Micropower with high merit factor CMOS operational amplifiers
Datasheet - production data
Low supply voltage: 1.5 V – 5.5 V Rail-to-rail input and output
Low input offset voltage: 800 µV max (A version)
Low power consumption: 29 µA typical Gain bandwidth product: 1.3 MHz typical Stable when used in gain configuration Micropackages: SOT23-5/6, SC70-5/6 Low input bias current: 1 pA typical
Extended temperature range: -40 to 125 °C 4 kV human body model
Battery-powered applications Portable devices
Signal conditioning Active filtering
Medical instrumentation
The TSV6290 and the TSV6291 are single operational amplifiers with a high bandwidth which consume only 29 µA. They must be used in a gain configuration (G < -3, G > 4).
With a very low input bias current and low offset voltage (800 µV maximum for the A version), the TSV629x family of devices is ideal for applications requiring precision. The devices can operate at a power supply ranging from 1.5 to
5.5 V, and therefore suit battery-powered devices, extending battery life.
The TSV6290 comes with a shutdown function.
The TSV6290 and TSV6291 present a high tolerance to ESD, sustaining 4 kV for the human body model.
The TSV6290 and TSV6291 are offered in SOT23-5/6 and SC70-5/6 micropackages, with extended temperature ranges from -40 °C to 125 °C.
All these features make the TSV629x ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.
August 2016 DocID17117 Rev 2 1/24 This is information on a product in full production. www.st.com
Figure 1: Package pin connections (top view)
DocID17117 Rev 2 3/24
conditions
Table 1: Absolute maximum ratings (AMR)
Symbol | Parameter | Value | Unit | |
VCC | 6 | V | ||
Vid | ±VCC | |||
Vin | (VCC-) - 0.2 to (VCC+) + 0.2 | |||
Iin | 10 | mA | ||
SHDN | (VCC-) - 0.2 to (VCC+) + 0.2 | V | ||
Tstg | Storage temperature | -65 to 150 | °C | |
Tj | Maximum junction temperature | 150 | ||
Rthja | SOT23-5 | 250 | °C/W | |
SOT23-6 | 240 | |||
SC70-5 | 205 | |||
SC70-6 | 232 | |||
ESD | 4 | kV | ||
300 | V | |||
1.5 | kV | |||
Latch-up immunity | 200 | mA |
Notes:
(1)All voltage values, except differential voltage, are with respect to network ground terminal. (2)Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. (3)Vcc - Vin must not exceed 6 V, Vin must not exceed 6 V.
(4)Input current must be limited by a resistor in series with the inputs.
(5)Rth are typical values.
(6)Short-circuits can cause excessive heating and destructive dissipation.
(7)Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
(8)Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
(9)Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
Table 2: Operating conditions
Symbol | Parameter | Value | Unit |
VCC | Supply voltage | 1.5 to 5.5 | V |
Vicm | Common mode input voltage range | (VCC-) - 0.1 to (VCC+) + 0.1 | |
Toper | Operating free air temperature range | -40 to 125 | °C |
4/24 DocID17117 Rev 2
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSV6290, TSV6291 | 4 | mV | ||
TSV6290A, TSV6291A | 0.8 | |||||
Tmin < Top < Tmax, TSV6290, TSV6291 | 6 | |||||
Tmin < Top < Tmax, TSV6290A, TSV6291A | 2 | |||||
DVio | Input offset voltage drift | 2 | μV/°C | |||
Iio | 1 | 10 | pA | |||
Tmin < Top < Tmax | 1 | 100 | ||||
Iib | 1 | 10 | ||||
Tmin < Top < Tmax | 1 | 100 | ||||
CMR | Common mode rejection ratio, 20 log (ΔVic/ΔVio) | 0 V to 1.8 V, Vout = 0.9 V | 53 | 74 | dB | |
Tmin < Top < Tmax | 51 | |||||
Avd | Large signal voltage gain | RL = 10 kΩ, Vout = 0.5 V to 1.3 V | 78 | 95 | ||
Tmin < Top < Tmax | 73 | |||||
VOH | High-level output voltage, VOH = VCC - Vout | RL = 10 kΩ | 5 | 35 | mV | |
Tmin < Top < Tmax | 50 | |||||
VOL | Low-level output voltage | RL = 10 kΩ | 4 | 35 | ||
Tmin < Top < Tmax | 50 | |||||
Iout | Isink | Vοut = 1.8 V | 6 | 12 | mA | |
Tmin < Top < Tmax | 4 | |||||
Isource | Vοut = 0 V | 6 | 10 | |||
Tmin < Top < Tmax | 4 | |||||
ICC | Supply current (per operator) | No load, Vout = VCC/2 | 25 | 31 | µA | |
Tmin < Top < Tmax | 33 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | RL = 10 kΩ, CL = 100 pF | 1.1 | MHz | ||
Gain | Minimum gain for stability | Phase margin = 60 °, Rf = 10 kΩ, RL = 10 kΩ, CL = 20 pF | 4 | V/V | ||
-3 | ||||||
SR | Slew rate | RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 1.3 V | 0.33 | V/μs |
Notes:
(1)Guaranteed by design.
DocID17117 Rev 2 5/24
Table 4: Shutdown characteristics VCC = 1.8 V (TSV6290)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
ICC | Supply current in shutdown mode (all operators) | SHDN = (VCC-) | 2.5 | 50 | nΑ | |
Tmin < Top < 85 °C | 200 | |||||
Tmin < Top < 125 °C | 1.5 | µA | ||||
ton | Amplifier turn-on time | RL = 5 kΩ, Vout = (VCC-) to (VCC-) + 0.2 V | 300 | ns | ||
toff | Amplifier turn-off time | RL = 5 kΩ, Vout = (VCC+) - 0.5 to (VCC+) - 0.7 V | 30 | |||
VIH | SHDN logic high | 1.3 | V | |||
VIL | SHDN logic low | 0.5 | ||||
IIH | SHDN current high | SHDN = (VCC+) | 10 | pA | ||
IIL | SHDN current low | SHDN = (VCC-) | 10 | |||
IOLeak | Output leakage in shutdown mode | SHDN = (VCC-) | 50 | |||
Tmin < Top < Tmax | 1 | nA |
Table 5: (VCC+) = 3.3 V, (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, RL connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSV6290, TSV6291 | 4 | mV | ||
TSV6290A, TSV6291A | 0.8 | |||||
Tmin < Top < Tmax, TSV6290, TSV6291 | 6 | |||||
Tmin < Top < Tmax, TSV6290A, TSV6291A | 2 | |||||
DVio | Input offset voltage drift | 2 | μV/°C | |||
Iio | 1 | 10 | pA | |||
Tmin < Top < Tmax | 1 | 100 | ||||
Iib | 1 | 10 | ||||
Tmin < Top < Tmax | 1 | 100 | ||||
CMR | Common mode rejection ratio, 20 log (ΔVic/ΔVio) | 0 V to 3.3 V, Vout = 1.65 V | 57 | 79 | dB | |
Tmin < Top < Tmax | 53 | |||||
Avd | Large signal voltage gain | RL= 10 kΩ, Vout = 0.5 V to 2.8 V | 81 | 98 | ||
Tmin < Top < Tmax | 76 | |||||
VOH | High-level output voltage, VOH = VCC - Vout | RL = 10 kΩ | 5 | 35 | mV | |
Tmin < Top < Tmax | 50 | |||||
VOL | Low-level output voltage | RL = 10 kΩ | 4 | 35 | ||
Tmin < Top < Tmax | 50 | |||||
Iout | Isink | Vout = 5 V | 23 | 45 | mA | |
Tmin < Top < Tmax | 20 | |||||
Isource | Vout = 0 V | 23 | 38 | |||
Tmin < Top < Tmax | 20 | |||||
ICC | Supply current (per operator) | No load, Vout = 2.5 V | 26 | 33 | µA | |
Tmin < Top < Tmax | 35 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | RL = 10 kΩ, CL = 100 pF | 1.2 | MHz | ||
Gain | Minimum gain for stability | Phase margin = 60 °, Rf = 10 kΩ, RL = 10 kΩ, CL = 20 pF | 4 | V/V | ||
-3 | ||||||
SR | Slew rate | RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 2.8 V | 0.4 | V/μs |
Notes:
(1)Guaranteed by design.
Table 6: (VCC+) = 5 V, (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, RL connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Min. | Typ. | Max. | Unit | |
DC performance | ||||||
Vio | Offset voltage | TSV6290, TSV6291 | 4 | mV | ||
TSV6290A, TSV6291A | 0.8 | |||||
Tmin < Top < Tmax, TSV6290, TSV6291 | 6 | |||||
Tmin < Top < Tmax, TSV6290A, TSV6291A | 2 | |||||
DVio | Input offset voltage drift | 2 | μV/°C | |||
Iio | 1 | 10 | pA | |||
Tmin < Top < Tmax | 1 | 100 | ||||
Iib | 1 | 10 | ||||
Tmin < Top < Tmax | 1 | 100 | ||||
CMR | Common mode rejection ratio, 20 log (ΔVic/ΔVio) | 0 V to 5 V, Vout = 2.5 V | 60 | 80 | dB | |
Tmin < Top < Tmax | 55 | |||||
SVR | Supply voltage rejection ratio, 20 log (ΔVCC/ΔVio) | VCC = 1.8 to 5 V | 75 | 102 | ||
Tmin < Top < Tmax | 73 | |||||
Avd | Large signal voltage gain | RL = 10 kΩ, Vout = 0.5 V to 4.5 V | 85 | 98 | ||
Tmin < Top < Tmax | 80 | |||||
VOH | High-level output voltage, VOH = VCC - Vout | RL = 10 kΩ | 7 | 35 | mV | |
Tmin < Top < Tmax | 50 | |||||
VOL | Low-level output voltage | RL = 10 kΩ | 6 | 35 | ||
Tmin < Top < Tmax | 50 | |||||
Iout | Isink | Vout = 5 V | 40 | 69 | mA | |
Tmin < Top < Tmax | 35 | |||||
Isource | Vout = 0 V | 40 | 74 | |||
Tmin < Top < Tmax | 35 | |||||
ICC | Supply current (per operator) | No load, Vout = 2.5 V | 30 | 36 | µA | |
Tmin < Top < Tmax | 38 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | RL = 10 kΩ, CL = 100 pF | 1.3 | MHz | ||
Gain | Minimum gain for stability | Phase margin = 60 °, Rf = 10 kΩ, RL = 10 kΩ, CL = 20 pF | 4 | V/V | ||
-3 | ||||||
SR | Slew rate | RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 4.5 V | 0.5 | V/μs | ||
en | Equivalent input noise voltage | f = 1 kHz | 70 | nV/√Hz | ||
THD | Total harmonic distortion | Av = -10, fin = 1 kHz, RL= 100 kΩ, Vicm = Vcc/2, Vin = 40 mVpp | 0.15 | % |
Notes:
(1)Guaranteed by design.
8/24 DocID17117 Rev 2
Table 7: Shutdown characteristics VCC = 5 V (TSV6290)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
ICC | Supply current in shutdown mode (all operators) | SHDN = VIL | 5 | 50 | nΑ | |
Tmin < Top < 85 °C | 200 | |||||
Tmin < Top < 125 °C | 1.5 | µA | ||||
ton | Amplifier turn-on time | RL = 5 kΩ , Vout = (VCC-) to (VCC-) + 0.2 V | 300 | ns | ||
toff | Amplifier turn-off time | RL = 5 kΩ, Vout = (VCC+) - 0.5 V to (VCC+) - 0.7 V | 30 | |||
VIH | SHDN logic high | 4.5 | V | |||
VIL | SHDN logic low | 0.5 | ||||
IIH | SHDN current high | SHDN = (VCC+) | 10 | pA | ||
IIL | SHDN current low | SHDN = (VCC-) | 10 | |||
IOLeak | Output leakage in shutdown mode | SHDN = (VCC-) | 50 | |||
Tmin < Top < Tmax | 1 | nA |
DocID17117 Rev 2 9/24
Figure 4: Output current vs. output voltage at VCC = 5 V
Figure 2: Supply current vs. supply voltage at Vicm = VCC/2
Figure 3: Output current vs. output voltage at VCC = 1.5 V
Figure 5: Peaking at closed loop gain = -10 at VCC = 1.5 V and VCC = 5 V
Figure 7: Peaking at closed loop gain = -3, VCC = 5 V
Figure 6: Peaking at closed loop gain = -3, VCC = 1.5 V
10/24 DocID17117 Rev 2
1,,.- | |||||||||||||||
I T =125°C | L---- | r::: | r:: | ||||||||||||
K. | |||||||||||||||
I T= 25°C h | c--- | v | v | L---- L---- | -I--- I--- | L---- !--- | I--- | !.---- | |||||||
/ | V | i-- | |||||||||||||
v | |||||||||||||||
r I | Iv | /i | R,,,, =10kO, C,,,, =100pF, A0, =-1 V, : from 0.5V to V • - 0.5V 0 00 SR calculated from 10% to 90% V,,m= V0 J 2 | 0 | |||||||||||
V | /I | ||||||||||||||
Figure 11: Slew rate timing in open loop
J-- | |||||||||||||||
...- | |||||||||||||||
Open loop configuration, T = 25 C R,oa, =10kO, C,oa, =100pF, v i n=1v PP 'v icm=Vc/ 2 SR calculated from 0.5V to V00 -0.5V | - - - | ||||||||||||||
r---- | |||||||||||||||
Figure 12: Slew rate timing in closed loop to,..,...... ' ,... -1 " -2 -3 -2 10 12 Hne (µs) | N I <> .s - "C ' Q) "C Q) C c O" Q) ::, a. E | 1 0 0 10 | Figure 13: Noise at VCC = 5 V | |||||||||
I I | ||||||||||||
V,cm=4.5V | ||||||||||||
IY'-1-... r;,-.. | ||||||||||||
2 | , I | , | I'::-- | , | ||||||||
a. E <( | I-- | 1-'- | V,cm 2.5V I | "' | " | |||||||
I | ||||||||||||
V | ||||||||||||
C | ||||||||||||
100 | 1000 | 10000 | ||||||||||
Frequenc y (Hz) |
"15'
">' 5
-6 -4 -2 0
Time(µs)
-3
·-
-2
--
"M..-
, /
..
I
'\-,
'
'
<( -1
"O
::,
C.
E
2
Q)
Supply volt age (V)
-
5.0 5.5
4.0 4.5
3.5
2.5 3.0
2.0
---
-0.4 -
-0.6
1.5
-0.2
0.0
--
-.
0.2
:i
U)
2-
J!l
!"
.91
(/)
Figure 10: Slew rate vs. supply voltage in open loop
0.6
0.4
J..--
'-
0
T=2 5°C ,V00 =5V, V, = 1Vee
0
Open loop,R, , =10k0
00
C, , =100pF, Vm,, =V J 2
00
_j"
./1/
/
-,;;;:
/
/
/
/
-0.6
1.5 2.0 2.5 3.0 3.5 4.0 4 .5 5.0 5.5
Supply voltage (V)
I'..
I"-
1--
v-
T=25°C
-0.5
1:,-.
,-...._ r--,,.,
I/1--
t---
t---.
i---
T=125°C
.....
' A ;I":-
...,
I T=-40°C V
V'°: from V, - 0.5V to 0.5V
00
SR calculated from 10% to 90%
Vicm=Vc/ 2
]':::r--..
I'\'
, 1
":i '
2, -0.3
J!l
!"
1'....
-0.2
Figure 9: Negative slew rate vs. supply voltage in closed loop
-0.1
r-.. R,0 , , =1 0kO, C,0,, =100pF, A0 ,=-10
'\
1.5 2.0 2.5 3.0 3.5 4 .0 4.5 5.0 5.5
Supply volt age (V)
0.2
.91
(/)
"I T=-4o or I
0.3
2-
J!l
!"
0.4
U)
:i
Figure 8: Positive slew rate vs. supply voltage in closed loop
0.5
R, 00, =10k0, C" " =100pF, V=, =V0 J 2, A0 , =-10 T=25°C, V =5V 00 | & | |||||||||||||
!\.. | ||||||||||||||
I.,<" | ||||||||||||||
},. | ,,.v | |||||||||||||
I',. | /" | ,v, | ||||||||||||
V | ||||||||||||||
1 | ||||||||||||||
,,.,. ' | ||||||||||||||
l/ | 1'. | |||||||||||||
V | ||||||||||||||
,_ | ,v | I"'.. | ||||||||||||
.,_ l.t | ||||||||||||||
DocID17117 Rev 2 11/24
Figure 14: Distortion + noise vs. output voltage at VCC = 1.8 V
10
Figure 15: Distortion + noise vs. output voltage at VCC = 5 V
Figure 16: Distortion + noise vs. frequency at VCC = 1.8 V
Figure 17: Distortion + noise vs. frequency at VCC = 5 V
z
+
0
I
f-
Vee =1.8 V, T=25 °C Vi cm=Vcc12 V; ,- 40mVpp, C, -, 00 | 100pF | ||||||||||||
1 1 1 | I l l | I/ | |||||||||||
1 1 1 | I l l | ||||||||||||
I/ | |||||||||||||
J R ,.,, | =10k | O J | / | ||||||||||
I / | ii | ||||||||||||
" | V | ||||||||||||
R,, , =100kO 0 | |||||||||||||
I ll |
z
+
0
I
f-
100
1000
Frequenc y (Hz)
10000
100000
100
1000
Frequency (Hz)
10000
100000
0.1
0.1
0.1
Ouput voltage (V,mJ
0.01
0.01
'
-
I/
r---<r---
0.1
1r---
z
+
0
I
f-
'-"1'-
e-
''-
f- '- -
' '
l=t=
f- -
, _
0.1
Output vo lt age (Vrms)
0.01
0.01
0.1
z
+
0
I
f-
1 1
11
: Rl oad =100kO :
..,
/
-
I Rl oad =10kQ
j', J '-
Vee =5 V, T=25°C
V;om= Vee / 2 , Ae , =-10
F; , = 1kHz, cl oad = 1 00pF
I
-
V ee 1.8 V, T 25°C V;om- Vee / 2 , Ae , - -10 F; =1kHz, C , oa, =100pF 0 | ||||||||||||||||
"' | ||||||||||||||||
""'- | ||||||||||||||||
, - | R load 10kO | |||||||||||||||
/ | ||||||||||||||||
I'-, | ,- | |||||||||||||||
,- - | .., | |||||||||||||||
I R , oa, - 100 kO | ||||||||||||||||
Vee =5V , T=25 ° C V ;m, =V eJ 2 V; ,- 40mV ,,, C , - , 100pF 00 | V | ||||||||||||
II II | |||||||||||||
II II | |||||||||||||
I/ | |||||||||||||
R , , =10k O J ) 00 | |||||||||||||
V | "" | ||||||||||||
Rl oad = 100kO | |||||||||||||
l/'- | I | ||||||||||||
12/24 DocID17117 Rev 2
The TSV6290 and TSV6291 can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV629x characteristics at
1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.
Figure 18: Input offset voltage vs. input common mode at VCC = 1.5 V
The TSV6290 and TSV6291 are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common-mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at (VCC+) - 0.7 V. In the transition region, the performance of CMR, SVR, Vio and THD is slightly degraded (as shown in Figure 18 and Figure 19 for Vio vs. Vicm).
Figure 19: Input offset voltage vs. input common mode at VCC = 5 V
The devices are guaranteed without phase reversal.
The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2.
DocID17117 Rev 2 13/24
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier’s output is in a high impedance state. The SHDN pin must never be left floating, but tied to (VCC+) or (VCC-).
The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 20
Figure 20: Test configuration for turn-on time (Vout pulled down)
and Figure 21 show the test configurations).
Figure 21: Test configuration for turn-off time (Vout pulled down)
µ
25°
Figure 23: Turn-off time, VCC= 5 V, Vout pulled down, T = 25 °C
Figure 22: Turn-on time, VCC = 5 V, Vout pulled down, T = 25 °C
These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (29 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and Avd, benefit from this narrow dispersion.
14/24 DocID17117 Rev 2
These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may significantly increase.
The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions.
IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) οr ΙgainI ≥ 10 (CL = 100 pF, RL = 100 kΩ)
Gain ≥ 4 in a non-inverting configuration (CL = 20 pF, RL = 100 kΩ) οr gain ≥ 11 (CL = 100 pF, RL= 100 kΩ)
As these operational amplifiers are not unity gain stable, for a low closed-loop gain it is recommended to use the TSV62x (29 µA, 420 kHz) or TSV63x (60 µA, 880 kHz) which are unity gain stable.
Table 8: Related products
Part # | Icc (µA) at 5 V | GBP (MHz) | SR (V/µs) | Minimum gain for stability (CLoad = 100 pF) |
TSV620-1 | 29 | 0.42 | 0.14 | 1 |
TSV6290-1 | 29 | 1.3 | 0.5 | 11 |
TSV630-1 | 60 | 0.88 | 0.34 | 1 |
TSV6390-1 | 60 | 2.4 | 1.1 | 11 |
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.
An accurate macromodel of the TSV6290 and TSV6291 is available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.
DocID17117 Rev 2 15/24
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
16/24 DocID17117 Rev 2
Figure 24: SOT23-5 package outline
Table 9: SOT23-5 mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.90 | 1.20 | 1.45 | 0.035 | 0.047 | 0.057 |
A1 | 0.15 | 0.006 | ||||
A2 | 0.90 | 1.05 | 1.30 | 0.035 | 0.041 | 0.051 |
B | 0.35 | 0.40 | 0.50 | 0.014 | 0.016 | 0.020 |
C | 0.09 | 0.15 | 0.20 | 0.004 | 0.006 | 0.008 |
D | 2.80 | 2.90 | 3.00 | 0.110 | 0.114 | 0.118 |
D1 | 1.90 | 0.075 | ||||
e | 0.95 | 0.037 | ||||
E | 2.60 | 2.80 | 3.00 | 0.102 | 0.110 | 0.118 |
F | 1.50 | 1.60 | 1.75 | 0.059 | 0.063 | 0.069 |
L | 0.10 | 0.35 | 0.60 | 0.004 | 0.014 | 0.024 |
K | 0 degrees | 10 degrees | 0 degrees | 10 degrees |
DocID17117 Rev 2 17/24
Figure 25: SOT23-6 package outline
Table 10: SOT23-6 mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.90 | 1.45 | 0.035 | 0.057 | ||
A1 | 0.10 | 0.004 | ||||
A2 | 0.90 | 1.30 | 0.035 | 0.051 | ||
b | 0.35 | 0.50 | 0.013 | 0.019 | ||
c | 0.09 | 0.20 | 0.003 | 0.008 | ||
D | 2.80 | 3.05 | 0.110 | 0.120 | ||
E | 1.50 | 1.75 | 0.060 | 0.069 | ||
e | 0.95 | 0.037 | ||||
H | 2.60 | 3.00 | 0.102 | 0.118 | ||
L | 0.10 | 0.60 | 0.004 | 0.024 | ||
θ | 0 ° | 10 ° | 0 ° | 10 ° |
18/24 DocID17117 Rev 2
Figure 26: SC70-5 (or SOT323-5) package outline
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 11: SC70-5 (or SOT323-5) mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.80 | 1.10 | 0.032 | 0.043 | ||
A1 | 0.10 | 0.004 | ||||
A2 | 0.80 | 0.90 | 1.00 | 0.032 | 0.035 | 0.039 |
b | 0.15 | 0.30 | 0.006 | 0.012 | ||
c | 0.10 | 0.22 | 0.004 | 0.009 | ||
D | 1.80 | 2.00 | 2.20 | 0.071 | 0.079 | 0.087 |
E | 1.80 | 2.10 | 2.40 | 0.071 | 0.083 | 0.094 |
E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 |
e | 0.65 | 0.025 | ||||
e1 | 1.30 | 0.051 | ||||
L | 0.26 | 0.36 | 0.46 | 0.010 | 0.014 | 0.018 |
< | 0° | 8° | 0° | 8° |
DocID17117 Rev 2 19/24
Figure 27: SC70-6 (or SOT323-6) package outline
Table 12: SC70-6 (or SOT323-6) mechanical data
Ref | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.80 | 1.10 | 0.031 | 0.043 | ||
A1 | 0.10 | 0.004 | ||||
A2 | 0.80 | 1.00 | 0.031 | 0.039 | ||
b | 0.15 | 0.30 | 0.006 | 0.012 | ||
c | 0.10 | 0.18 | 0.004 | 0.007 | ||
D | 1.80 | 2.20 | 0.071 | 0.086 | ||
E | 1.15 | 1.35 | 0.045 | 0.053 | ||
e | 0.65 | 0.026 | ||||
HE | 1.80 | 2.40 | 0.071 | 0.094 | ||
L | 0.10 | 0.40 | 0.004 | 0.016 | ||
Q1 | 0.10 | 0.40 | 0.004 | 0.016 |
20/24 DocID17117 Rev 2
Figure 28: SC70-6 (or SOT323-6) recommended footprint
DocID17117 Rev 2 21/24
Table 13: Order codes
Part number | Temperature range | Package | Packing | Marking |
TSV6290ILT | -40 °C to 125 °C | SΟΤ23-6 | Tape and reel | K106 |
TSV6290ICT | SC70-6 | K16 | ||
TSV6290AILT | SΟΤ23-6 | K139 | ||
TSV6290AICT | SC70-6 | K39 | ||
TSV6291ILT | SΟΤ23-5 | K107 | ||
TSV6291ICT | SC70-5 | K14 | ||
TSV6291AILT | SΟΤ23-5 | K113 | ||
TSV6291AICT | SC70-5 | K15 |
22/24 DocID17117 Rev 2
Table 14: Document revision history
Date | Revision | Changes |
04-Mar-2010 | 1 | Initial release. |
10-Aug-2016 | 2 | Updated datasheet layout Table 3, Table 5, and Table 6: VOH “min.” values changed to “max.” values. Figure 8, Figure 9, Figure 10: updated Y-axes Table 11: updated A and A2 min. values in inches |
DocID17117 Rev 2 23/24
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
24/24 DocID17117 Rev 2
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
TSV6291AICT TSV6291AILT TSV6291ICT TSV6291ILT TSV6290ILT TSV6290ICT TSV6290AILT TSV6290AICT