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Abstract 
In order to analyze human gait patterns, highly accurate data 
must be collected at high frame rates. The state of the art is to 
deploy a carpet-like structure instrumented with pressure 
sensors, which allows for measuring position, orientation and 
pressure of each foot at each step. 
Since such gait “walkway carpets” are highly expensive1 and 
also limited in length, we propose an alternative in the form 
of a wheeled walker equipped with a consumer depth camera. 
We have designed and implemented algorithms that derive 
the  same  set  of  parameters  from  the  depth  data  as  in  a  gait  
walkway system, however without the need for the physical 
presence of a walkway carpet. Moreover, we are able to 
provide additional information, due to continuous observation 
of  the  gait  cycle,  i.e.  not  only  when  the  user  steps  on  the  
ground. In order to retrieve actual foot pressure information, 
we use a shoe insole sensor. 
Our experiments show that the system is able to collect gait 
relevant data with sufficient accuracy and frame rates. While 
the feet’s position accuracy depends primarily on the noise of 
the depth sensor and is typically at a precision of less than 3 
mm, the orientation accuracy is around 1-2 degrees for typical 
foot orientations. 

1 Introduction 
Gait analysis is the systematic study of human walking using 
the eye and brain of experienced observers, augmented by 
instrumentation for measuring body movements, body 
mechanics and the activity of the muscles [1]. Changes in gait 
reveal key information of special interest to tracking the 
evolution of different diseases: (a) neurological diseases such 
as multiple sclerosis or Parkinson’s; (b) systemic diseases 
such as cardiopathies (in which gait is clearly affected); (c) 
alterations in deambulation dynamics due to sequelae from 
stroke and (d) diseases caused by ageing, which affect a large 
percentage of the population [3]. Accurate and reliable 
knowledge of gait characteristics at a given time, and even 
more importantly, monitoring and evaluating them over time, 
enable early diagnosis of diseases and their complications and 
help to find the best treatment. Continuous gait analysis can 

                                                        
1 According to a desk search on various vendors between 
25k€-50k€. 

also assess the risk of falling, e.g. stride-to-stride variability 
has been shown to be an effective predictor of falls [2]. 
The traditional scales used to analyse gait parameters in 
clinical conditions are semi-subjective, carried out by 
specialists who observe the quality of a patient’s gait while 
the patient walks. This is sometimes followed by a survey in 
which the patient is asked to give a subjective evaluation of 
the quality of their gait. A disadvantage of these methods is 
that they give subjective measurements, particularly 
concerning accuracy and precision, which in turn have a 
negative effect on diagnosis, follow-up and treatment. 
Progress in new technologies has given rise to devices and 
techniques that allow for objective evaluation of various gait 
parameters, resulting in more efficient measurement and 
providing specialists with a large amount of reliable 
information on patients’ gaits. This reduces the margin of 
error caused by subjective techniques. Two such 
measurement tools commonly used in clinical gait evaluation 
are force platforms or gait walkways, the latter being a carpet 
like structure instrumented with pressure sensitive elements 
(sensels). One system that is now in common use is the 
‘GAITRite®’ [8][9]. Recent advances in robotics make it 
possible to turn a standard assistance device, such as a walker, 
into an augmented device. Thus existing single shot tests can 
be enriched by a new set of continuously measured criteria 
derived from the daily use of standard assistance devices [2]. 
 

 
Figure 1: GAITRite® instrumented walkway system. 

 
In this paper we propose a system that tracks specific 
parameters for biomechanical gait analysis. The system 
consists of a four-wheeled walker (“rollator”) mounted with 



depth-sensors and odometers. In our work the focus is set on 
clinical applications and active living. Actually these two are 
brought together forming a continuum of data acquisition and 
analytics. The clinical application profits from measurements 
in daily life scenarios, which is likely to reduce the bias 
introduced in the clinical environment and vastly increases 
the amount of accessible data. 
 The  main  contribution  of  our  work  is  the  spectrum  of  
information we derive and the “virtual” walking carpet data 
representation without the need for a gait walkway to be 
physically present. Additionally, we provide a real-time 
implementation (15-30 fps) that allows us to support very 
time-constrained algorithms.  

2 Related Work 
Since its beginnings in the 19th century, research on gait 
analysis has centred on achieving quantitative objective 
measurement of the different parameters that characterize gait 
in order to apply them to various fields such as sports, 
identification of people for security purposes, and medicine 
[3]. In our work the focus is set on clinical applications and 
active living.  Clinical evaluation of frailty in the elderly is 
the first step to assess the degree of assistance they require. A 
comprehensive overview of the diversity and plurality of 
sensing modalities in the context of clinical applications is 
given in [3].  Reference [2] specifically raises the question if 
smart walkers can be used for gait monitoring and fall 
prevention. It considers several available smart walker 
implementations and concludes that  standard  biomechanical  
features  such  as  walking  speed,  cadence and step  length  
can  be  estimated  from  observing  rollator  walking while 
“...some other information seems hard to obtained  without 
equipping the user (3D feet positions, force pressure  
distribution on the ground)”.  We are particularly aiming for 
this type of information in our work. 
 More specific references on individual systems in the 
context of an instrumented smart walker relying on a depth 
sensing device (e.g. Microsoft® Kinect™ sensor) are given in 
[4,5,6,7]. These systems do either clearly exceed our real-time 
runtime constraint [5,6] or do not explicitly report on the 
runtime behaviour, which has been a major constraint in the 
development of our system. 

3 Parameters we aim to measure 
We aim to generate all key data generated by a physical gait 
walkway instrumented with pressure sensels as illustrated in 
Figure 1, i.e. the exact placement of the feet on the ground 
including their orientation and the pressure force applied to 
the ground on foot touch. The latter actually changes over 
time from an initial foot contact towards the “toe-off” phase. 
From a representation like this a multitude of higher-level 
semantic information can be derived, e.g. the step and stride 
length, step width and the cadence. However the focus of this 
paper is set on generating the basic information since the 
derivation of the higher-level information is in most cases 
straightforward assuming a sufficiently precise measurement 
of lower-level information. 

In  contrast  to  a  physical  gait  walkway we can  also  track  the  
feet and associated key points on the feet (like the tips of the 
feet) continuously during the whole gait cycle, i.e. including 
the swing phase. This allows for e.g. temporal representations 
of the foot height. 
 
Since we are by no means restricted to a straight walkway due 
to our Ackermann steering geometry in a front wheel steered 
walker we need to derive a strategy on how to visualize 
arbitrarily shaped – and possibly very long – walker 
trajectories. We opted for the following strategy:  
 

 The chosen visualization consists in a non-length 
restricted but straight gait walkway. Since we 
observe the motion pattern of the feet from the fixed 
perspective of the depth camera on the walker, the 
walkway gets linearized implicitly. This strategy is 
driven by the rationale that in gait analysis as 
opposed to odometry, the absolute path taken is less 
relevant but the focus in on the relative and hence 
local motion pattern.  

 However, an increasingly tight curve radius will 
affect the pattern of the feet movements. More 
precisely, this effect will gain the higher the change 
in orientation in the walker is between two 
subsequent steps. Instead of aiming to compensate 
the different curve radii of the inner and outer foot 
we decided just to mark the increment in the walker 
orientation between subsequent foot placements, 
which allows for information filtering in subsequent 
processing. 

4 Our instrumented wheeled walker 
Figure 2 shows the approximate depth sensor position on the 
walker and indicates its field of view. While this sensor is 
mounted on the walker, the insole sensors are worn by the 
user. In this work we rely on a pair of wireless “Moticon 
OpenGo” [10] sensor insoles, as also shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Instrumentation of our wheeled walker (left), 
utilized wireless insole “Moticon OpenGo” sensor (right) 
 
Foot pressure information is mainly deemed to be relevant in 
clinical gait analysis while for continuous everyday 
inspection of gait symmetry and confidence a light-weight 
system without the insole sensor might also be considered a 



viable option, eliminating the need to instrument the user’s 
shoes. However, the insole sensor is mandatory in order to 
cover the full spectrum of data of a physical gait walkway. 

5 Algorithms for parameter retrieval 
The algorithms designed for deriving the desired parameters 
solely rely on the sensor’s depth data, which is represented as 
a depth map. An equivalent representation as a 3D point 
cloud can be obtained by applying 
 
  
  
 , 
 
where d is the depth value at pixel (u,v), fx and fy the sensor’s 
focal length in pixels in x- and y direction, and (cx,  cy) the 
principal point. 
 
5.1 Ground Plane Estimation and Point Cloud 
Filtering 
 
In order to allow for height estimation, the ground must be 
identified to provide a basis. We assume the area around the 
walker to be planar and apply a RANSAC-based [11] plane 
fitting approach to compute the plane parameters. The inlier 
threshold  used  in  the  RANSAC core  is  set  to  a  value  in  the  
proximity of the standard deviation of the sensor noise. 
 
Figure 3 shows the initial sensor coordinate system [x’, y’, z’] 
and the resulting ground plane coordinate system [x, y, z]. All 
3D points are transformed to the plane coordinate system. 
 

 
Figure 3: Sensor and Walker Coordinate System 
 
Depending on the sensor placement, mechanical parts of the 
walker (e.g. the wheels) are visible in the depth map and are 
masked out.  Since one does typically not lift a foot higher 
than a few centimetres during a step, 3D points located higher 
than 15 cm above the ground plane are also removed. Only 
the remaining points are used for the subsequent detection 
algorithms. 
 
 
 

5.2 Foot Cluster Detection 
 
The first step in determining the exact position and 
orientation of each foot is to identify the two respective 
clusters in the point cloud.  This can be complicated by the 
presence of other objects on the ground that the user passes. 
 We use the fact that during walking, the feet are mainly 
oriented towards the walker and therefore visible as clusters 
elongated in the y-direction. All points are projected onto the 
ground plane, which is divided into strips in y-direction, as 
shown  in  Figure  4.  In  each  strip,  clusters  in  x-direction  are  
searched (small yellow dots in Figure 4). Only points without 
a neighbouring, further toward the front lying point with 
similar x-value (~ 5 cm distance) are retained, yielding only 
the foremost points of each cluster (larger, green dots in 
Figure 4). Using this procedure, we are able to successfully 
identify both foot tips, even whether the feet touch (since they 
usually never touch at the very front). 
 

 
Figure 4: Foot Cluster Detection. Left: Other objects  
complicate the detection process. Right: Feet touch, but tips  
can still be identified. 
 
In case there are more than two potential foot tips, we identify 
the correct ones by computing a score for each cluster and 
selecting the ones with the highest values.  
 First, all points that are within ~30 cm from the tip’s y-
value and differ not more than ~7 cm in x-direction are 
selected. The score is then computed as 
 
 , 
 
where Nback is the number of points lying behind the tip 
(higher y-value), Nfront the  number  of  points  in  front  and  a  
weight factor (set to 2 in our experiments). The score is high 
for foot-shaped clusters and low for small clusters, clusters 
that lie behind others or that are only large in x-direction. 
If  the  scoring  does  not  yield  a  clear  result,  we  also  use  the  
position of the feet in the previous frame – if available – for 
correct assignment, by choosing the closest one. 
 
 5.3 Cluster Refinement 
 
The two resulting initial foot positions indicate a rough 
location of the user's left and right foot tip. It is necessary to 
determine all corresponding 3D points for each foot, in order 
to enable estimation of the exact position and orientation. 
Especially  if  the  feet  touch (cf.  Figure  4,  right)  this  is  not  a  



trivial task. The algorithm we designed to solve this problem 
works as follows: 
 
1.) Create a binary image showing all pixels in the depth map 
that correspond to the relevant 3D points. Find connected 
components and check if the initial foot positions are located 
in different ones. If they are, all points within the tip's 
component are selected for that foot. 
 
2.) If the initial positions are within the same component, 
check if the feet can be separated in 3D space by performing a 
flood fill on the relevant part of the depth map. 
 
3.) In case the feet are not separable using the above 
procedures, we seek the "best" cut through the connected 
region. We solve this problem directly in the depth map by 
defining  a  graph,  were  the  cost  of  a  connection  to  the  
neighbouring pixels is the negative depth value at these 
pixels. Therefore, we aim for the path with the lowest 
accumulated height values, which is most likely the correct 
cut due to the shape of the feet. The starting point for the cut 
is the foremost position where the feet touch. In order to make 
the algorithm more robust, we accumulate the depth values of 
several pixels in each direction before deciding which 
direction to move to. 
 
Figure 5 illustrates how each of these steps can assign the 
corresponding points for each cluster in certain scenarios. 
Step 1 is successful if the data can be separated in 2D, i.e. its 
projection onto the ground plane. Step 2 is computationally 
more expensive and can perform the cluster assignment if the 
feet are separable in 3D space. In case the feet touch, Step 3 
must be applied, which computes the ideal cut through the 
adjacent clusters. 
 
 

 
Figure 5: Left: Step 1, Middle: Step 2, Right: Step 3 
 
 
The advantage of this 3-step procedure is that in a typical gate 
cycle, in the vast majority of frames the feet can easily be 
separated in 2D, and the computationally more expensive 
subsequent steps need to be performed only when necessary. 
This increases the average frame rate compared to using only 
a single, albeit more sophisticated algorithm.  
 
5.4  Foot Position and Orientation 
 
In order to estimate the orientation, we perform a Principal 
Component Analysis on the cluster points of each foot. The 
direction is then set to the Eigenvector corresponding to the 
largest Eigenvalue of the covariance matrix. 

We then project each point onto the direction vector and 
select the foremost point in this direction. This point, together 
with the direction vector and the user's foot length, 
unambiguously defines the foot’s position. 
 
5.5  Walker Ego-Motion 
 
Since the coordinate system moves with the walker, it is 
necessary to compensate for the walker motion. The origin of 
the coordinate system stays at the projection of the camera 
centre to the ground. While the walker moves, any position 
recorded in the past must be moved in the opposite direction 
by distance the walker travelled. 
 One option is to use wheel odometry or inertial sensors to 
recover the ego-motion. In order to avoid additional hardware 
requirements, we implemented a vision-based method.  
At each step cycle, there exists a point where both feet touch 
the ground. At this moment, we record the feet positions. 
Until this point occurs again, the walker’s ego-motion can be 
determined by computing distance in y-Direction between the 
foot standing still and the stored position. 

6 Experimental results 
Typical output produced by our system is shown in Figures 6 
and 7. Figure 6 shows that the same data is generated as in the 
physical gait walkway in Figure 1, i.e. the feet’s position, 
orientation and pressure distribution at each step. While the 
figure only shows a short sequence, every step the user takes 
is visualized and the data is stored to disk for further analysis. 
 

 

 
Figure 6: "Virtual Walkway" result sample. 



Figure 7 shows a sample trajectory of the foot tips. It 
illustrates how our system is not only capable of generating 
data at each step on the ground, but also during the swing 
phase.  
 

 
Figure 7: Sample Trajectory of the Foot Tips 
 
The algorithms in Section 5 are designed with a strong focus 
on speed, which makes it possible to achieve the desired 
frame rate of 15-20 Hz on a single Intel®-i7 CPU core using a 
depth map resolution of 640x480 pixels. If higher frame rates 
are required, the depth map can be sub sampled to around a 
quarter of the resolution without influencing the results, 
making frame rates at around 30 Hz possible. 
 
In order to estimate the accuracy of both position and 
orientation, we performed an extensive evaluation using the 
Microsoft® Kinect™ sensor. 
 For ground truth generation, we printed several identical 
feet patterns and placed them at different positions and angles 
behind the walker. Since absolute trajectories and positions 
are not relevant for gait analysis, but only the accuracy at 
each single step matters, we measure relative angles between 
the patterns and the distances between the foot tips. 
 As shown in Table 1, the average position accuracy turned 
out to be slightly less than 3 mm, evaluated in 20 
measurements. The error is independent of the step length. 
Part  of  the  deviation  can  be  explained  by  the  average  3D  
point resolution of ~1.5 mm and minor inaccuracies at ground 
truth capturing.  Table 2 shows the results of the angle 
accuracy evaluation. The error increases with the angle, 
mainly due to occlusions. However, at typical angles when 
walking (0-15°) the average error of 1.6° is only slightly 
higher than the ground truth accuracy. 
 

 
N µerror Mederror error 
20 2,96 mm 2,93 mm 1,68 mm 

Table 1: Position Accuracy 
 

Angle N µerror Mederror error 

0°–15° 40 1,62° 1,39° 1,17° 
15°-30° 40 2,26° 1,86° 2.05° 
30°-45° 40 3,16° 2,86° 2,18° 

Table 2: Angle Accuracy 
 
 

For comparison, we have evaluated the accuracy of an inertial 
measurement unit (IMU), namely the Inertial Elements 
Osmium MIMU22BT [12].  Osmium produces MIMUs (multi 
IMU) that operate by fusing the measurements of several low 
cost sensors resulting in enhanced measurement performance. 
The Osmium MIMU22BT is closely related to the OpenShoe 
project, an open source foot-mounted inertial navigation 
system (INS) [13] initiative.  We used OpenShoe scripts for 
data acquisition. While manual calibration can be performed 
for each individual device using a special calibration object, 
we used the manufacturer default calibration for practical 
considerations regarding a potential later deployment, i.e. for 
being applicable for our target group simplicity in deployment 
is a factor of high importance. 
 
As shown in Figure 7, the IMU has been attached to the tip of 
the foot. Table 3 shows the evaluation results. Compared to 
our results, it turns out that the angles can be measured more 
accurately  using  the  IMU,  but  the  position  error  is  
significantly higher. 
 

    
 
Figure 8: IMU attached to the tip of the foot. 
 

µPosition MedPosition Position µAngle MedAngle Angle 
7,3 mm 6,0 mm 6,6 mm 0,65° 0,50° 0,50° 

Table 3: IMU Evaluation Results 

7 Conclusion & Outlook 
By upgrading a standard wheeled walker with a depth sensor 
(e.g. Microsoft® Kinect™), we are able to cover the same 
position- and orientation measurements as a deployed gait 
walkway instrumented with pressure sensors, which is 
currently the state of the art in gait analysis. In addition, we 
are able to produce continuous measurements during the 
whole  gait  cycle,  i.e.  including  the  swing  phase.  This  is  
achieved at rates of 15-30 Hz (depending on the hardware and 
resolution), which allows for real-time gait pattern analysis. 
 While the feet's position and orientation are obtained with 
sufficient accuracy using the depth sensor, foot pressure 
measurements demand additional hardware in form of a 
commercialized insole sensor. Nevertheless, such a sensor is 
still an order of magnitude cheaper than a fully instrumented 
walkway system. 
 
Depending on the user's gait pattern, occlusions can affect the 
system's ability to capture the feet positions. In our future 



work, we intend to investigate to what extent mounting a 
second depth sensor yielding an additional viewpoint can 
overcome these problems. Recent innovations in 3D depth 
sensing (e.g. Intel® RealSense™ R200/F200, PMD® 
CamBoard pico flexx) will be considered and support our 
aims twofold: First, the form factor/power consumption will 
allow for a seamless integration into the walking frame. 
Second, we expect that some combination of sensing devices 
is likely to support our aim for outdoor/sunlight compatibility 
as required for continuous measurements in daily activities. 
 Furthermore our future work will address the 
measurement of additional data relevant to gait analysis, e.g. 
position of the knees in 3D space and the angles between the 
lower leg and the upper leg, and the lower leg and the foot, 
respectively. That way we want to produce a skeletal 
animation of the limb movement during motion, as well as 
derive higher level semantic information like the joint angle 
and angular velocity plots discussed in [1].  
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