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(Solar-type stars exhibit their highest levels of magnetic activity during early convective pre-main sequence (PMS) phase of evolution. The most powerful PMS
flares, super-flares (SFs), have total energies 1034-10% erg. Among 24,000 young (t < 5 Myr) X-ray-selected members of 40 star-forming regions emerged from
our Chandra MYStIX/SFiNCs surveys, we identify and analyze 1,086 X-ray SFs, the largest sample ever studied. These are considerably more powerful than
optical flares detected on older stars. We find that X-ray SFs are produced by young stars of all masses over a range of evolutionary stages from protostars to
diskless stars with the occurrence rate positively correlated with stellar mass. A powerlaw slope in the flare energy distributions is consistent with those of
optical/X-ray flaring from older stars. SFs contribute >10-20% to the total PMS X-ray energetics. PMS SFs may have implications for X-ray driven photoevapora-
tion of the protoplanetary disk, variable ionization in disk gas, production of spallogenic radionuclides in disk solids, and hydrodynamic escape of young

planetary atmospheres. We fit plasma models to the 55 brightest X-ray SFs and compare them with published SFs from young ONC and older stars. Several
more results emerge. First, most PMS SFs resemble solar long duration events associated with coronal mass ejections. Second, the properties of PMS SFs are
independent from the presence or absence of protoplanetary disks, supporting the solar-type model of PMS flaring magnetic loops with both footpoints anchored
in the stellar surface. Third, strong correlations of SF peak emission measure and plasma temperature with the stellar mass are similar to established correla-
tions for the PMS X-ray emission composed of numerous smaller flares. Fourth, a new correlation of loop thickness or geometry is linked to stellar mass. Finally,
the slope of a long-standing relationship between the X-ray luminosity and magnetic flux of various solar-stellar magnetic elements appears steeper in PMS SFs
\than for solar events. Yy,

Based on 2 papers submitted to ApJ: "X-ray Super-Flares From Pre-Main Sequence Stars: Flare Energetics And Frequency" by Getman &
Feigelson, 2021; "X-ray Super-Flares From Pre-Main Sequence Stars: Flare Modeling" by Getman, Feigelson, & Garmire, 2021. Full paper drafts
are available at: http://personal.psu.edu/kug1/RESEARCH/RESEARCH.htm
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Application of the ’
Poisson regression
model with multiple
changepoints to >24,000
MY StIX/SFiNCs X-ray
YSOs resulted in 1086 F
(full flare), R (rise part),
and D (decay part)
super-flare events.

For 55 brightest MYStIX/SFiNCs )
super-flares, modeling results
include temporal profiles of X-ray
count rate, median energy, X-ray
luminosity, emission measure,

- plasma temperature, and cooling
timescales, as well as the slope on
the temperature-density diagram.
Based on these quantities, loop
heights (Reale 2014) and loop
thicknesses (Getman et al. 2011)
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