TSV6290, TSV6290A, TSV6291,

TSV6291A

Micropower with high merit factor CMOS operational amplifiers


Datasheet - production data



Features

Low supply voltage: 1.5 V – 5.5 V Rail-to-rail input and output

Low input offset voltage: 800 µV max (A version)

Low power consumption: 29 µA typical Gain bandwidth product: 1.3 MHz typical Stable when used in gain configuration Micropackages: SOT23-5/6, SC70-5/6 Low input bias current: 1 pA typical

Extended temperature range: -40 to 125 °C 4 kV human body model


Applications

Battery-powered applications Portable devices

Signal conditioning Active filtering

Medical instrumentation

Description

The TSV6290 and the TSV6291 are single operational amplifiers with a high bandwidth which consume only 29 µA. They must be used in a gain configuration (G < -3, G > 4).

With a very low input bias current and low offset voltage (800 µV maximum for the A version), the TSV629x family of devices is ideal for applications requiring precision. The devices can operate at a power supply ranging from 1.5 to

5.5 V, and therefore suit battery-powered devices, extending battery life.

The TSV6290 comes with a shutdown function.

The TSV6290 and TSV6291 present a high tolerance to ESD, sustaining 4 kV for the human body model.

The TSV6290 and TSV6291 are offered in SOT23-5/6 and SC70-5/6 micropackages, with extended temperature ranges from -40 °C to 125 °C.

All these features make the TSV629x ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.



August 2016 DocID17117 Rev 2 1/24 This is information on a product in full production. www.st.com


Contents

  1. Package pin connections 3

  2. Absolute maximum ratings and operating conditions 4

  3. Electrical characteristics 5

  4. Electrical characteristic curves 10

  5. Application information 13

    1. Operating voltages 13

    2. Rail-to-rail input 13

    3. Rail-to-rail output 13

    4. Shutdown function (TSV6290) 14

    5. Optimization of DC and AC parameters 14

    6. Driving resistive and capacitive loads 15

    7. PCB layouts 15

    8. Macromodel 15

  6. Package information 16

    1. SOT23-5 package information 17

    2. SOT23-6 package information 18

    3. SC70-5 (or SOT323-5) package information 19

    4. SC70-6 (or SOT323-6) package information 20

  7. Ordering information 22

  8. Revision history 23

  1. Package pin connections

    Figure 1: Package pin connections (top view)


    DocID17117 Rev 2 3/24

    conditions


  2. Absolute maximum ratings and operating conditions

    Table 1: Absolute maximum ratings (AMR)

    Symbol

    Parameter

    Value

    Unit

    VCC

    Supply voltage (1)

    6


    V

    Vid

    Differential input voltage (2)

    ±VCC

    Vin

    Input voltage (3)

    (VCC-) - 0.2 to (VCC+) + 0.2

    Iin

    Input current (4)

    10

    mA

    SHDN

    Shutdown voltage (3)

    (VCC-) - 0.2 to (VCC+) + 0.2

    V

    Tstg

    Storage temperature

    -65 to 150


    °C

    Tj

    Maximum junction temperature

    150


    Rthja


    Thermal resistance junction-to- ambient (5)(6)

    SOT23-5

    250


    °C/W

    SOT23-6

    240

    SC70-5

    205

    SC70-6

    232


    ESD

    HBM: human body model (7)

    4

    kV

    MM: machine model (8)

    300

    V

    CDM: charged device model (9)

    1.5

    kV


    Latch-up immunity

    200

    mA


    Notes:

    (1)All voltage values, except differential voltage, are with respect to network ground terminal. (2)Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. (3)Vcc - Vin must not exceed 6 V, Vin must not exceed 6 V.

    (4)Input current must be limited by a resistor in series with the inputs.

    (5)Rth are typical values.

    (6)Short-circuits can cause excessive heating and destructive dissipation.

    (7)Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

    (8)Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

    (9)Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.


    Table 2: Operating conditions

    Symbol

    Parameter

    Value

    Unit

    VCC

    Supply voltage

    1.5 to 5.5


    V

    Vicm

    Common mode input voltage range

    (VCC-) - 0.1 to (VCC+) + 0.1

    Toper

    Operating free air temperature range

    -40 to 125

    °C


    4/24 DocID17117 Rev 2


  3. Electrical characteristics

    Table 3: Electrical characteristics at (VCC+) = 1.8 V with (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, and RL connected to VCC/2 (unless otherwise specified)

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    Vio


    Offset voltage

    TSV6290, TSV6291



    4


    mV

    TSV6290A, TSV6291A



    0.8

    Tmin < Top < Tmax, TSV6290, TSV6291



    6

    Tmin < Top < Tmax, TSV6290A, TSV6291A



    2

    DVio

    Input offset voltage drift



    2


    μV/°C


    Iio

    Input offset current, Vout = VCC/2 (1)



    1

    10


    pA

    Tmin < Top < Tmax


    1

    100


    Iib

    Input bias current, Vout = VCC/2 (1)



    1

    10

    Tmin < Top < Tmax


    1

    100


    CMR

    Common mode rejection ratio, 20 log (ΔVic/ΔVio)

    0 V to 1.8 V, Vout = 0.9 V

    53

    74



    dB

    Tmin < Top < Tmax

    51




    Avd


    Large signal voltage gain

    RL = 10 kΩ, Vout = 0.5 V to 1.3 V

    78

    95


    Tmin < Top < Tmax

    73




    VOH

    High-level output voltage, VOH = VCC - Vout

    RL = 10 kΩ


    5

    35


    mV

    Tmin < Top < Tmax



    50


    VOL


    Low-level output voltage

    RL = 10 kΩ


    4

    35

    Tmin < Top < Tmax



    50


    Iout


    Isink

    Vοut = 1.8 V

    6

    12



    mA

    Tmin < Top < Tmax

    4




    Isource

    Vοut = 0 V

    6

    10


    Tmin < Top < Tmax

    4




    ICC


    Supply current (per operator)

    No load, Vout = VCC/2


    25

    31


    µA

    Tmin < Top < Tmax



    33

    AC performance

    GBP

    Gain bandwidth product

    RL = 10 kΩ, CL = 100 pF


    1.1


    MHz


    Gain


    Minimum gain for stability

    Phase margin = 60 °, Rf = 10 kΩ, RL = 10 kΩ, CL = 20 pF


    4



    V/V


    -3


    SR

    Slew rate

    RL = 10 kΩ, CL = 100 pF,

    Vout = 0.5 V to 1.3 V


    0.33


    V/μs


    Notes:

    (1)Guaranteed by design.


    DocID17117 Rev 2 5/24


    Table 4: Shutdown characteristics VCC = 1.8 V (TSV6290)

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    ICC


    Supply current in shutdown mode (all operators)

    SHDN = (VCC-)


    2.5

    50


    Tmin < Top < 85 °C



    200

    Tmin < Top < 125 °C



    1.5

    µA

    ton

    Amplifier turn-on time

    RL = 5 kΩ, Vout = (VCC-) to (VCC-) + 0.2 V


    300



    ns

    toff

    Amplifier turn-off time

    RL = 5 kΩ, Vout = (VCC+) - 0.5 to (VCC+) - 0.7 V


    30


    VIH

    SHDN logic high


    1.3




    V

    VIL

    SHDN logic low




    0.5

    IIH

    SHDN current high

    SHDN = (VCC+)


    10



    pA

    IIL

    SHDN current low

    SHDN = (VCC-)


    10



    IOLeak

    Output leakage in shutdown mode

    SHDN = (VCC-)


    50


    Tmin < Top < Tmax


    1


    nA


    6/24 DocID17117 Rev 2


    Table 5: (VCC+) = 3.3 V, (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, RL connected to VCC/2 (unless otherwise specified)

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    Vio


    Offset voltage

    TSV6290, TSV6291



    4


    mV

    TSV6290A, TSV6291A



    0.8

    Tmin < Top < Tmax, TSV6290, TSV6291



    6

    Tmin < Top < Tmax, TSV6290A, TSV6291A



    2

    DVio

    Input offset voltage drift



    2


    μV/°C


    Iio


    Input offset current (1)



    1

    10


    pA

    Tmin < Top < Tmax


    1

    100


    Iib


    Input bias current (1)



    1

    10

    Tmin < Top < Tmax


    1

    100


    CMR

    Common mode rejection ratio, 20 log (ΔVic/ΔVio)

    0 V to 3.3 V, Vout = 1.65 V

    57

    79



    dB

    Tmin < Top < Tmax

    53




    Avd


    Large signal voltage gain

    RL= 10 kΩ, Vout = 0.5 V to 2.8 V

    81

    98


    Tmin < Top < Tmax

    76




    VOH

    High-level output voltage, VOH = VCC - Vout

    RL = 10 kΩ


    5

    35


    mV

    Tmin < Top < Tmax



    50


    VOL


    Low-level output voltage

    RL = 10 kΩ


    4

    35

    Tmin < Top < Tmax



    50


    Iout


    Isink

    Vout = 5 V

    23

    45



    mA

    Tmin < Top < Tmax

    20




    Isource

    Vout = 0 V

    23

    38


    Tmin < Top < Tmax

    20




    ICC


    Supply current (per operator)

    No load, Vout = 2.5 V


    26

    33


    µA

    Tmin < Top < Tmax



    35

    AC performance

    GBP

    Gain bandwidth product

    RL = 10 kΩ, CL = 100 pF


    1.2


    MHz


    Gain


    Minimum gain for stability

    Phase margin = 60 °, Rf = 10 kΩ, RL = 10 kΩ, CL = 20 pF


    4



    V/V


    -3


    SR

    Slew rate

    RL = 10 kΩ, CL = 100 pF,

    Vout = 0.5 V to 2.8 V


    0.4


    V/μs


    Notes:

    (1)Guaranteed by design.



    DocID17117 Rev 2 7/24


    Table 6: (VCC+) = 5 V, (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, RL connected to VCC/2 (unless otherwise specified)

    Symbol

    Parameter


    Min.

    Typ.

    Max.

    Unit

    DC performance


    Vio


    Offset voltage

    TSV6290, TSV6291



    4


    mV

    TSV6290A, TSV6291A



    0.8

    Tmin < Top < Tmax, TSV6290, TSV6291



    6

    Tmin < Top < Tmax, TSV6290A, TSV6291A



    2

    DVio

    Input offset voltage drift



    2


    μV/°C


    Iio


    Input offset current (1)



    1

    10


    pA

    Tmin < Top < Tmax


    1

    100


    Iib


    Input bias current (1)



    1

    10

    Tmin < Top < Tmax


    1

    100


    CMR

    Common mode rejection ratio, 20 log (ΔVic/ΔVio)

    0 V to 5 V, Vout = 2.5 V

    60

    80



    dB

    Tmin < Top < Tmax

    55




    SVR

    Supply voltage rejection ratio, 20 log (ΔVCC/ΔVio)

    VCC = 1.8 to 5 V

    75

    102


    Tmin < Top < Tmax

    73




    Avd


    Large signal voltage gain

    RL = 10 kΩ, Vout = 0.5 V to 4.5 V

    85

    98


    Tmin < Top < Tmax

    80




    VOH

    High-level output voltage, VOH = VCC - Vout

    RL = 10 kΩ


    7

    35


    mV

    Tmin < Top < Tmax



    50


    VOL


    Low-level output voltage

    RL = 10 kΩ


    6

    35

    Tmin < Top < Tmax



    50


    Iout


    Isink

    Vout = 5 V

    40

    69



    mA

    Tmin < Top < Tmax

    35




    Isource

    Vout = 0 V

    40

    74


    Tmin < Top < Tmax

    35




    ICC

    Supply current (per operator)

    No load, Vout = 2.5 V


    30

    36


    µA

    Tmin < Top < Tmax



    38

    AC performance

    GBP

    Gain bandwidth product

    RL = 10 kΩ, CL = 100 pF


    1.3


    MHz


    Gain


    Minimum gain for stability

    Phase margin = 60 °, Rf = 10 kΩ, RL = 10 kΩ, CL = 20 pF


    4



    V/V


    -3


    SR

    Slew rate

    RL = 10 kΩ, CL = 100 pF,

    Vout = 0.5 V to 4.5 V


    0.5


    V/μs

    en

    Equivalent input noise voltage

    f = 1 kHz


    70


    nV/√Hz

    THD

    Total harmonic distortion

    Av = -10, fin = 1 kHz, RL= 100 kΩ,

    Vicm = Vcc/2, Vin = 40 mVpp


    0.15


    %


    Notes:

    (1)Guaranteed by design.


    8/24 DocID17117 Rev 2


    Table 7: Shutdown characteristics VCC = 5 V (TSV6290)

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    ICC


    Supply current in shutdown mode (all operators)

    SHDN = VIL


    5

    50


    Tmin < Top < 85 °C



    200

    Tmin < Top < 125 °C



    1.5

    µA

    ton

    Amplifier turn-on time

    RL = 5 kΩ , Vout = (VCC-) to (VCC-) + 0.2 V


    300



    ns

    toff

    Amplifier turn-off time

    RL = 5 kΩ, Vout = (VCC+) - 0.5 V to (VCC+) - 0.7 V


    30


    VIH

    SHDN logic high


    4.5




    V

    VIL

    SHDN logic low




    0.5

    IIH

    SHDN current high

    SHDN = (VCC+)


    10



    pA

    IIL

    SHDN current low

    SHDN = (VCC-)


    10



    IOLeak

    Output leakage in shutdown mode

    SHDN = (VCC-)


    50


    Tmin < Top < Tmax


    1


    nA


    DocID17117 Rev 2 9/24


    Figure 4: Output current vs. output voltage at VCC = 5 V

    Figure 2: Supply current vs. supply voltage at Vicm = VCC/2

  4. Electrical characteristic curves


    Figure 3: Output current vs. output voltage at VCC = 1.5 V


    Figure 5: Peaking at closed loop gain = -10 at VCC = 1.5 V and VCC = 5 V


    Figure 7: Peaking at closed loop gain = -3, VCC = 5 V



    Figure 6: Peaking at closed loop gain = -3, VCC = 1.5 V

    10/24 DocID17117 Rev 2

















    1,,.-









    I T =125°C


    L----

    r:::

    r::





    K.



    I T= 25°C h


    c---

    v

    v

    L----

    L----

    -I---

    I---

    L----

    !---


    I---

    !.----








    /

    V



    i--













    v












    r

    I

    Iv

    /i


    R,,,, =10kO, C,,,, =100pF, A0, =-1

    V, : from 0.5V to V - 0.5V

    0 00

    SR calculated from 10% to 90%

    V,,m= V0 J 2

    0

    V

    /I










    Figure 11: Slew rate timing in open loop
































    J--





    ...-































    Open loop configuration, T = 25 C R,oa, =10kO, C,oa, =100pF,

    v i n=1v PP 'v icm=Vc/ 2

    SR calculated from 0.5V to V00 -0.5V


    -

    -

    -



















































    r----

























    Figure 12: Slew rate timing in closed loop


    to,..,......


    ' ,...


    -1 "

    -2


    -3

    -2 10 12

    Hne (µs)


    N

    I

    <>

    .s

    -

    "C '

    Q)

    "C

    Q)

    C

    c

    O"

    Q)


    ::,

    a.

    E


    1 0 0


    10

    Figure 13: Noise at VCC = 5 V




    I I




    V,cm=4.5V




    IY'-1-... r;,-..



    2


    , I


    ,

    I'::--



    ,







    a.

    E

    <(


    I--

    1-'-

    V,cm 2.5V I




    "'

    "





    I






    V




    C







    100



    1000





    10000


    Frequenc y (Hz)




    -6 -4 -2 0

    Time(µs)

    -3

    ·-

    -2

    --

    "M..-

    , /

    ..

    I

    '\-,

    '

    '

    <( -1

    "O

    ::,

    C.

    E

    2

    Q)

    Supply volt age (V)

    -

    5.0 5.5

    4.0 4.5

    3.5

    2.5 3.0

    2.0

    ---

    -0.4 -

    -0.6

    1.5

    -0.2

    0.0

    --

    -.

    0.2

    :i

    U)

    2-

    J!l

    !"

    .91

    (/)

    Figure 10: Slew rate vs. supply voltage in open loop

    0.6


    0.4

    J..--

    '-

    0

    T=2 5°C ,V00 =5V, V, = 1Vee

    0

    Open loop,R, , =10k0

    00

    C, , =100pF, Vm,, =V J 2

    00

    _j"

    ./1/

    /

    -,;;;:

    /

    /

    /

    /

    -0.6

    1.5 2.0 2.5 3.0 3.5 4.0 4 .5 5.0 5.5

    Supply voltage (V)

    I'..

    I"-

    1--

    v-

    T=25°C

    -0.5

    1:,-.

    ,-...._ r--,,.,

    I/1--

    t---

    t---.

    i---

    T=125°C

    .....

    ' A ;I":-

    ...,

    I T=-40°C V

    V: from V, - 0.5V to 0.5V

    00

    SR calculated from 10% to 90%

    Vicm=Vc/ 2

    ]':::r--..

    I'\'

    , 1

    ":i '

    2, -0.3

    J!l

    !"

    1'....

    -0.2

    Figure 9: Negative slew rate vs. supply voltage in closed loop

    -0.1

    r-.. R,0 , , =1 0kO, C,0,, =100pF, A0 ,=-10

    '\

    1.5 2.0 2.5 3.0 3.5 4 .0 4.5 5.0 5.5

    Supply volt age (V)

    0.2

    .91

    (/)

    "I T=-4o or I

    0.3

    2-

    J!l

    !"

    0.4

    U)

    :i

    Figure 8: Positive slew rate vs. supply voltage in closed loop

    0.5





    R, 00, =10k0, C" " =100pF, V=, =V0 J 2, A0 , =-10 T=25°C, V =5V

    00




    &



    !\..







    I.,<"








    },.





    ,,.v











    I',.



    /"




    ,v,









    V












    1














    ,,.,. '













    l/



    1'.











    V











    ,_


    ,v







    I"'..






    .,_ l.t




























    DocID17117 Rev 2 11/24


    Figure 14: Distortion + noise vs. output voltage at VCC = 1.8 V

    10

    Figure 15: Distortion + noise vs. output voltage at VCC = 5 V


    Figure 16: Distortion + noise vs. frequency at VCC = 1.8 V

    Figure 17: Distortion + noise vs. frequency at VCC = 5 V


    z

    +

    0

    I

    f-








    Vee =1.8 V, T=25 °C

    Vi cm=Vcc12

    V; ,- 40mVpp, C, -,

    00


    100pF









    1 1 1

    I l l



    I/








    1 1 1

    I l l











    I/









    J R ,.,,


    =10k

    O J


    /














    I /






    ii


    "













    V











    R,, , =100kO

    0












    I ll


    z

    +

    0

    I

    f-


    100

    1000

    Frequenc y (Hz)

    10000

    100000

    100

    1000

    Frequency (Hz)

    10000

    100000


    0.1

    0.1

    0.1

    Ouput voltage (V,mJ

    0.01

    0.01

    '

    -

    I/

    r---<r---

    0.1

    1r---

    z

    +

    0

    I

    f-

    '-"1'-

    e-

    ''-

    f- '- -

    ' '

    l=t=

    f- -

    , _

    0.1

    Output vo lt age (Vrms)

    0.01

    0.01

    0.1

    z

    +

    0

    I

    f-


    1 1


    11

    : Rl oad =100kO :

    ..,

    /


    -

    I Rl oad =10kQ

    j', J '-

    Vee =5 V, T=25°C

    V;om= Vee / 2 , Ae , =-10

    F; , = 1kHz, cl oad = 1 00pF

    I

    -





    V ee 1.8 V, T 25°C

    V;om- Vee / 2 , Ae , - -10

    F; =1kHz, C , oa, =100pF

    0
























    "'








    ""'-













    , -







    R load 10kO















    /



































    I'-,



    ,-














    ,- -

    ..,





    I R , oa, - 100 kO




























    Vee =5V , T=25 ° C V ;m, =V eJ 2

    V; ,- 40mV ,,, C , - , 100pF

    00



    V








    II II










    II II












    I/








    R , , =10k O J )

    00


























    V

    ""






    Rl oad = 100kO

    l/'-












    I













    12/24 DocID17117 Rev 2


  5. Application information

    1. Operating voltages

      The TSV6290 and TSV6291 can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV629x characteristics at

      1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.


    2. Rail-to-rail input

      Figure 18: Input offset voltage vs. input common mode at VCC = 1.5 V

      The TSV6290 and TSV6291 are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common-mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at (VCC+) - 0.7 V. In the transition region, the performance of CMR, SVR, Vio and THD is slightly degraded (as shown in Figure 18 and Figure 19 for Vio vs. Vicm).


      Figure 19: Input offset voltage vs. input common mode at VCC = 5 V


      The devices are guaranteed without phase reversal.


    3. Rail-to-rail output

      The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2.



      DocID17117 Rev 2 13/24


    4. Shutdown function (TSV6290)

      The operational amplifier is enabled when the SHDN pin is pulled high. To disable the amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier’s output is in a high impedance state. The SHDN pin must never be left floating, but tied to (VCC+) or (VCC-).

      The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 20

      Figure 20: Test configuration for turn-on time (Vout pulled down)

      and Figure 21 show the test configurations).


      Figure 21: Test configuration for turn-off time (Vout pulled down)


      µ

      25°

      Figure 23: Turn-off time, VCC= 5 V, Vout pulled down, T = 25 °C

      Figure 22: Turn-on time, VCC = 5 V, Vout pulled down, T = 25 °C

    5. Optimization of DC and AC parameters

      These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (29 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and Avd, benefit from this narrow dispersion.


      14/24 DocID17117 Rev 2


    6. Driving resistive and capacitive loads

      These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may significantly increase.

      The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions.

      IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) οr ΙgainI ≥ 10 (CL = 100 pF, RL = 100 kΩ)

      Gain ≥ 4 in a non-inverting configuration (CL = 20 pF, RL = 100 kΩ) οr gain ≥ 11 (CL = 100 pF, RL= 100 kΩ)

      As these operational amplifiers are not unity gain stable, for a low closed-loop gain it is recommended to use the TSV62x (29 µA, 420 kHz) or TSV63x (60 µA, 880 kHz) which are unity gain stable.

      Table 8: Related products

      Part #

      Icc (µA) at 5 V

      GBP (MHz)

      SR (V/µs)

      Minimum gain for stability (CLoad = 100 pF)

      TSV620-1

      29

      0.42

      0.14

      1

      TSV6290-1

      29

      1.3

      0.5

      11

      TSV630-1

      60

      0.88

      0.34

      1

      TSV6390-1

      60

      2.4

      1.1

      11


    7. PCB layouts

      For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.


    8. Macromodel

      An accurate macromodel of the TSV6290 and TSV6291 is available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.



      DocID17117 Rev 2 15/24


  6. Package information

    In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

    ECOPACK® is an ST trademark.


    16/24 DocID17117 Rev 2


    1. SOT23-5 package information

      Figure 24: SOT23-5 package outline


      Table 9: SOT23-5 mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.90

      1.20

      1.45

      0.035

      0.047

      0.057

      A1



      0.15



      0.006

      A2

      0.90

      1.05

      1.30

      0.035

      0.041

      0.051

      B

      0.35

      0.40

      0.50

      0.014

      0.016

      0.020

      C

      0.09

      0.15

      0.20

      0.004

      0.006

      0.008

      D

      2.80

      2.90

      3.00

      0.110

      0.114

      0.118

      D1


      1.90



      0.075


      e


      0.95



      0.037


      E

      2.60

      2.80

      3.00

      0.102

      0.110

      0.118

      F

      1.50

      1.60

      1.75

      0.059

      0.063

      0.069

      L

      0.10

      0.35

      0.60

      0.004

      0.014

      0.024

      K

      0 degrees


      10 degrees

      0 degrees


      10 degrees


      DocID17117 Rev 2 17/24


    2. SOT23-6 package information

      Figure 25: SOT23-6 package outline


      Table 10: SOT23-6 mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.90


      1.45

      0.035


      0.057

      A1



      0.10



      0.004

      A2

      0.90


      1.30

      0.035


      0.051

      b

      0.35


      0.50

      0.013


      0.019

      c

      0.09


      0.20

      0.003


      0.008

      D

      2.80


      3.05

      0.110


      0.120

      E

      1.50


      1.75

      0.060


      0.069

      e


      0.95



      0.037


      H

      2.60


      3.00

      0.102


      0.118

      L

      0.10


      0.60

      0.004


      0.024

      θ

      0 °


      10 °

      0 °


      10 °


      18/24 DocID17117 Rev 2


    3. SC70-5 (or SOT323-5) package information

      Figure 26: SC70-5 (or SOT323-5) package outline


      SIDE VIEW

      DIMENSIONS IN MM


      GAUGE PLANE


      COPLANAR LEADS


      SEATING PLANE


      TOP VIEW


      Table 11: SC70-5 (or SOT323-5) mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.80


      1.10

      0.032


      0.043

      A1



      0.10



      0.004

      A2

      0.80

      0.90

      1.00

      0.032

      0.035

      0.039

      b

      0.15


      0.30

      0.006


      0.012

      c

      0.10


      0.22

      0.004


      0.009

      D

      1.80

      2.00

      2.20

      0.071

      0.079

      0.087

      E

      1.80

      2.10

      2.40

      0.071

      0.083

      0.094

      E1

      1.15

      1.25

      1.35

      0.045

      0.049

      0.053

      e


      0.65



      0.025


      e1


      1.30



      0.051


      L

      0.26

      0.36

      0.46

      0.010

      0.014

      0.018

      <




      DocID17117 Rev 2 19/24


    4. SC70-6 (or SOT323-6) package information

      Figure 27: SC70-6 (or SOT323-6) package outline


      Table 12: SC70-6 (or SOT323-6) mechanical data


      Ref

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.80


      1.10

      0.031


      0.043

      A1



      0.10



      0.004

      A2

      0.80


      1.00

      0.031


      0.039

      b

      0.15


      0.30

      0.006


      0.012

      c

      0.10


      0.18

      0.004


      0.007

      D

      1.80


      2.20

      0.071


      0.086

      E

      1.15


      1.35

      0.045


      0.053

      e


      0.65



      0.026


      HE

      1.80


      2.40

      0.071


      0.094

      L

      0.10


      0.40

      0.004


      0.016

      Q1

      0.10


      0.40

      0.004


      0.016


      20/24 DocID17117 Rev 2


      Figure 28: SC70-6 (or SOT323-6) recommended footprint



      DocID17117 Rev 2 21/24


  7. Ordering information

    Table 13: Order codes

    Part number

    Temperature range

    Package

    Packing

    Marking

    TSV6290ILT


    -40 °C to 125 °C

    SΟΤ23-6


    Tape and reel

    K106

    TSV6290ICT

    SC70-6

    K16

    TSV6290AILT

    SΟΤ23-6

    K139

    TSV6290AICT

    SC70-6

    K39

    TSV6291ILT

    SΟΤ23-5

    K107

    TSV6291ICT

    SC70-5

    K14

    TSV6291AILT

    SΟΤ23-5

    K113

    TSV6291AICT

    SC70-5

    K15


    22/24 DocID17117 Rev 2


  8. Revision history


Table 14: Document revision history


Date

Revision

Changes

04-Mar-2010

1

Initial release.


10-Aug-2016


2

Updated datasheet layout

Table 3, Table 5, and Table 6: VOH “min.” values changed to “max.” values.

Figure 8, Figure 9, Figure 10: updated Y-axes

Table 11: updated A and A2 min. values in inches


DocID17117 Rev 2 23/24


IMPORTANT NOTICE – PLEASE READ CAREFULLY


STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.


Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.


No license, express or implied, to any intellectual property right is granted by ST herein.


Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.


ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.


Information in this document supersedes and replaces information previously supplied in any prior versions of this document.


© 2016 STMicroelectronics – All rights reserved


24/24 DocID17117 Rev 2

Mouser Electronics


Authorized Distributor


Click to View Pricing, Inventory, Delivery & Lifecycle Information:


STMicroelectronics:

TSV6291AICT TSV6291AILT TSV6291ICT TSV6291ILT TSV6290ILT TSV6290ICT TSV6290AILT TSV6290AICT