Micropower, wide bandwidth (900 kHz), 16 V CMOS operational
amplifiers
Datasheet - production data
SOT23- 5 ( single)
DFN8 2x 2 ( dual)
MiniSO8 ( dual)
QFN16 3x 3 ( quad)
TSSOP14 ( quad)
Low power consumption: 235 µA typ. at 5 V Supply voltage: 3 V to 16 V
Gain bandwidth product: 900 kHz typ.
Low offset voltage
“A” version: 600 µV max. Standard version: 1 mV max.
Low input bias current: 1 pA typ. High tolerance to ESD: 4 kV
Wide temperature range: -40 to 125 °C Automotive qualification
Tiny packages available: SOT23-5, DFN8 2 mm x 2 mm, MiniSO8, QFN16 3 mm x 3 mm, and TSSOP14
Power savings in power-conscious applications
Easy interfacing with high impedance sensors
See TSX63x series for reduced power consumption (45 mA, 200 kHz)
See TSX92x series for higher gain bandwidth products (10 MHz)
Industrial and automotive signal conditioning Active filtering
Medical instrumentation High impedance sensors
The TSX56x, TSX56xA series of operational amplifiers benefit from STMicroelectronics® 16 V CMOS technology to offer state-of-the-art accuracy and performance in the smallest industrial packages. The TSX56x, TSX56xA have pinouts compatible with industrial standards and offer an outstanding speed/power consumption ratio, 900 kHz gain bandwidth product while consuming only 250 µA at 16 V. Such features make the TSX56x, TSX56xA ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease use in harsh automotive applications.
Table 1: Device summary
Version | Standard VIO | Enhanced VIO |
Single | TSX561 | TSX561A |
Dual | TSX562 | TSX562A |
Quad | TSX564 | TSX564A |
February 2017 DocID023274 Rev 5 1/28 This is information on a product in full production. www.st.com
IN2+
vee -
IN2+
IN2-
IN1+
IN2-
OUT2
IN1-
Vee+
OUT1
Figure 1: Pin connections for each package (top view)
Single
Vee+
OIJT
SOT23-5 (TSX561)
Dual
0
0
DFN8 2x2 (TSX564
MiniS08 (TSX564
Quad
j::
::J
0
::J
0
..,
O UT4
IN4-
IN4+
IN4+
Vee-
NC
IN3+
IN3•
c-:,
::J
0
C')
f-
::J
0
cl,
OUT3
QFN16 3x3 (TSX564) TSSOP14 (TSX56'}
N
f-
DocID023274 Rev 5 3/28
conditions
Table 2: Absolute maximum ratings (AMR)
Symbol | Parameter | Value | Unit | |
VCC | 18 | V | ||
Vid | ±VCC | |||
Vin | (VCC-) - 0.2 to (VCC+) + 0.2 | |||
Iin | 10 | mA | ||
Tstg | Storage temperature | -65 to 150 | °C | |
Tj | Maximum junction temperature | 150 | ||
Rthja | SOT23-5 | 250 | °C/W | |
DFN8 2x2 | 120 | |||
MiniSO8 | 190 | |||
QFN16 3x3 | 80 | |||
TSSOP14 | 100 | |||
Rthjc | Thermal resistance junction-to-case | DFN8 2x2 | 33 | |
QFN16 3x3 | 30 | |||
ESD | 4 | kV | ||
200 | V | |||
100 | ||||
1.5 | kV | |||
Latch-up immunity | 200 | mA |
Notes:
(1)All voltage values, except the differential voltage are with respect to the network ground terminal. (2)The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. (3)Vcc - Vin must not exceed 18 V, Vin must not exceed 18 V
(4)Input current must be limited by a resistor in series with the inputs.
(5)Rth are typical values.
(6)Short-circuits can cause excessive heating and destructive dissipation.
(7)Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
(8)Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
(9)Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.
4/28 DocID023274 Rev 5
conditions
Table 3: Operating conditions
Symbol | Parameter | Value | Unit |
VCC | Supply voltage | 3 to 16 | V |
Vicm | Common-mode input voltage range | (VCC-) - 0.1 to (VCC+) + 0.1 | |
Toper | Operating free-air temperature range | -40 to 125 | °C |
DocID023274 Rev 5 5/28
Table 4: Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX56xA, T = 25 °C | 600 | μV | ||
TSX56xA, -40 °C < T < 125 °C | 1800 | |||||
TSX56x, T = 25 °C | 1 | mV | ||||
TSX56x, -40 °C < T < 125 °C | 2.2 | |||||
ΔVio/ΔT | Input offset voltage drift | 2 | 12 | µV/°C | ||
Iib | Input bias current, Vout = VCC/2 | T = 25 °C | 1 | pA | ||
-40 °C < T < 125 °C | 1 | |||||
Iio | Input offset current, Vout = VCC/2 | T = 25 °C | 1 | |||
-40 °C < T < 125 °C | 1 | |||||
CMR1 | Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC - 1.5 V, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 63 | 80 | dB | |
-40 °C < T < 125 °C | 59 | |||||
CMR2 | Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC + 0.1 V, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 47 | 66 | ||
-40 °C < T < 125 °C | 45 | |||||
Avd | Large signal voltage gain, Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ | T = 25 °C | 85 | |||
-40 °C < T < 125 °C | 83 | |||||
VOH | High-level output voltage, VOH = VCC - Vout | T = 25 °C | 70 | mV | ||
-40 °C < T < 125 °C | 100 | |||||
VOL | Low-level output voltage | T = 25 °C | 70 | |||
-40 °C < T < 125 °C | 100 | |||||
Iout | Isink, Vout = VCC | T = 25 °C | 4.3 | 5.3 | mA | |
-40 °C < T < 125 °C | 2.5 | |||||
Isource, Vout = 0 V | T = 25 °C | 3.3 | 4.3 | |||
-40 °C < T < 125 °C | 2.5 | |||||
ICC | Supply current, per channel, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 220 | 300 | μA | |
-40 °C < T < 125 °C | 350 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | RL = 10 kΩ, CL = 100 pF | 600 | 800 | kHz | |
Fu | Unity gain frequency | 690 | ||||
ɸm | Phase margin | 55 | Degrees | |||
Gm | Gain margin | 9 | dB |
6/28 DocID023274 Rev 5
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
SR | Slew rate | RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V | 1 | V/μs | ||
en | Equivalent input noise voltage density | f = 1 kHz | 55 | nV/√Hz | ||
f = 10 kHz | 29 | |||||
∫en | Low-frequency peak-to- peak input noise | Bandwidth, f = 0.1 to 10 Hz | 16 | µVpp | ||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = (VCC -1.5 V)/2, BW = 22 kHz, Vout = 1 Vpp | 0.004 | % |
Notes:
(1)See Section 5.3: "Input offset voltage drift over temperature"
(2)Guaranteed by design
DocID023274 Rev 5 7/28
Table 5: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX56xA, T = 25 °C | 600 | μV | ||
TSX56xA, -40 °C < T < 125 °C | 1800 | |||||
TSX56x, T = 25 °C | 1 | mV | ||||
TSX56x, -40 °C < T < 125 °C | 2.2 | |||||
ΔVio/ΔT | Input offset voltage drift | 2 | 12 | µV/°C | ||
ΔVio | Long-term input offset voltage drift | 5 | nV/ √month | |||
Iib | Input bias current, Vout = VCC/2 | T = 25 °C | 1 | pA | ||
-40 °C < T < 125 °C | 1 | |||||
Iio | Input offset current, Vout = VCC/2 | T = 25 °C | 1 | |||
-40 °C < T < 125 °C | 1 | |||||
CMR1 | Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC - 1.5 V, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 66 | 84 | dB | |
-40 °C < T < 125 °C | 63 | |||||
CMR2 | Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC + 0.1 V, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 50 | 69 | ||
-40 °C < T < 125 °C | 47 | |||||
Avd | Large signal voltage gain, Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ | T = 25 °C | 85 | |||
-40 °C < T < 125 °C | 83 | |||||
VOH | High-level output voltage, VOH = VCC - Vout | RL = 10 kΩ, T = 25 °C | 70 | mV | ||
RL = 10 kΩ, -40 °C < T < 125 °C | 100 | |||||
VOL | Low-level output voltage | RL = 10 kΩ, T = 25 °C | 70 | |||
RL = 10 kΩ, -40 °C < T < 125 °C | 100 | |||||
Iout | Isink | Vout = VCC, T = 25 °C | 11 | 14 | mA | |
Vout = VCC, -40 °C < T < 125 °C | 8 | |||||
Isource | Vout = 0 V, T = 25 °C | 9 | 12 | |||
Vout = 0 V, -40 °C < T < 125 °C | 7 | |||||
ICC | Supply current, per channel, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 235 | 350 | μA | |
-40 °C < T < 125 °C | 400 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | RL = 10 kΩ, CL = 100 pF | 700 | 850 | kHz | |
Fu | Unity gain frequency | 730 | ||||
ɸm | Phase margin | 55 | Degrees | |||
Gm | Gain margin | 9 | dB |
8/28 DocID023274 Rev 5
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
SR | Slew rate | RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V | 1.1 | V/μs | ||
en | Equivalent input noise voltage density | f = 1 kHz | 55 | nV/√Hz | ||
f = 10 kHz | 29 | |||||
∫en | Low-frequency peak-to- peak input noise | Bandwidth, f = 0.1 to 10 Hz | 15 | µVpp | ||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = (VCC -1.5 V)/2, BW = 22 kHz, Vout = 2 Vpp | 0.002 | % |
Notes:
(1)See Section 5.3: "Input offset voltage drift over temperature"
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.
(3)Guaranteed by design
DocID023274 Rev 5 9/28
Table 6: Electrical characteristics at VCC+ = 16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX56xA, T = 25 °C | 600 | μV | ||
TSX56xA, -40 °C < T < 125 °C | 1800 | |||||
TSX56x, T = 25 °C | 1 | mV | ||||
TSX56x, -40 °C < T < 125 °C | 2.2 | |||||
ΔVio/ΔT | Input offset voltage drift | 2 | 12 | µV/°C | ||
ΔVio | Long-term input offset voltage drift | 1.6 | nV/ √month | |||
Iib | Input bias current, Vout = VCC/2 | T = 25 °C | 1 | pA | ||
-40 °C < T < 125 °C | 1 | |||||
Iio | Input offset current, Vout = VCC/2 | T = 25 °C | 1 | |||
-40 °C < T < 125 °C | 1 | |||||
CMR1 | Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC - 1.5 V, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 76 | 95 | dB | |
-40 °C < T < 125 °C | 72 | |||||
CMR2 | Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC + 0.1 V, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 60 | 78 | ||
-40 °C < T < 125 °C | 56 | |||||
SVR | Common mode rejection ratio, 20 log (ΔVCC/ΔVio), VCC = 3 V to 16 V, Vout = Vicm = VCC/2 | T = 25 °C | 76 | 90 | ||
-40 °C < T < 125 °C | 72 | |||||
Avd | Large signal voltage gain, Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ | T = 25 °C | 85 | |||
-40 °C < T < 125 °C | 83 | |||||
VOH | High-level output voltage, VOH = VCC - Vout | RL = 10 kΩ, T = 25 °C | 70 | mV | ||
RL = 10 kΩ, -40 °C < T < 125 °C | 100 | |||||
VOL | Low-level output voltage | RL = 10 kΩ, T = 25 °C | 70 | |||
RL = 10 kΩ, -40 °C < T < 125 °C | 100 | |||||
Iout | Isink | Vout = VCC, T = 25 °C | 40 | 92 | mA | |
Vout = VCC, -40 °C < T < 125 °C | 35 | |||||
Isource | Vout = 0 V, T = 25 °C | 30 | 90 | |||
Vout = 0 V, -40 °C < T < 125 °C | 25 | |||||
ICC | Supply current, per channel, Vout = VCC/2, RL > 1 MΩ | T = 25 °C | 250 | 360 | μA | |
-40 °C < T < 125 °C | 400 |
10/28 DocID023274 Rev 5
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
AC performance | ||||||
GBP | Gain bandwidth product | RL = 10 kΩ, CL = 100 pF | 750 | 900 | kHz | |
Fu | Unity gain frequency | 750 | ||||
ɸm | Phase margin | 55 | Degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V | 1.1 | V/μs | ||
en | Equivalent input noise voltage density | f = 1 kHz | 48 | nV/√Hz | ||
f = 10 kHz | 27 | |||||
∫en | Low-frequency peak-to- peak input noise | Bandwidth, f = 0.1 to 10 Hz | 15 | µVpp | ||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = (VCC -1.5 V)/2, BW = 22 kHz, Vout = 5 Vpp | 0.000 5 | % |
Notes:
(1)See Section 5.3: "Input offset voltage drift over temperature"
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.
(3)Guaranteed by design
DocID023274 Rev 5 11/28
Figure 4: Input offset voltage temperature coefficient distribution at VCC = 16 V, Vicm = 8 V
Figure 2: Supply current vs. supply voltage at Vicm = VCC/2
Figure 3: Input offset voltage distribution at VCC = 16 V and Vicm = 8 V
Figure 5: Input offset voltage vs. input common-mode voltage at VCC = 12 V
Figure 6: Input offset voltage vs. temperature at VCC = 16 V
2500
2000
Limit for TSX56xA
1500
1000
500
0
-500
-1000
-1500
-2000
VCC= 16V, Vicm = 8V
-40 -20 0 20 40 60 80 100 120
-2500
Limit for TSX56x
12/28 DocID023274 Rev 5
-5 | 0 -10 | |||||||
-13 | ||||||||
-8 | -15 | |||||||
-18 |
-10
-20
Figure 9: Output current vs. output voltage at | Figure 10: Bode diagram at VCC = 3.3 V 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 10 10 0 100 0 10000 Frequency (kHz) | Q) gi .c Q. |
VCC = 16 V | ||
100 | ||
75 | ||
T = 25 °e | ||
50 | ||
0 | ||
-25 | ||
-50 | ||
-75 | ||
-100 | ||
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 | ||
Output voltage (V) |
45 | Figure 11: Bode diagram at VCC = 5 V 180 150 120 90 60 30 0 0 QJ Ill -30 .acl: [J_ -60 -90 -120 -150 -180 10 100 1000 10000 Frequency (kHz) | ID :3, C " iii CJ | 45 | Figure 12: Bode diagram at VCC = 16 V 180 150 120 90 60 30 0 0 Q) Ill -30 .acl: [J_ -60 -90 -120 -150 10 100 1000 10000 Frequency (kHz) | |
30 | 30 | ||||
15 | 15 | ||||
ID | |||||
C: | 0 | 0 | |||
"iii | |||||
CJ | -15 | -15 | |||
-30 | -30 | ||||
-45 | -45 |
0.0 0 .5 1 .0 1 .5 2 .0 2 .5 3.0 3 .5 4 .0 4.5 5.0
Output voltage(V)
./
---j T = -40 "e
I Source
I V;d = 1 V
/
7
.,,,.
-
-
T - 25 °e 1
-
-8
-5 I T - 125 °e I'--
11
:i
u
:i
Ve e = 5 v
::,
ll
T - 125 °e r
/
-S
C:
,,
1T - 25 °e t"
.,,,.
,/
,..
IT= -40 °e
,/
,.
,,
-1v : ..,
S in k
V;d
20
18 I
15
13
10
8
5
3
0
-3
,
Figure 8: Output current vs. output voltage at VCC = 5 V
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Output voltage (V)
-3
"S
a.
"S
0
0
:i
0
5
3
.<s(
'E
Figure 7: Output current vs. output voltage at VCC = 3.3 V
10
8
DocID023274 Rev 5 13/28
Figure 13: Phase margin vs. capacitive load at VCC = 12 V
Capacitive load (pF)
Vicm(V)
M 1 1 1 1M
Vcc(V)
-1.0
-1.5
M
-0.5
0.0
i
Q)
1ii
0.5
I
Figure 16: Slew rate vs. supply voltage
1.5
1.0
0 2 3 4 5 6 7 B 9 10 11 12
Vicm(V)
-
-
120
110
100
90
BO
70
60
50
40
30
20
10
0
"C>J
<{
iii'
:!:!-
Figure 15: Avd vs. input common-mode voltage at VCC = 12 V
160
150
140
130
2 3 4 5 6 7 8 9 10 11 12
0
0
I
900
800 ,., ---
700
600
500
400
300
200
100
c..
III
Cl
N
:i:
Figure 14: GBP vs. input common-mode voltage at VCC = 12 V
1000
--
0 50 100 150 200 250 300 350 400 450 500
gj
"
'
"'
70
65
60 '
55
50
45
40
35
30
25
20
15
10
5
0
c..
.c:
C:
ttl
E
a,
-
:!:!-
s
da,i
.... | ||||||||||
.......... | ||||||||||
......... | ||||||||||
Vee 12 V, V;cm-Vrl-6V RL = 50 kQ, CL = 100 pF T = 25 ' C | .... | |||||||||
r | |||||||||||
\ | |||||||||||
\ | |||||||||||
- | - | ||||||||||
Vee= 12 v, V;cm =Vrl | |||||||||||
- | - | RL = 10 kQ, CL= 100 pF | |||||||||
I | \.. | ||||||||||
T = 25' C | |||||||||||
\ | ||||||||||||
Vc c = 12 V, Vrl = 6 V RL = 10 kQ T = 25' C | ||||||||||||
I T = 25' C j | I | |||||
T 125' C | I T = -40' C j | |||||
I | ||||||
V;cm = Vrl = Vcci2 RL = 10 kQ, CL= 100 pF V;n from 0.5 V to Vee - 0.5 V SR calculated from 1 V to VCC - 1 V | - | |||||
I T - 125' C j | T = -40' C j | |||||
I | ||||||
I T= 25' C |
1 Vcc=3.3V I T = 25' C | ||||||||||||
I- | f- | |||||||||||
1 1 11 | ||||||||||||
... | , | |||||||||||
V;cm = 2.8 V I | ||||||||||||
.... | I'... | |||||||||||
...... | I | II J | I | |||||||||
I V;cm - 1.65 V | ||||||||||||
I I 11 1 1 1 | I |
Figure 17: Noise vs. frequency at VCC = 3.3 V Figure 18: Noise vs. frequency at VCC = 5 V
.;- 10000
5
>E-
.,
.;- 10000
1
vcc = 5V I T = 25 'C I | |||||||||||||
:-.. | I I | ||||||||||||
... | "'-. | V;cm - 4.5 V | |||||||||||
...... | "' | 11lllJ: | |||||||||||
I V;cm-2.5V | |||||||||||||
1 1 1 1 1 1 1 1 |
E-
.,
iC:
.a,,
·o
C:
a,
1
1000 -
iC:
3ol
C:
a,
F
1000
c
100
a,
j
·5
ea,r
10
°§! 100
ca,
er
:::,
a,
10
:5
C.
.E | 0.01 | 0.1 | 10 | 100 | .E | 0.01 | 0.1 | 10 | 100 |
Frequency (kHz) | Frequency (kHz) |
14/28 DocID023274 Rev 5
Figure 20: Distortion and noise vs. output voltage amplitude
100
>
Vee 16 V l T = 25 ' e I | ||||||||||||
"" | 111 1 | |||||||||||
V;cm = 15.5 V [ | ||||||||||||
..... | ||||||||||||
""' | "':O. | 111 , 1 | ||||||||||
I V;cm BV I | ||||||||||||
I 1 1 1 11 1 |
10·1
-=
0.1
10
Frequency (kHz)
100
0. 1
Output amplitude (Vpp)
10
Figure 21: Distortion and noise vs. amplitude at Vicm = VCC/2 and VCC = 12 V
100
Figure 22: Distortion and noise vs. frequency
100
f
10000
1000
Frequency (Hz)
100
10·4
10·3
+
J:
I-
0
z 10·2
10·1
10
0. 1
Output amplitude (Vpp)
10· 3
10·2
z
+
0
:I:
I-
10·1
n
10·3
0
J:
I-
10·2
+
z
l!-
1 0
0. 01
a.
g
::i
j
:;
c
<I)
1 00
i
"§!
"'
1000
35 l
C
<I)
-S
;;;
C
Figure 19: Noise vs. frequency at VCC = 16 V
N" 10000
-,:,I:.
V;cm (Vee -1.5 V)/2 f = 1 kHz, BW = 22 kHz | |||||||||||
.... | |||||||||||
RL 100 kQ, T 25 °e Followe r | |||||||||||
... | |||||||||||
..,,,---- | ....,{ | I .J | |||||||||
v e e 3.3V | -- | ||||||||||
Vee= s v | I Vee = 16 V | ||||||||||
I I I I |
-
Vee= 12v, V;cm = 6V f = 1 kHz, BW = 22 kHz RL = 10 0 kQ, T = 25 °e Follower | |||||||||||||
..... | |||||||||||||
"- | |||||||||||||
i,..,. | |||||||||||||
V;cm (Vee - 1.s V)/2 BW = 80 kHz RL 100 kQ, T 25 °e Followe r | I | ||||||||||||
Vee 3.3V I I V;n - 1 VPP | I ...,, | ||||||||||||
I | I | I i., | |||||||||||
I | , ......... | ||||||||||||
Vee - 5 v 1 V;n = 2 VPP | Vee 1 6 , V;n = 5 VP_P | ||||||||||||
DocID023274 Rev 5 15/28
The amplifiers of the TSX56x and TSX56xA series can operate from 3 V to 16 V. Their parameters are fully specified at 3.3 V, 5 V, and 16 V power supplies. However, the parameters are very stable in the full VCC range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 ° C.
The TSX56x and TSX56xA devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V.
However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from (VCC-) - 0.1 V to (VCC+) - 1.5 V).
Beyond (VCC+) - 1.5 V, the operational amplifiers are still functional but with degraded performance, as can be observed in the electrical characteristics section of this datasheet (mainly Vio and GBP). These performances are suitable for a number of applications that need to be rail-to-rail.
The devices are designed to prevent phase reversal.
The maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
Equation 1
∆Vio = ma x Vio T
– Vio 25 °C
∆T T – 25 °C
Where T = -40 °C and 125 °C.
The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 2.
16/28 DocID023274 Rev 5
To evaluate product reliability, two types of stress acceleration are used: Voltage acceleration, by changing the applied voltage
Temperature acceleration, by changing the die temperature (below the maximum
junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using
Equation 2
FV
A = eβ . VS – VU
Where:
AFV is the voltage acceleration factor
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test
VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in
Equation 3
AFT
E
a .
---
k
= e
1 – 1
TU TS
AFT is the temperature acceleration factor
Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)
TU is the temperature of the die when VU is used (K)
TS is the temperature of the die under temperature stress (K)
Equation 4
AF = AFT × AFV
AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.
Equation 5
Months = AF × 1000 h × 12 months / 24 h × 365.25 days
DocID023274 Rev 5 17/28
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).
Equation 6
VCC = maxVop with Vicm = VCC 2
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7).
Equation 7
∆Vio =
Viodr ift month s
Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration.
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.
Accurate macromodels of the TSX56x, TSX56xA devices are available on the STMicroelectronics’ website at: www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX56x and TSX56xA operational amplifiers. They emulate the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements.
18/28 DocID023274 Rev 5
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID023274 Rev 5 19/28
Figure 23: SOT23-5 package outline
Table 7: SOT23-5 mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.90 | 1.20 | 1.45 | 0.035 | 0.047 | 0.057 |
A1 | 0.15 | 0.006 | ||||
A2 | 0.90 | 1.05 | 1.30 | 0.035 | 0.041 | 0.051 |
B | 0.35 | 0.40 | 0.50 | 0.014 | 0.016 | 0.020 |
C | 0.09 | 0.15 | 0.20 | 0.004 | 0.006 | 0.008 |
D | 2.80 | 2.90 | 3.00 | 0.110 | 0.114 | 0.118 |
D1 | 1.90 | 0.075 | ||||
e | 0.95 | 0.037 | ||||
E | 2.60 | 2.80 | 3.00 | 0.102 | 0.110 | 0.118 |
F | 1.50 | 1.60 | 1.75 | 0.059 | 0.063 | 0.069 |
L | 0.10 | 0.35 | 0.60 | 0.004 | 0.014 | 0.024 |
K | 0 degrees | 10 degrees | 0 degrees | 10 degrees |
20/28 DocID023274 Rev 5
Figure 24: DFN8 2x2 package outline
Table 8: DFN8 2x2 mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.70 | 0.75 | 0.80 | 0.028 | 0.030 | 0.031 |
A1 | 0.00 | 0.02 | 0.05 | 0.000 | 0.001 | 0.002 |
b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 |
D | 2.00 | 0.079 | ||||
E | 2.00 | 0.079 | ||||
e | 0.50 | 0.020 | ||||
L | 0.045 | 0.55 | 0.65 | 0.018 | 0.022 | 0.026 |
DocID023274 Rev 5 21/28
Figure 25: MiniSO8 package outline
Table 9: MiniSO8 mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.1 | 0.043 | ||||
A1 | 0 | 0.15 | 0 | 0.006 | ||
A2 | 0.75 | 0.85 | 0.95 | 0.030 | 0.033 | 0.037 |
b | 0.22 | 0.40 | 0.009 | 0.016 | ||
c | 0.08 | 0.23 | 0.003 | 0.009 | ||
D | 2.80 | 3.00 | 3.20 | 0.11 | 0.118 | 0.126 |
E | 4.65 | 4.90 | 5.15 | 0.183 | 0.193 | 0.203 |
E1 | 2.80 | 3.00 | 3.10 | 0.11 | 0.118 | 0.122 |
e | 0.65 | 0.026 | ||||
L | 0.40 | 0.60 | 0.80 | 0.016 | 0.024 | 0.031 |
L1 | 0.95 | 0.037 | ||||
L2 | 0.25 | 0.010 | ||||
k | 0° | 8° | 0° | 8° | ||
ccc | 0.10 | 0.004 |
22/28 DocID023274 Rev 5
Figure 26: QFN16 3x3 package outline
A
D
B
INDEX AREA
E
( D/ 2x E/ 2)
C
aaa
aaa
C 2x
2x
TOP VI EW
C
ccc
A
A1
C
eee | C |
SI DE VIEW
e
L b
SEATING PLANE
5 8 bbb
C A B
bbb C
4 9
1 12
Pin#1 ID
R0. 11
16 13
BOTTOM VIEW
DocID023274 Rev 5 23/28
Table 10: QFN16 3x3 mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.50 | 0.65 | 0.020 | 0.026 | ||
A1 | 0 | 0.05 | 0 | 0.002 | ||
b | 0.18 | 0.25 | 0.30 | 0.007 | 0.010 | 0.012 |
D | 3.00 | 0.118 | ||||
E | 3.00 | 0.118 | ||||
e | 0.50 | 0.020 | ||||
L | 0.30 | 0.50 | 0.012 | 0.020 | ||
aaa | 0.15 | 0.006 | ||||
bbb | 0.10 | 0.004 | ||||
ccc | 0.10 | 0.004 | ||||
ddd | 0.05 | 0.002 | ||||
eee | 0.08 | 0.003 |
24/28 DocID023274 Rev 5
Figure 27: TSSOP14 package outline
aaa
Table 11: TSSOP14 mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.20 | 0.047 | ||||
A1 | 0.05 | 0.15 | 0.002 | 0.004 | 0.006 | |
A2 | 0.80 | 1.00 | 1.05 | 0.031 | 0.039 | 0.041 |
b | 0.19 | 0.30 | 0.007 | 0.012 | ||
c | 0.09 | 0.20 | 0.004 | 0.0089 | ||
D | 4.90 | 5.00 | 5.10 | 0.193 | 0.197 | 0.201 |
E | 6.20 | 6.40 | 6.60 | 0.244 | 0.252 | 0.260 |
E1 | 4.30 | 4.40 | 4.50 | 0.169 | 0.173 | 0.176 |
e | 0.65 | 0.0256 | ||||
L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 |
L1 | 1.00 | 0.039 | ||||
k | 0° | 8° | 0° | 8° | ||
aaa | 0.10 | 0.004 |
DocID023274 Rev 5 25/28
Order code | Temperature range | Channel number | Package | Packaging | Marking |
TSX561ILT | -40 to 125 °C | 1 | SΟΤ23-5 | K23 | |
TSX562IQ2T | 2 | DFN8 2x2 | |||
TSX562IST | MiniSO8 | ||||
TSX564IQ4T | 4 | QFN16 3x3 | |||
TSX564IPT | TSSOP14 | TSX5641 | |||
-40 to 125 °C automotive grade | 1 | SΟΤ23-5 | K116 | ||
2 | MiniSO8 | ||||
4 | TSSOP14 | TSX5641Y | |||
TSX561AILT | -40 to 125 °C | 1 | SΟΤ23-5 | K117 | |
TSX562AIST | 2 | MiniSO8 | |||
TSX564AIPT | 4 | TSSOP14 | TSX564AI | ||
-40 to 125 °C automotive grade | 1 | SΟΤ23-5 | K118 | ||
2 | MiniSO8 | ||||
4 | TSSOP14 | TSX564AIY |
Notes:
(1)Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent
26/28 DocID023274 Rev 5
Table 13: Document revision history
Date | Revision | Changes |
06-Aug-2012 | 1 | Initial release. |
18-Sep-2012 | 2 | Added TSX562, TSX564, TSX562A, and TSX564A devices. Updated Features, Description, Figure 1, Table 1 (added DFN8, MiniSO8, QFN16, and TSSOP14 package). Updated Table 1 (updated ESD MM values). Updated Table 4 and Table 5 (added footnotes), Section 5 (added Figure 24 to Figure 28 and Table 8 to Table 12), Table 13 (added dual and quad devices). Minor corrections throughout document. |
23-May-2013 | 3 | Replaced the silhouette, pinout, package diagram, and mechanical data of the DFN8 2x2 and QFN16 3x3 packages. Added Benefits and Related products. Table 1: updated Rthja values and added Rthjc values for DFN8 2x2 and QFN16 3x3. Updated Section 4.3, Section 4.4, and Section 4.6 Replaced Figure 23: SOT23-5 package mechanical drawing and Table 7: SOT23-5 package mechanical data. |
09-Aug-2013 | 4 | Added SO8 package for dual version TSX562 and TSX562A. Table 2: updated for SO8 package Table 13: added order codes TSX562IDT, TSX562IYDT, TSX562AIDT, TSX562AIYDT; updated automotive grade status. |
07-Feb-2017 | 5 | Removed SO8 package Table 8: "DFN8 2x2 mechanical data": removed "N" Table 11: "TSSOP14 mechanical data": added "L" and " L1" in inches; updated "aaa" in inches. Table 12: "Order codes": removed TSX562IDT, TSX562IYDT, TSX562AIDT, TSX562AIYDT. Updated terminology |
DocID023274 Rev 5 27/28
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved
28/28 DocID023274 Rev 5
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
TSX561AILT TSX561ILT TSX564IPT TSX564AIPT TSX562IST TSX562AIST TSX562IQ2T TSX564IQ4T TSX562IYST TSX561AIYLT TSX562AIYST TSX561IYLT TSX564AIYPT TSX564IYPT