Low-power dual operational amplifier
D and S
SO8 and MiniSO8
(plastic micropackage)
P TSSOP8
(thin shrink small outline package)
Pin connections
(top view)
1
8
2
-
7
3
+
-
6
4
+
5
- Output 1
- Inverting input
- Non-inverting input
4 - V
- Non-inverting input 2
- Inverting input 2
- Output 2
+ CC
8 - V
CC
-
Features
ESD internal protection: 2 kV
Internal frequency compensation implemented
Large DC voltage gain: 100 dB
Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
Datasheet - production data
Very low supply current per operator - essentially independent of supply voltage
Low input bias current: 20 nA (temperature compensated)
Low input offset voltage: 2 mV
Low input offset current: 2 nA
Input common mode voltage range includes ground
Differential input voltage range equal to the power supply voltage
Large output voltage swing 0 V to (VCC+) -
1.5 V
Description
The LM158W, LM258W, and LM358W circuits consist of two independent, high-gain, operational amplifiers (op-amps), which employ an internal frequency compensation and are specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the power supply voltage magnitude. Application areas include transducer amplifiers, DC gain blocks, and all the conventional op-amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V, which is used in logic systems and easily provide the required interface electronics with no additional power supply. In linear mode, the input common mode voltage range includes ground. The output voltage can also swing to ground, even though operated from a single power supply voltage.
July 2019 DocID9159 Rev 14 1/20
This is information on a product in full production. www.st.com
Figure 1. Schematic diagram (1/2 LM158W/LM258W/LM358W)
DocID9159 Rev 14 3/20
Table 1. Absolute maximum ratings
Symbol | Parameter | LM158W/AW | LM258W/AW | LM358W/AW | Unit |
+ VCC | Supply voltage | +32 | V | ||
Vin | Input voltage | + -0.3 to VCC +0.3 | |||
Vid | Differential input voltage | + -0.3 to VCC +0.3 | |||
Output short-circuit duration(1) | Infinite | ||||
Iin | Input current(2) | 5 mA in DC or 50 mA in AC (duty cycle=10%, T=1 s) | mA | ||
Toper | Operating free-air temperature range | -55 to +125 | -40 to +105 | 0 to +70 | °C |
Tstg | Storage temperature range | -65 to +150 | |||
Tj | Maximum junction temperature | 150 | |||
Rthja | Thermal resistance junction-to-ambient(3) SO8 MiniSO8 TSSOP8 | 125 190 120 | °C/W | ||
Rthjc | Thermal resistance junction-to-case(3) SO8 MiniSO8 TSSOP8 | 40 39 37 | |||
ESD | HBM: human body model(4) | 2 | kV | ||
MM: machine model(5) | 200 | V | |||
CDM: charged device model(6) | 1.5 | kV |
Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short- circuits on all amplifiers.
This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op
amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output will be restored for input voltage higher than -0.3 V.
Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.
Human body model: a 100 pF capacitor is discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
4/20 DocID9159 Rev 14
Symbol | Parameter | Value | Unit |
V + CC | Supply voltage | 3 to 30 | V |
Vicm | Common mode input voltage range(1) | VDD -0.3 to VCC -1.5 | |
Toper | Operating free air temperature range LM158W LM258W LM358W | -55 to +125 -40 to +105 0 to +70 | °C |
When used in comparator, the functionality is guaranteed as long as at least one input remains within the operating common mode voltage range.
DocID9159 Rev 14 5/20
Table 3. V + = +5 V, V - = ground, V = 1.4 V, T
= +25 °C
CC CC o amb
(unless otherwise specified)
Symbol | Parameter | Min. | Typ. | Max. | Unit |
Input offset voltage(1) | |||||
LM158AW | 1 | 2 | |||
LM258AW, LM358AW | 1 | 3 | |||
LM158W, LM258W | 2 | 5 | |||
Vio | LM358W Tmin Tamb Tmax | 2 | 7 | mV | |
LM158AW, LM258AW, LM358AW | 4 | ||||
LM158W, LM258W | 7 | ||||
LM358W | 9 | ||||
Input offset voltage drift | |||||
ΔVio/ΔT | LM158AW, LM258AW, LM358AW | 7 | 15 | µV/°C | |
LM158W, LM258W, LM358W | 7 | 30 | |||
Input offset current | |||||
LM158AW, LM258AW, LM358AW | 2 | 10 | |||
Iio | LM158W, LM258W, LM358W Tmin Tamb Tmax | 2 | 30 | nA | |
LM158AW, LM258AW, LM358AW | 30 | ||||
LM158W, LM258W, LM358W | 40 | ||||
Input offset current drift | |||||
ΔIio/ΔT | LM158AW, LM258AW, LM358AW | 10 | 200 | pA/°C | |
LM158W, LM258W, LM358W | 10 | 300 | |||
Input bias current(2) | |||||
LM158AW, LM258AW, LM358AW | 20 | 50 | |||
Iib | LM158W, LM258W, LM358W Tmin Tamb Tmax | 20 | 150 | nA | |
LM158AW, LM258AW, LM358AW | 100 | ||||
LM158W, LM258W, LM358W | 200 | ||||
Avd | Large signal voltage gain V + = +15 V, R = 2 kΩ V = 1.4 V to 11.4 V CC L o Tmin Tamb Tmax | 50 | 100 | V/mV | |
25 | |||||
SVR | Supply voltage rejection ratio Rs 10 kΩ V + = 5 V to 30 V CC Tmin Tamb Tmax | 65 | 100 | dB | |
65 | |||||
ICC | Supply current, all amp, no load Tmin Tamb Tmax, VCC+ = +5 V Tmin Tamb Tmax, VCC+ = +30 V | 0.7 | 1.2 | mA | |
2 |
6/20 DocID9159 Rev 14
Table 3. V + = +5 V, V - = ground, V = 1.4 V, T
= +25 °C
CC CC o amb
(unless otherwise specified) (continued)
Symbol | Parameter | Min. | Typ. | Max. | Unit |
Vicm | Input common mode voltage range V + = +30 V(3) CC Tamb = +25° C Tmin Tamb Tmax | 0 0 | V + -1.5 CC V + -2 CC | V | |
CMR | Common mode rejection ratio Rs 10 kΩ Tmin Tamb Tmax | 70 | 85 | dB | |
60 | |||||
Isource | Output current source V + = +15 V, V = +2 V, V = +1 V CC o id | 20 | 40 | 60 | mA |
Output sink current | |||||
Isink | VCC+ = +15 V, Vo = +2 V, Vid = -1 V VCC+ = +15 V, Vo = +0.2 V, Vid = -1 V | 10 12 | 20 50 | mA µA | |
High level output voltage RL = 2 kΩ VCC+ = 30 V Tmin Tamb Tmax RL = 10 kΩ V + = 30 V CC Tmin Tamb Tmax | 26 | 27 | |||
VOH | 26 | V | |||
27 | 28 | ||||
27 | |||||
VOL | Low level output voltage RL = 10 kΩ Tmin Tamb Tmax | 5 | 20 | mV | |
20 | |||||
SR | Slew rate V + = 15 V, V = 0.5 to 3 V, R = 2 kΩ, C = 100 pF, CC i L L unity gain | 0.3 | 0.6 | V/µs | |
GBP | Gain bandwidth product V + = 30 V, f =100 kHz, V =10 mV, R =2 kΩ, CC in L CL = 100 pF | 0.7 | 1.1 | MHz | |
THD | Total harmonic distortion f = 1 kHz, Av = 20 dB, RL = 2 kΩ Vo = 2 Vpp CL = 100 pF, VO = 2 Vpp | 0.02 | % | ||
en | Equivalent input noise voltage f = 1 kHz, Rs = 100 Ω VCC+ = 30 V | 55 | ---n---V----- Hz | ||
Vo1/Vo2 | Channel separation (4) 1 kHz f 20 kHz | 120 | dB |
CC
1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC+ < 30 V, 0 < Vic < V + - 1.5 V.
The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines.
The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V.
The upper end of the common-mode voltage range is V + - 1.5 V, but either or both inputs can go to +32 V without
CC
damage.
Due to the proximity of external components ensure that there is no coupling originating via stray capacitance between these external parts. Typically, this can be detected at higher frequencies because then this type of capacitance increases.
DocID9159 Rev 14 7/20
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 4. Voltage follower pulse response (large signal)
4
Figure 5. Voltage follower pulse response (small signal)
500
0
10
20
30
40
0
2 3 4 5 6 7 8
TIME (µs)
TIME ( s)
::::> 40
()
vee=+15v
0
:a:::.>.
30
20
10
I-
::::>
0
0.1
0
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
0
OUTPUT SINK CURRENT (mA)
I-
:a:::.>.
0
...J
<X:
I-
w
('.)
Figure 7. Output characteristics (sink)
10
vee = +5 v
I-
0:::
w 50
0:::
Figure 6. Input bias current vs. temperature
90
80
70
Iz- 60
Vee= +30 v
1 =OV
V
300
250
u
I-
::::> 0
350
Input
I-
:a:::.>.
-
t
400
0>
...J
T 50pF
e I
<X:
I-
eo
450
w
('.)
.>s
0
>
...J
('.)
z I-
I-
:a:::.>. <X:
2
w
3
>
0
>
::::> I-
0 ...J
0
2
a.. CJ
I- <X:
RL< 2ko
VCC = +15V
3
t- 2:.-
::::> w
Tamb = +25 °C vcc=3ov
t
Outp
1M
100k
10k
1k
0
l-
i5 5
I-
:a:>..
Figure 3. Large signal frequency response
20
a:
15
CzJ
Cl) 10
...J
>
20 Vee = +10 to+ 1sv &
-ss•e < Tamb < +12s•e
0
1.0 10 100 1k 10k 100k 1M 10M
0
40
-ss•e < Tamb < +125°e
60
Vee= 30v &
80
= V ee ';_ +
z
<(
CJ
w
CJ
V
t
VI
in
2- 100
,,,4:i
140
120
Figure 2. Open loop frequency response
--0-0
2k D
+7V 0- +t
VO
V 1 ':r
15V
n
8/20 DocID9159 Rev 14
Figure 10. Input voltage range
15
160
RL = 20kȍ
('.) 10
Negative
4
Figure 13. Input bias current vs. positive supply voltage
100
-S 3
1z-
,s 75
Iz-
()
>
_J
g0.;.
(/)
2
0:::
0:::
:J
()
I-
:J 0..
50
Tamb = -55' C
POSITIVE SUPPLY VOLTAGE (V)
30
20
10
0
= +25°C
amb
T
25
w
POSITIVE SUPPLY VOLTAGE (V)
30
20
10
0
1
Tamb = 0' C to +125' C
w
0:::
POSITIVE SUPPLY VOLTAGE (V)
40
30
20
10
0
40
_J
0>
<I'.
I-
RL = 2kȍ
120
80
z
<(
('.)
w
('.)
10 15
POWER SUPPLY VOLTAGE (±V)
Positive
5
_J
0>
I-
:J
z0..
<I'.
I-
w
10
0
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
20
30
I-
:J 0.. I-
:J
0
0:::
0::: 50
:J
() 40
Q-+
60
w
Iz-
---0
0--
90
80
-S 70
Figure 9. Current limiting
OUTPUT SOURCE CURRENT (mA)
10 100
:J
0
0,001 0,01 0,1
2
0..
I-
Independent of Vcc
Tamb = +25 ' C
:J
3
I-
>
I-
0
0
r l
_J
0
4
.y
<I'.
I-
+()
5
---0
>
6 V ee t2 o-+
LL
w
0:::
w
('.)
w
0:::
7
z
w
Vee
()
Figure 8. Output characteristics (source)
0
w 8
DocID9159 Rev 14 9/20
V | R | |||||||
0
-100 0 100 200 300 fil!uq ( '19 600 700 800 900 1000
Source for positive values/ Sink for negative values
10
"-
."c'
'2>
3l 20
:".'
Figure 17. Phase margin vs. capacitive load
Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value
50 -
40 -
30
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (QC)
z
0
i=
(_)
UJ
0:::
O
z
0
u
Figure 16. Common mode rejection ratio
iii'
0"O 115
i= 110
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (QC)
i=
0
-U-J, UJ 0:::
>-
_J
0...
0...
:J
Cf)
0:::
sUJ
0
0...
z
0
0::: 105
115
110
0"O
Figure 15. Power supply rejection ratio
co
25 45 65 85 105 125
TEMPERATURE (QC)
<(
al
0z
15V
Vee=
1.5
1.35
1.2
1.05
0.9
0.75
0.6
0.45
0.3
0.15
0
-55-35-15 5
N
I
I-
(_)
:J 0
0
a0:.:.:
I
I-
0
z
<(
(9
Figure 14. Gain bandwidth product
H 2 100Nȍ
H 3 100Nȍ
H2
1/2
/0158
100Nȍ
Figure 21. DC summing amplifier
H 1 100Nȍ
R4
100k
e 0
o
I
2VPP
Co
1/2
LM158
C
R1
V
A = 1 + R2
R1 R2
100k 1M
Figure 20. AC-coupled non-inverting amplifier
+5V
eO
1/2
LM158
R1
(As shown AV = 101)
R2
eI ~
o
2VPP
e 0
Co
1/2
LM158
R1
f
AV= -
e O (V)
Single supply voltage VCC = +5 VDC
Figure 18. AC-coupled inverting amplifier
Rf
100k R
Figure 19. Non-inverting DC amplifier
AV= 1 + R2
CI
R1
10k
(as shown AV = -10)
10k
VCC 100k
RB
6.2k
R3
100k
RL
10k
R1
10k
R2
1M
C1 10F
0
e I (mV)
C1 0.1F
(as shown AV = 11)
R3
eI ~ 1M
RB
6.2k
RL
10k
VCC
100Nȍ
C2 R5
10F 100k
H 4
100Nȍ
e (e1 + e2) (e3 + e4)
H 2
52
$V VKRZQ HR 101 (H2 + H1)
,I 51 55 DQG 53 54 56 5?
H0 >1 + 251/52@ ((H2 + H1)
$V VKRZQ H0 101 (H2 + H1)
56 5?
100N 100N
1/2
/0158
1/2
/0158
*DLQ DGMXVW
55
100N
52
2N
H2
54
100N
53
100N
1/2
/0158
H 1
Figure 23. High input Z adjustable gain DC instrumentation amplifier
51
100N
HR >1 + 251 @ ((H2+ H1)
9R
1/2
/0158
+91
+92
53
100N
1/2
/0158
51
100N
54
100N
52
100N
Figure 22. High input Z, DC differential amplifier
o 1 2 3 4
to keep eo 0V
wher
e = e + e - e - e
DocID9159 Rev 14 11/20
Input current compensation
1/2
LM158
3R
3M
IB
IB
2IB
R
1M
0.001 F
2N 929
2IB
ZI
1 F
Zo
C
e I
IB LM158
1/2
LM158
eo
Figure 25. Low drift peak detector
IB
1/2
1.5M
B
Input current compensation
I
1/2
3M LM158
IB
0.001F
IB
2N 929
IB
e I
eo
1/2
I I IB LM158
Figure 24. Using symmetrical amplifiers to reduce input current
&3 10 )
58
100Nȍ
9&&
1/2
/0158
55
4?0Nȍ
1/2
/0158
54
100ȍ
Figure 26. Active band-pass filter
51
100Nȍ
+91
52
100Nȍ
&1 330S)
53
100Nȍ
&2
330S)
56
4?0Nȍ
9R
1/2
/0158
5?
100Nȍ
12/20 DocID9159 Rev 14
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
DocID9159 Rev 14 13/20
Figure 27. SO8 package outline
Table 4. SO8 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.75 | 0.069 | ||||
A1 | 0.10 | 0.25 | 0.004 | 0.010 | ||
A2 | 1.25 | 0.049 | ||||
b | 0.28 | 0.48 | 0.011 | 0.019 | ||
c | 0.17 | 0.23 | 0.007 | 0.010 | ||
D | 4.80 | 4.90 | 5.00 | 0.189 | 0.193 | 0.197 |
E | 5.80 | 6.00 | 6.20 | 0.228 | 0.236 | 0.244 |
E1 | 3.80 | 3.90 | 4.00 | 0.150 | 0.154 | 0.157 |
e | 1.27 | 0.050 | ||||
h | 0.25 | 0.50 | 0.010 | 0.020 | ||
L | 0.40 | 1.27 | 0.016 | 0.050 | ||
L1 | 1.04 | 0.040 | ||||
k | 1 ° | 8 ° | 1 ° | 8 ° | ||
ccc | 0.10 | 0.004 |
14/20 DocID9159 Rev 14
Figure 28. MiniSO8 package outline
Table 5. MiniSO8 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.1 | 0.043 | ||||
A1 | 0 | 0.15 | 0 | 0.006 | ||
A2 | 0.75 | 0.85 | 0.95 | 0.030 | 0.033 | 0.037 |
b | 0.22 | 0.40 | 0.009 | 0.016 | ||
c | 0.08 | 0.23 | 0.003 | 0.009 | ||
D | 2.80 | 3.00 | 3.20 | 0.11 | 0.118 | 0.126 |
E | 4.65 | 4.90 | 5.15 | 0.183 | 0.193 | 0.203 |
E1 | 2.80 | 3.00 | 3.10 | 0.11 | 0.118 | 0.122 |
e | 0.65 | 0.026 | ||||
L | 0.40 | 0.60 | 0.80 | 0.016 | 0.024 | 0.031 |
L1 | 0.95 | 0.037 | ||||
L2 | 0.25 | 0.010 | ||||
k | 0 ° | 8 ° | 0 ° | 8 ° | ||
ccc | 0.10 | 0.004 |
DocID9159 Rev 14 15/20
Figure 29. TSSOP8 package outline
Table 6. TSSOP8 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.2 | 0.047 | ||||
A1 | 0.05 | 0.15 | 0.002 | 0.006 | ||
A2 | 0.80 | 1.00 | 1.05 | 0.031 | 0.039 | 0.041 |
b | 0.19 | 0.30 | 0.007 | 0.012 | ||
c | 0.09 | 0.20 | 0.004 | 0.008 | ||
D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 |
E | 6.20 | 6.40 | 6.60 | 0.244 | 0.252 | 0.260 |
E1 | 4.30 | 4.40 | 4.50 | 0.169 | 0.173 | 0.177 |
e | 0.65 | 0.0256 | ||||
k | 0 ° | 8 ° | 0 ° | 8 ° | ||
L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 |
L1 | 1 | 0.039 | ||||
aaa | 0.1 | 0.004 |
16/20 DocID9159 Rev 14
Order code | Temperature range | Package | Packing | Marking |
LM158WDT | -55 °C, +125 °C | SO8 | Tape and reel | 158W |
LM258AWDT | -40 °C, +105 °C | 258AW | ||
LM258WDT | 258W | |||
LM258WPT | TSSOP8 | 258W | ||
LM258WYDT(1) | SO8 (automotive grade) | 258WY | ||
LM258WYPT | TSSOP8 (automotive grade) | 258WY | ||
LM258AWYPT | K410 | |||
LM358WST | 0 °C, +70 °C | MiniSO8 | K417 | |
LM358AWDT | SO8 | 358AW | ||
LM358AWPT | TSSOP8 | |||
LM358AWST | MiniSO8 | K418 | ||
LM358WDT | SO8 | 358W |
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are qualified.
DocID9159 Rev 14 17/20
Table 8. Document revision history
Date | Revision | Changes |
01-Nov-2002 | 1 | First release. |
01-Jul-2005 | 2 | ESD protection inserted in Table 1: Absolute maximum ratings on page 4. |
06-Oct-2006 | 3 | ESD tolerance for model HBM improved to 2kV inTable 1: Absolute maximum ratings on page 4. Rthja and Rthjc typical values added in Table 1: Absolute maximum ratings on page 4. Added Figure 17: Phase margin vs. capacitive load on page 10. |
02-Jan-2007 | 4 | Order codes added (automotive grade level) to Section 6: Ordering information. |
15-Mar-2007 | 5 | Previously called revision 4. Footnote for automotive grade order codes added to Section 6: Ordering information. |
25-Apr-2007 | 6 | Added missing Revision 4 of January 2007 in revision history. Corrected revision number of March 2007 to Revision 5. |
11-Feb-2008 | 7 | Reformatted electrical characteristics table. Reformatted package information. Corrected MiniSO8 package information. Corrected operating temperature range for automotive grade parts. |
26-Aug-2008 | 8 | Corrected ESD values in Table 1: Absolute maximum ratings. Added limitations on input current in Table 1: Absolute maximum ratings. Corrected title for Figure 11. Added E and L1 parameters in Table 4: SO8 package mechanical data. Added automotive grade products for MSO8 package in Table 7: Order codes. |
03-Jul-2012 | 9 | Automotive grade level updated in Table 7: Order codes. Removed order codes: LM358WYD, LM358AWYD, LM258WYD, LM258AWYD. |
09-Jan-2013 | 10 | Small text changes in Features and Description. Figure 1: Schematic diagram (1/2 LM158W/LM258W/LM358W): replaced. Table 7: Order codes: added order codes LM358WST and LM358AWST. |
15-Jul-2013 | 11 | Table 3: replaced DVio with ΔVio/ΔT and DIio with ΔIio/ΔT Table 7: Order codes: removed the following order codes: LM158WN, LM158WD, LM258AWYST, LM258WAN, LM258WAD, LM258WD, LM258WYST, LM358WN, LM358WD, LM358AWD, LM358WDT, LM358AWDT, LM358WPT, LM358AWPT, LM358WYDT, LM358AWYDT, LM358AWYPT; updated footnote 1. |
18/20 DocID9159 Rev 14
Table 8. Document revision history
Date | Revision | Changes |
18-Sep-2014 | 12 | Removed DIP8 package Table 7: Order codes: removed the order codes LM258WN, LM258AWYDT, LM258AWPT, LM358AWYST, LM358WYST, and LM358WYPT; added the order codes LM258WYDT, LM358AWDT, LM358AWPT, and LM358WDT. |
06-May-2015 | 13 | Section 5: Package information: replaced “package mechanical drawing” with “package outline”. Table 7: Order codes: removed “tube” packaging from all products |
31-Jul-2019 | 14 | Updated Table 7: Order codes. |
DocID9159 Rev 14 19/20
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
20/20 DocID9159 Rev 14
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
LM358AWST LM358WST LM258WDT LM258AWDT LM258WPT LM258WYDT LM258WYPT LM258AWYPT LM358WDT LM358AWDT LM358AWPT LM158WDT