MC33078, MC33079, NCV33078, NCV33079


Low Noise Dual/Quad Operational Amplifiers

The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output


http://onsemi.com


MARKING DIAGRAMS

voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance.

The MC33078/9 family offers both dual and quad amplifier versions and is available in the plastic DIP and SOIC packages (P and D suffixes).

Features

PDIP14 P SUFFIX CASE 646

1








MC33079DG

AWLYWW








14

SOIC14 D SUFFIX

MC33079P AWLYYWWG

Compliant


D1 R2


VCC

1 CASE 751A

1

Q4


Neg

Q3 Q5

Q9

Pos

D3 Q11

A = Assembly Location WL, L = Wafer Lot

YY, Y = Year


J1 Amplifier

Biasing

R7

C2


Q8 D4 C3 R9

Q6


Q3


Vout

WW, W = Work Week

G or = PbFree Package


ORDERING INFORMATION


Z1 Q1


Q2 D2

R4 Q7

Q10

R6

Q12

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

R1 C1 R3

R5

VEE

Figure 1. Representative Schematic Diagram

(Each Amplifier)


Semiconductor Components Industries, LLC, 2011

1 Publication Order Number:


PIN CONNECTIONS


DUAL CASE 626/751

QUAD CASE 646/751A


1

Output 1

2

- 1

VCC


7

8

Output 2

Output 1 1

2 -1

14 Output 4

- 13

+

3

Inputs 1

6

-

Inputs 1 3 +

VCC 4

4

+ 12

11

Inputs 4


VEE

5

4

2 + Inputs 2

5 + 10

VEE

Inputs 2

+2 3

Inputs 3


(Dual, Top View)

6 -

Output 2 7

- 9

8 Output 3


(Quad, Top View)


MAXIMUM RATINGS


Rating

Symbol

Value

Unit

Supply Voltage (VCC to VEE)

VS

+36

V

Input Differential Voltage Range

VIDR

Note 1

V

Input Voltage Range

VIR

Note 1

V

Output Short Circuit Duration (Note 2)

tSC

Indefinite

sec

Maximum Junction Temperature

TJ

+150

C

Storage Temperature

Tstg

60 to +150

C

ESD Protection at any Pin

MC33078/NCV33078 Human Body Model

  • Machine Model

  • Machine Model

MC33079/NCV33079 Human Body Model

Vesd


600

200

550

150

V

Maximum Power Dissipation

PD

Note 2

mW

Operating Temperature Range

TA

40 to +85

C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

  1. Either or both input voltages must not exceed the magnitude of VCC or VEE.

  2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).


    DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = 15 V, TA = 25C, unless otherwise noted.)

    Characteristics

    Symbol

    Min

    Typ

    Max

    Unit

    Input Offset Voltage (RS = 10 Q, VCM = 0 V, VO = 0 V) (MC33078) TA = +25C

    TA = 40 to +85C (MC33079) TA = +25C

    TA = 40 to +85C

    |VIO|



    0.15

    0.15


    2.0

    3.0

    2.5

    3.5

    mV

    Average Temperature Coefficient of Input Offset Voltage RS = 10 Q, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh

    �VIO/�T

    2.0

    µV/C

    Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25C

    TA = 40 to +85C

    IIB



    300


    750

    800

    nA

    Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25C

    TA = 40 to +85C

    IIO



    25


    150

    175

    nA

    Common Mode Input Voltage Range (�VIO = 5.0 mV, VO = 0 V)

    VICR

    13

    14

    V

    Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kQ) TA = +25C

    TA = 40 to +85C

    AVOL


    90

    85


    110


    dB

    Output Voltage Swing (VID = ±1.0V) RL = 600 Q

    RL = 600 Q RL = 2.0 kQ RL = 2.0 kQ RL = 10 kQ RL = 10 kQ


    VO + VO VO + VO VO + VO


    +13.2

    +13.5


    +10.7

    11.9

    +13.8

    13.7

    +14.1

    14.6


    13.2

    14

    V

    Common Mode Rejection (Vin = 13V)

    CMR

    80

    100

    dB

    Power Supply Rejection (Note 3)

    VCC/VEE = +15 V/ 15 V to +5.0 V/ 5.0 V

    PSR

    80

    105

    dB

    Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source

    Sink

    ISC


    +15

    20


    +29

    37


    mA

    Power Supply Current (VO = 0 V, All Amplifiers) (MC33078) TA = +25C

    TA = 40 to +85C (MC33079) TA = +25C

    TA = 40 to +85C

    ID



    4.1

    8.4


    5.0

    5.5

    10

    11

    mA

  3. Measured with VCC and VEE differentially varied simultaneously.


    AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = 15 V, TA = 25C, unless otherwise noted.)

    Characteristics Symbol Min Typ Max Unit

    Slew Rate (Vin = 10 V to +10 V, RL = 2.0 kQ, CL = 100 pF AV = +1.0) SR 5.0 7.0 V/µs

    Gain Bandwidth Product (f = 100 kHz) GBW 10 16 MHz

    Unity Gain Bandwidth (Open Loop) BW 9.0 MHz

    Gain Margin (RL = 2.0 kQ) CL = 0 pF

    CL = 100 pF

    Phase Margin (RL = 2.0 kQ) CL = 0 pF

    CL = 100 pF

    Am

    − −11

    − − 6.0


    m

    55

    40

    dB


    Deg

    Channel Separation (f = 20 Hz to 20 kHz) CS − −120 dB Power Bandwidth (VO = 27 Vpp, RL = 2.0 kQ, THD ± 1.0%) BWp 120 kHz

    Total Harmonic Distortion

    (RL = 2.0 kQ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)

    THD 0.002 %

    Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| 37 Q

    Differential Input Resistance (VCM = 0 V) Rin 175 kQ

    Differential Input Capacitance (VCM = 0 V) Cin 12 pF

    Equivalent Input Noise Voltage (RS = 100 Q, f = 1.0 kHz) en 4.5 nV/ Hz

    Equivalent Input Noise Current (f = 1.0 kHz) in 0.5

    Hz pA/


    P D , MAXIMUM POWER DISSIPATION (mW)

    2400


    2000


    1600


    1200


    800


    400


    MC33078P & MC3307


    9P

    MC33079D


    MC33078D

    800


    I IB, INPUT BIAS CURRENT (nA)

    600


    400


    200


    VCM = 0 V TA = 25C


    0

    -55 -40


    -20 0 20 40 60 80 100 120 140 160

    TA, AMBIENT TEMPERATURE (C)

    0

    0 5.0


    10 15 20

    VCC, | VEE |, SUPPLY VOLTAGE (V)


    I IB, INPUT BIAS CURRENT (nA)

    1000


    800


    600


    400


    200

    Figure 2. Maximum Power Dissipation versus Temperature


    VCC = +15 V VEE = -15 V VCM = 0 V


    2.0


    VIO, INPUT OFFSET VOLTAGE (mV)

    VCC = +15 V VEE = -15 V RS = 10 Q VCM = 0 V AV = +1









    Unit 1














    Unit 2
















    Unit 3















    1.0


    0


    -1.0

    Figure 3. Input Bias Current versus Supply Voltage


    0

    -55 -25


    0 25 50 75 100 125

    TA, AMBIENT TEMPERATURE (C)

    -2.0

    -55 -25 0 25 50 75 100 125

    TA, AMBIENT TEMPERATURE (C)

    Figure 4. Input Bias Current versus Temperature Figure 5. Input Offset Voltage versus Temperature


    600


    VCC = +15 V VEE = -15 V

    VCC -0


    +VCM

    VICR , INPUT COMMON MODE VOLTAGE RANGE (V)

    VCC -0.5

    I IB, INPUT BIAS CURRENT (nA)

    500

    TA = 25C

    VCC

    -1.0

    VCC = +3.0 V to +15 V

    VEE = -3.0 V to -15 V

    400


    300


    -VCM

    200

    VCC -1.5


    VEE +1.5

    VEE +1.0

    �VIO = 5.0 mV VO = 0 V

    Voltage

    Range

    100

    VEE

    +0.5

    0

    -15 -10 - 5.0 0 5.0 10 15

    VCM, COMMON MODE VOLTAGE (V)

    Figure 6. Input Bias Current versus Common Mode Voltage

    VEE +0

    - 55 - 25 0 25 50 75 100 125

    TA, AMBIENT TEMPERATURE (C)

    Figure 7. Input Common Mode Voltage Range versus Temperature



    Vsat , OUTPUT SATURATION VOLTAGE (V)

    VCC -1.0


    VCC -3.0


    VCC -5.0


    VEE +5.0


    VEE +3.0


    VEE +1.0


    -55C


    -55C


    25C

    125C


    125C

    25C


    50


    | I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)

    VCC = +15 V

    VEE = -15 V 40


    30


    20


    10


    Sink


    Source


    VCC = +15 V VEE = -15 V RL < 100 Q VID = 1.0 V

    0 1.0 2.0 3.0 4.0

    RL, LOAD RESISTANCE TO GROUND (kQ)

    Figure 8. Output Saturation Voltage versus Load Resistance to Ground

    - 55 - 25 0 25 50 75 100 125

    TA, AMBIENT TEMPERATURE (C)

    Figure 9. Output Short Circuit Current versus Temperature



    10

    I CC, SUPPLY CURRENT (mA)

    9.0

    8.0

    7.0

    6.0

    5.0

    4.0


    VCM = 0 V RL = VO = 0 V


    C33079

    M


    10 V

    MC33078


    160


    CMR, COMMON MODE REJECTION (dB)

    140


    120


    100


    15 V

    80


    VCC


    = +15 V


    -

    � VCM ADM

    +


    CMR = 20Log � VCM

    � VO


    5.0 V

    10 V

    15 V

    ADM


    � VO


    3.0

    2.0

    1.0

    0

    5.0 V

    4.0 V


    Supply Voltages

    VEE = -15 V V = 0 V

    CM

    60 �VCM = 1.5 V

    40 TA = 25C

    20

    - 55 - 25 0 25 50 75 100 125

    TA, AMBIENT TEMPERATURE (C)

    Figure 10. Supply Current versus Temperature

    100 1.0 k 10 k 100 k 1.0 M 10 M

    f, FREQUENCY (Hz)


    Figure 11. Common Mode Rejection versus Frequency


    PSR, POWER SUPPLY REJECTION (dB)

    140


    �VO/ADM

    30

    GWB, GAIN BANDWIDTH PRODUCT (MHz)

    �V /A


    120


    100


    80


    60

    +PSR = 20Log


    +PSR


    -PSR


    �VCC

    -PSR = 20Log

    O DM

    �VCC

    �VCC

    -

    ADM

    +

    VEE


    20

    �VO


    10

    RL = 10 kQ CL = 0 pF

    f = 100 kHz

    TA = 25C


    VCC = +15 V VEE = -15 V TA = 25C

    40


    20

    0 0

    100 1.0 k 10 k 100 k 1.0 M 10 M 0


    5.0


    10 15 20

    f, FREQUENCY (Hz)


    Figure 12. Power Supply Rejection versus Frequency

    VCC |VEE| , SUPPLY VOLTAGE (V)

    Figure 13. Gain Bandwidth Product versus Supply Voltage


    GWB, GAIN BANDWIDTH PRODUCT (MHz)

    20


    15


    10


    5.0


    0


    VCC = +15 V VEE = -15 V

    f = 100 kHz

    RL = 10 kQ CL = 0 pF

    20

    VO, OUTPUT VOLTAGE (Vp)

    15


    10

    5.0

    0

    -5.0

    -10

    -15


    -20


    TA = 25C


    RL = 10 kQ

    RL = 2.0 kQ


    RL = 2.0 kQ RL = 10 kQ


    VO +


    VO -

    -55 -25 0

    25 50 75 100

    125

    0 5.0

    10 15 20

    TA, AMBIENT TEMPERATURE (C)

    Figure 14. Gain Bandwidth Product versus Temperature

    VCC |VEE| , SUPPLY VOLTAGE (V)

    Figure 15. Maximum Output Voltage versus Supply Voltage



    35


    VO, OUTPUT VOLTAGE (Vpp )

    30


    25


    20


    15


    10


    5.0


    VCC = +15 V VCC = -15 V RL = 2.0 kQ AV = +1.0

    THD 1.0%

    TA = 25C


    110


    AVOL, OPEN LOOP VOLTAGE GAIN (dB)

    RL = 2.0 kQ

    f 10 Hz

    �VO = 2/3 (VCC -VEE) TA = 25C





















































































    100


    90

    0 80

    10 100 1.0 k 10 k 100 k 1.0 M 10 M 0


    5.0


    10 15 20

    f, FREQUENCY (Hz)

    VCC |VEE| , SUPPLY VOLTAGE (V)

    Figure 16. Output Voltage versus Frequency Figure 17. Open Loop Voltage Gain versus Supply Voltage


    AVOL, OPEN LOOP VOLTAGE GAIN (dB)

    110


    105


    100


    95


    V

    90


    VCC = +15 V VEE = -15 V RL = 2.0 kQ

    f 10 Hz

    �VO = -10 V to +10 V

    50

    | Z O |, OUTPUT IMPEDANCE ( Ω )

    VCC = +15 V

    40 VEE = -15 V VO = 0 V

    TA = 25C

    30


    20


    10


    0


    AV = 1000 AV = 100 A = 10


    AV = 1.0

    -55 -25 0 25 50 75 100 125

    TA, AMBIENT TEMPERATURE (C)

    Figure 18. Open Loop Voltage Gain versus Temperature

    1.0 k 10 k 100 k 1.0 M 10 M

    f, FREQUENCY (Hz)

    Figure 19. Output Impedance versus Frequency



    160


    CS, CHANNEL SEPARATION (dB)

    150


    140


    130


    100 Q


    10 kQ


    MC33078


    MC33079


    Drive Channel VCC = +15 V VEE = -15 V RL = 2.0 KQ

    �VOD = 20 Vpp TA = 25C


    1.0


    THD, TOTAL HARMONIC DISTORTION (%)

    0.1


    VCC = +15 V VEE = -15 V VO = 1.0 Vrms TA = 25C


    -

    VO

    +

    2.0 kQ


    120


    110


    100


    -

    + 100 Q

    Measurement Channel


    VOM


    CS = 20 Log


    �VOA

    �VOM


    0.01


    0.001

    10 100 1.0 k

    f, FREQUENCY (Hz)

    10 k

    100 k

    10 100 1.0 k 10 k 100 k

    f, FREQUENCY (Hz)

    Figure 20. Channel Separation versus Frequency

    Figure 21. Total Harmonic Distortion versus Frequency


    THD, TOTAL HARMONIC DISTORTION (%)

    1.0


    VCC


    = +15 V

    10

    9.0


    Vin = 2/3 (VCC -VEE)

    0.5


    0.1


    0.05


    0.01


    0.005


    0.001

    VEE = -15 V

    f = 2.0 kHz TA = 25C

    AV = 1000


    AV = 100

    RA


    Vin

    AV = 10


    AV = 1.0


    10 kQ

    -

    +


    VO

    2.0 kQ


    8.0

    SR, SLEW RATE (V/s)

    7.0

    6.0

    5.0

    4.0

    3.0

    2.0

    1.0

    0

    TA = 25C


    -

    �Vin +


    VO 2.0

    kQ

    Falling Rising

    0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

    4 6 8 10

    12 14

    16 18 20

    VO, OUTPUT VOLTAGE (Vrms)

    Figure 22. Total Harmonic Distortion versus Output Voltage

    VCC |VEE| , SUPPLY VOLTAGE (V)

    Figure 23. Slew Rate versus Supply Voltage


    VCC = +15 V VEE = -15 V

    �Vin = 20 V

    10


    SR, SLEW RATE (V/ s)

    8.0

    120


    AVOL , OPEN LOOP VOLTAGE GAIN (dB)

    100


    80

    0

    , EXCESS PHASE (DEGREES)

    VCC = +15 V VEE = -15 V RL = 2.0 kQ

    TA = 25C 45


    6.0


    4.0


    2.0



    Rising

    Falling

    -

    �Vin +


    VO 2.0

    kQ


    60

    Gain

    40


    20


    0


    Phase


    90


    135


    180

    -55 -25 0 25 50 75 100 125

    TA, AMBIENT TEMPERATURE (C)

    1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M f, FREQUENCY (Hz)

    Figure 24. Slew Rate versus Temperature Figure 25. Voltage Gain and Phase versus Frequency


    A m , OPEN LOOP GAIN MARGIN (dB)

    14


    12


    10


    8.0


    Vin


    -

    +

    2.0 kQ


    VO

    CL 25C


    -55C

    0


    m, PHASE MARGIN (DEGREES)

    10

    Phase

    20


    30

    100


    os, OVERSHOOT (%)

    80


    60


    -

    �Vin +


    VO

    CL


    125C

    25C

    - 55C


    6.0


    4.0


    VCC

    125C


    = +15 V

    125C


    40 40

    50

    20


    VCC = +15 V VEE = -15 V

    �Vin = 100 mV

    2.0


    0

    VEE = -15 V VO = 0 V

    25C

    -55C

    60

    Gain

    70 0

    1 10 100 1000

    10 100 1.0 k 10 k

    CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF)

    in, INPUT REFERRED NOISE CURRENT ( pA/ Hz )

    Vn, REFERRED NOISE VOLTAGE (nV/ Hz)

    Figure 26. Open Loop Gain Margin and Phase Margin versus Load Capacitance

    Figure 27. Overshoot versus Output Load Capacitance


    en , INPUT REFERRED NOISE VOLTAGE ( nV/ Hz )

    100

    80

    50


    VCC

    10

    = +15 V

    1000


    VCC = +15 V VEE = -15 V

    VEE = -15 V

    30 TA = 25C

    20


    100

    f = 1.0 kHz TA = 25C

    j 2 2


    10

    8.0

    5.0

    3.0

    2.0


    1.0


    Voltage


    Current


    0.1


    10


    1.0

    Vn(total) =

    (inRs)

    + en

    + 4KTRS

    10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz)

    Figure 28. Input Referred Noise Voltage and Current versus Frequency

    10 100 1.0 k 10 k 100 k 1.0 M

    RS, SOURCE RESISTANCE (Q)

    Figure 29. Total Input Referred Noise Voltage versus Source Resistance


    14


    Am, GAIN MARGIN (dB)

    12


    R1

    10


    8.0


    6.0


    4.0


    2.0


    0


    R2

    Phase

    -

    +

    VO


    VCC = +15 V VEE = -15 V RT = R1 +R2 AV = +100 VO = 0 V

    TA = 25C

    70

    m, PHASE MARGIN (DEGREES)

    60

    Gain

    50


    40


    30


    20


    10


    0

    10 100 1.0 k 10 k 100 k

    RT, DIFFERENTIAL SOURCE RESISTANCE (Q)

    Figure 30. Phase Margin and Gain Margin versus Differential Source Resistance


    VCC = +15 V VEE = -15 V AV = -1.0 RL = 2.0 kQ CL = 100 pF TA = 25C

    VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 kQ CL = 100 pF TA = 25C


    VO , OUTPUT VOLTAGE (5.0 V/DIV)

    VO , OUTPUT VOLTAGE (5.0 V/DIV)

    t, TIME (2.0 µs/DIV) t, TIME (2.0 µs/DIV)

    Figure 31. Inverting Amplifier Slew Rate Figure 32. Noninverting Amplifier Slew Rate


    VCC = +15 V VEE = -15 V RL = 2.0 kQ CL = 100 pF AV = +1.0 TA = 25C

    VCC = +15 V VEE = -15 V

    BW = 0.1 Hz to 10 Hz

    TA = 25C


    VO , OUTPUT VOLTAGE (5.0 V/DIV)

    e n , INPUT NOISE VOLTAGE (100 nV/DIV)

    t, TIME (200 µs/DIV) t, TIME (1.0 sec/DIV)

    Figure 33. Noninverting Amplifier Overshoot Figure 34. Low Frequency Noise Voltage

    versus Time


    0.1 µF



    10 Q 100 kQ

    -

    D.U.T.


    2.0 kQ


    +

    1/2


    4.3 kQ


    22 µF

    + 4.7 µF

    MC33078

    -

    100 kQ

    Scope

    1

    Rin = 1.0 MQ

    Voltage Gain = 50,000


    24.3 kQ


    0.1 µF

    2.2 µF


    110 kQ


    Note: All capacitors are nonpolarized.


    Figure 35. Voltage Noise Test Circuit (0.1 Hz to 10 Hzpp)


    ORDERING INFORMATION


    Device

    Package

    Shipping

    MC33078DG


    SOIC8

    (PbFree)

    98 Units / Rail

    MC33078DR2G


    2500 / Tape & Reel

    NCV33078DR2G*

    MC33078P

    PDIP8


    50 Units / Rail

    MC33078PG

    PDIP8

    (PbFree)

    MC33079DG

    SOIC14

    (PbFree)

    55 Units / Rail

    MC33079DR2G

    SOIC14

    (PbFree)


    2500 / Tape & Reel

    NCV33079DR2G*

    MC33079P

    PDIP14


    25 Units / Rail

    MC33079PG

    PDIP14

    (PbFree)

    †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

    *NCV devices are qualified for automotive use.



    PDIP8 N SUFFIX

    CASE 62605 ISSUE M


    NOTES:

    D A 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

    D1 2. CONTROLLING DIMENSION: INCHES.

    E

    1. DIMENSION E IS MEASURED WITH THE LEADS RE- STRAINED PARALLEL AT WIDTH E2.

    2. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.


DIM

INCHES

MILLIMETERS

MIN

NOM

MAX

MIN

NOM

MAX

A

−−−−

−−−−

0.210

−−−−

−−−−

5.33

A1

0.015

−−−−

−−−−

0.38

−−−−

−−−−

b

0.014

0.018

0.022

0.35

0.46

0.56

C

0.008

0.010

0.014

0.20

0.25

0.36

D

0.355

0.365

0.400

9.02

9.27

10.02

D1

0.005

−−−−

−−−−

0.13

−−−−

−−−−

E

0.300

0.310

0.325

7.62

7.87

8.26

E1

0.240

0.250

0.280

6.10

6.35

7.11

E2

0.300 BSC

7.62 BSC

E3

−−−−

−−−−

0.430

−−−−

−−−−

10.92

e

0.100 BSC

2.54 BSC

L

0.115

0.130

0.150

2.92

3.30

3.81

8 5 5. ROUNDED CORNERS OPTIONAL.

E1


1 4


NOTE 5


e/2


F

TOP VIEW


A


c

E2

END VIEW

NOTE 3



A1


e


SIDE VIEW

L


8X b


SEATING PLANE


C

E3



0.010 M

C

A

END VIEW



SOIC8 NB CASE 75107 ISSUE AK


NOTES:

X

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

A 2. CONTROLLING DIMENSION: MILLIMETER.

  1. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

  2. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

    8 5 PER SIDE.


    0.25 (0.010) M

    Y M

  3. DIMENSION D DOES NOT INCLUDE DAMBAR

    B S

    1

    4

    Y


    G


    C


    DIM

    MILLIMETERS

    INCHES

    MIN

    MAX

    MIN

    MAX

    A

    4.80

    5.00

    0.189

    0.197

    B

    3.80

    4.00

    0.150

    0.157

    C

    1.35

    1.75

    0.053

    0.069

    D

    0.33

    0.51

    0.013

    0.020

    G

    1.27 BSC

    0.050 BSC

    H

    0.10

    0.25

    0.004

    0.010

    J

    0.19

    0.25

    0.007

    0.010

    K

    0.40°

    1.27°

    0.016°

    0.050°

    M

    0

    8

    0

    8

    N

    0.25

    0.50

    0.010

    0.020

    S

    5.80

    6.20

    0.228

    0.244

    SEATING


    K


    N X 45°

    PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

  4. 75101 THRU 75106 ARE OBSOLETE. NEW STANDARD IS 75107.

0.10 (0.004)

Z

PLANE


H D M J



0.25 (0.010)

M

Z

Y

S

X

S

SOLDERING FOOTPRINT*



1.52 0.060


7.0

0.275

4.0

0.155


0.6 0.024

1.270

( )

0.050


SCALE 6:1


mm inches

*For additional information on our PbFree strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



PDIP14 CASE 64606 ISSUE P



14 8

B

1 7


A F

N C

NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: INCH.

  3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

  4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.


    DIM

    INCHES

    MILLIMETERS

    MIN

    MAX

    MIN

    MAX

    A

    0.715

    0.770

    18.16

    19.56

    B

    0.240

    0.260

    6.10

    6.60

    C

    0.145

    0.185

    3.69

    4.69

    D

    0.015

    0.021

    0.38

    0.53

    F

    0.040

    0.070

    1.02

    1.78

    G

    0.100 BSC

    2.54 BSC

    H

    0.052

    0.095

    1.32

    2.41

    J

    0.008

    0.015

    0.20

    0.38

    K

    0.115

    0.135

    2.92

    3.43

    L

    0.290

    0.310

    7.37

    7.87

    M

    −−−

    10 °

    −−−

    10 °

    N

    0.015

    0.039

    0.38

    1.01

  5. ROUNDED CORNERS OPTIONAL.


L


T

SEATING PLANE


K J

H G D 14 PL M


0.13 (0.005)

M



D A

B


14 8


H E


SOIC14 NB CASE 751A03 ISSUE K


A3


L


NOTES:

  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

  2. CONTROLLING DIMENSION: MILLIMETERS.

  3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.

  4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.


    DIM

    MILLIMETERS

    INCHES

    MIN

    MAX

    MIN

    MAX

    A

    1.35

    1.75

    0.054

    0.068

    A1

    0.10

    0.25

    0.004

    0.010

    A3

    0.19

    0.25

    0.008

    0.010

    b

    0.35

    0.49

    0.014

    0.019

    D

    8.55

    8.75

    0.337

    0.344

    E

    3.80

    4.00

    0.150

    0.157

    e

    1.27 BSC

    0.050 BSC

    H

    5.80

    6.20

    0.228

    0.244

    h

    0.25

    0.50

    0.010

    0.019

    L

    0.40

    1.25

    0.016

    0.049

    M

    0 °

    7 °

    0 °

    7 °

  5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

1 7


0.25 M

B M

13X b


0.25 M

C

A S

B S


A

DETAIL A


h

X 45 °


DETAIL A


e A1

M

C

SEATING PLANE

SOLDERING FOOTPRINT*

6.50


1


14X

1.18


1.27

PITCH


14X

0.58


DIMENSIONS: MILLIMETERS

are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice

ON Semiconductor and

*For additional information on our PbFree strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.


PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 3036752175 or 8003443860 Toll Free USA/Canada Fax: 3036752176 or 8003443867 Toll Free USA/Canada Email: orderlit@onsemi.com


N. American Technical Support: 8002829855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81358171050

http://onsemi.com

14


ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative


MC33078/D

Mouser Electronics


Authorized Distributor


Click to View Pricing, Inventory, Delivery & Lifecycle Information:


ON Semiconductor:

MC33078DG MC33078DR2G MC33078PG MC33079DG MC33079DR2G MC33079PG