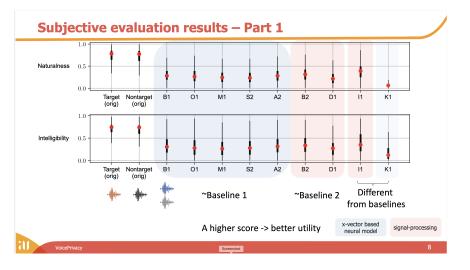


URL: www.voiceprivacychallenge.org

Objective evaluation results: WER vs EER



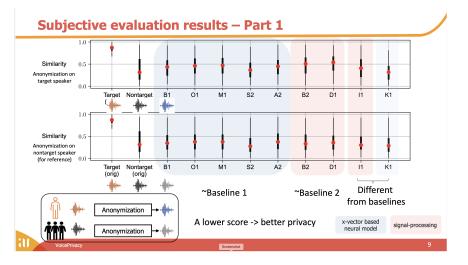
N. Tomashenko et al. 2020; URL: www.voiceprivacychallenge.org



Xin Wang et al. 2020; URL: www.voiceprivacychallenge.org

Rob van Son	Use voice conversion for pseudonymisation?	21 / 32

Voice Privacy Challenge 2020



Xin Wang et al. 2020; URL: www.voiceprivacychallenge.org

Rob van Son	Use voice conversion for pseudonymisation?
-------------	--

Results for Automatic Speaker Verification	
 Identifying information can be removed from speech 	(EER~30%-40%)
 Intelligibility is reduced 	(WER~6%-20%)
 Speech quality is (strongly) affected 	(subjective)
Questions remain	
 Are results corpus- and style-dependent? 	
(ASV might learn reading peculiarities of speakers?)	
 Can para-linguistic features be preserved? 	
• Can speech pathologies be studied?	
 What are the trade-offs? 	

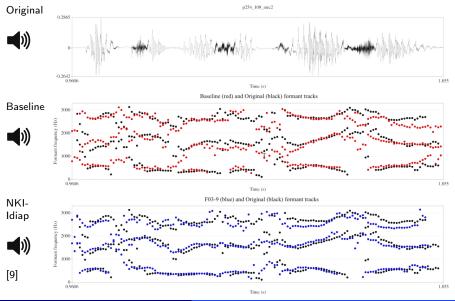
Make Voice Privacy useful for studying (pathological) speech

- Privacy can be protected, improvements are still welcome
- Can formants be measured in pseudonymized speech?
- Can pathological speech, e.g., dysarthric speech, still be studied?

Dubagunta et al. (submitted)

Rob van Son

Formant tracks after pseudonymization



Rob van Son

Formant track "movements" are preserved to some extent, but the pseudonymization method and speaker gender matter.

Mean correlation coeff, R (SD), between formant tracks from Original and pseudonymized recordings, for all speakers (N=30)

Group	Method	<i>F</i> ₁	F_2	F ₃
F (15#)	Baseline	0.507 (0.158)	0.601 (0.198)	0.424 (0.287)
	NKI-Idiap	0.563 (0.194)	0.659 (0.161)	0.620 (0.202)
M (15#)	Baseline	0.490 (0.161)	0.571 (0.158)	0.264 (0.226)
	NKI-Idiap	0.655 (0.153)	0.716 (0.136)	0.688 (0.136)
Total	Baseline	0.499 (0.160)	0.586 (0.178)	0.344 (0.257)
	NKI-Idiap	0.609 (0.174)	0.688 (0.149)	0.654 (0.169)

TORGO corpus: 8 Dysarthric + 7 Control

- Pseudonymize recordings
- Train Dysarthria classifiers on Original and Pseudonymized speech
- Compare classification results on individual sentences

Data

- Recording quality low
- Start with 30 sessions and 15 speakers
- Classifier fails on 15 sessions (<70% correct on Original)
- Keep 15 sessions from 10 speakers

[10]

Dysarthria classification after pseudonymization: examples*

*NKI-Idiap pseudonymization

URL: https://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.html

Group	Speaker	Original	Pseud.	Conc.	Ν
Control	FC01	98.2	47.6	49.4	164
	FC02	86.3	13.7	24.4	1000
	MC01	98.5	99.3	98.4	748
	MC02	99.1	98.7	98.3	464
	MC03	99.3	100.0	99.3	600
Dysarthric	F01	90.2	90.9	90.2	132
	M01	92.7	99.7	92.4	288
	M02	95.8	98.5	95.8	409
	M03	91.3	97.9	91.5	424
	M04	91.0	93.6	87.5	488
Total		94.2	84.0	82.7	471.7

Only sessions&speakers with \geq 70% correct for Original. Conc.: Concordance, percentage identical classification. N: # utterances. Cronbach's α =0.769 (all), α =0.949 (excl. FC01&02)

Dysarthria classification is preserved for some speakers.

Results

- Formant tracks can be preserved to some extent
- Dysarthria classification can be preserved for some speakers

Problems

- Sensitivity to audio quality
- Speaker specific performance
- Are universal algorithms possible?

Dubagunta et al. (submitted)

Rob van Son

Results are encouraging

- Speaker identity can be hidden
- Intelligibility can be good
- Speech quality should be improved
- Para-linguistic aspects can be preserved, but need work

Next step: A case study (challenge?)

- A para-linguistic speech task
- Good privacy, intelligibility & quality (quantified)
- Good para-linguistic speech classification or grading
- \Rightarrow e.g., Emotion, PD, Dysarthria, ...

?

This research was conducted together with

S. Pavankumar Dubagunta and Mathew Magimai-Doss from Idiap, Switzerland

DOI: 10.5281/zenodo.4452824

The Department of Head and Neck Oncology and Surgery of the Netherlands Cancer Institute receives an unrestricted research grant of Atos Medical AB, Hörby, Sweden

Rob van Son

Literature

- Alison Ferguson, Hugh Craig, and Elizabeth Spencer. "Exploring the Potential for Corpus-Based Research in Speech-Language Pathology". en. In: Selected Proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus. 2009, pp. 30–36.
- Ira S Rubinstein and Woodrow Hartzog. "Anonymization and Risk". en. In: WASHINGTON LAW REVIEW 91 (2016), p. 59.
- [3] Sophie Stalla-Bourdillon and Alison Knight. "Anonymous Data v. Personal Data – A False Debate: An EU Perspective on Anonymization, Pseudonymization and Personal Data". en. In: Wisconsin International Law Journal 34.2 (2017), p. 39.
- [4] Michele Finck and Frank Pallas. "They who must not be identified—distinguishing personal from non-personal data under the GDPR". en. In: *International Data Privacy Law* 10.1 (2020), pp. 11–36.

Literature

- [5] Adam C. Lammert and Shrikanth S. Narayanan. "On Short-Time Estimation of Vocal Tract Length from Formant Frequencies". In: *PLOS ONE* 10.7 (2015), e0132193. DOI: 10.1371/journal.pone.0132193.
- [6] Paul Boersma and David Weenink. Praat: a system for doing phonetics with the computer. 2017. URL: http://www.praat.org.
- [7] Xin Wang et al. "ASVspoof 2019: a large-scale public database of synthetized, converted and replayed speech". In: Computer Speech & Language 64 (2020). Publisher: Elsevier, p. 101114. DOI: 10.1016/j.csl.2020.101114. URL: https://hal.archives-ouvertes.fr/hal-02945493.
- [8] S. Pavankumar Dubagunta, Rob J.J.H. van Son, and Mathew Magimai-Doss. "Adjustable Deterministic Pseudonymization of Speech". In: (). Submitted.

- [9] Natalia Tomashenko et al. "VoicePrivacy 2020 Challenge Evaluation Plan". en. In: Odyssey 2020. 2020, pp. 1-21. URL: https://www.voiceprivacychallenge.org/docs/ VoicePrivacy_2020_Eval_Plan_v1_3.pdf.
- [10] Frank Rudzicz, Aravind Kumar Namasivayam, and Talya Wolff. "The TORGO database of acoustic and articulatory speech from speakers with dysarthria". In: *Language Resources and Evaluation* 46.4 (2012), pp. 523–541.