Giant white-light flares on fully convective stars occur at high latitudes

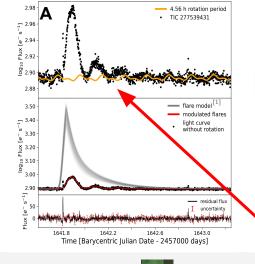
flare decay

time [rotation periods]

active region

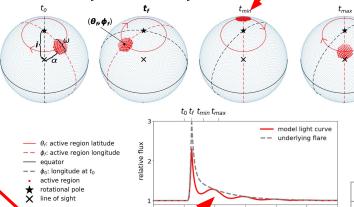
Ekaterina Ilin^{1,2}, Katja Poppenhaeger^{1,2}, Sarah J. Schmidt¹, Silva P. Järvinen¹, Elisabeth R. Newton³, Julián D. Alvarado-Gómez¹, J. Sebastian Pineda⁴, James R. A. Davenport⁵, Mahmoudreza Oshagh^{6,7}, Ilya Ilyin¹

'Leibniz Institute for Astrophysics Potsdam (AIP), ²University of Potsdam, ³Dartmouth College, ⁴University of Colorado Boulder, ⁵University of Washington, ⁶Instituto de Astrofísica de Canarias, ⁷Universidad de La Laguna

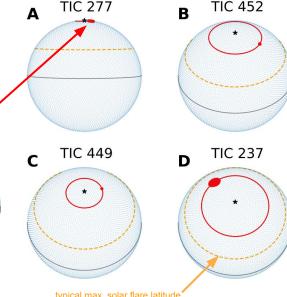

submitted to MNRAS

In a **systematic analysis of fully convective stars observed with TESS**, we detected four stars that displayed giant **flares that were modulated in brightness by the stars' rapid rotation**. The morphology of the modulation allowed us to directly **localize these flares between 55° and 81° latitude on the stellar surface**, far higher than typical solar flare latitudes.

These findings are **a.** evidence that strong magnetic fields tend to emerge close to the stellar rotational poles for fully convective stars, and **b.** suggest that the impact of flares on the habitability of exoplanets around small stars could be weaker than previously thought.


time / star rotates

data :: TESS light curves


model :: rotational flare modulation

flare peak

The flare flux is modulated while the active flaring region (partially) moves in and out of view on the stellar surface.

results :: high latitudes

pectral type	M7	M7	M6	M5
are latitude [deg]	80.9 ± 0.5	63.1 ± 3.6	71.9 ± 1.1	55.2 ± 5.5
otation period [h]	4.56	4.22	2.71	8.43

33.5

34.5

log(flare energy) [erg]

[1] Davenport et al. (2014), ApJ, 797, 122

34.6

33.4