TL062, TL062A, TL062B


Low-power JFET dual operational amplifiers



Features

CC


Description

Pin connections

(top view)

The TL062, TL062A and TL062B devices are high-speed JFET input single operational amplifiers. Each of these JFET input operational amplifiers incorporates well matched,

8

1

high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

-

CC

7

-

2

The devices feature high slew rates, low input bias and offset currents, and a low offset voltage temperature coefficient.


3

+

-

6


4

+

5


  1. - Output 1

  2. - Inverting input 1

  3. - Non-inverting input 1

4 - V


  1. - Non-inverting input 2

  2. - Inverting input 2

  3. - Output 2

8 - V



+

CC

September 2012 Doc ID 2294 Rev 4 1/15

This is information on a product in full production. www.st.com


  1. Schematic diagram


    input

    Figure 1. Schematic diagram


    )


    220Q


    nverting

    Non-inverting

    64 Q

    Output

    1/2 TL062


    270Q


  2. Absolute maximum ratings and operating conditions


    Table 1. Absolute maximum ratings

    Symbol

    Parameter

    Value

    Unit

    VCC

    Supply voltage(1)

    ±18

    V

    Vi

    Input voltage(2)

    ±15

    V

    Vid

    Differential input voltage(3)

    ±30

    V

    Ptot

    Power dissipation

    680

    mW


    Output short-circuit duration(4)

    Infinite


    Tstg

    Storage temperature range


    °C


    Rthja

    Thermal resistance junction-to-ambient(5),(6) SO-8

    DIP8


    125

    85


    °C/W


    Rthjc

    Thermal resistance junction-to-case(5),(6) SO-8

    DIP8


    40

    41


    °C/W


    ESD

    HBM: human body model(7)

    900

    V

    MM: machine model(8)

    150

    V

    CDM: charged device model(9)

    1.5

    kV

    1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the

      CC

      .

      CC

      supply voltages where the zero reference level is the midpoint between V + and V -

    2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

    3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

    4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

    5. Short-circuits can cause excessive heating and destructive dissipation.

    6. Rth are typical values.

    7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

    8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

    9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

      Table 2. Operating conditions

      Symbol

      Parameter

      TL062I, AI, BI

      TL062C, AC, BC

      Unit

      VCC

      Supply voltage range

      6 to 36

      V

      Toper

      Operating free air temperature range

      -40 to +105

      0 to +70

      °C


      Doc ID 2294 Rev 4 3/15


  3. Electrical characteristics


    Table 3. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified)


    Symbol


    Parameter

    TL062I

    TL062C


    Unit

    Min.

    Typ.

    Max.

    Min.

    Typ.

    Max.


    Vio

    Input offset voltage (RS 50 Ω) Tamb = +25 °C

    Tmin Tamb Tmax



    3


    6

    9



    3


    15

    20


    mV

    DVio

    Temperature coefficient of input offset voltage (RS 50 Ω)


    10




    10


    V/°C


    Iio

    Input offset current(1) Tamb = +25 °C

    Tmin Tamb Tmax



    5


    100

    10



    5


    200

    5


    pA nA


    Iib

    Input bias current(1) Tamb = +25 °C

    Tmin Tamb Tmax



    30


    200

    20



    30


    400

    10


    pA nA

    Vicm

    Input common mode voltage range

    ±11.5

    +15

    -12


    ±11.5

    +15

    -12


    V


    Vopp

    Output voltage swing (RL 10 kΩ Tamb = +25 °C

    Tmin Tamb Tmax


    20

    20


    27



    20

    20


    27



    V


    Avd

    Large signal voltage gain RL = 10 kΩ, Vo = ±10 V,

    Tamb = +25 °C

    Tmin Tamb Tmax


    4

    4


    6



    3

    3


    6



    V/mV


    GBP

    Gain bandwidth product

    Tamb = +25 °C, RL =10 kΩ, CL = 100 pF



    1




    1



    MHz

    Ri

    Input resistance


    1012



    1012


    Ω


    CMR

    Common mode rejection ratio RS 50 Ω


    80


    86



    70


    76



    dB


    SVR

    Supply voltage rejection ratio RS 50 Ω


    80


    95



    70


    95



    dB

    ICC

    Supply current, no load

    Tamb = +25 °C, no load, no signal



    200


    250



    200


    250

    A

    Vo1/Vo2

    Channel separation

    Av = 100, Tamb = 25 °C



    120




    120



    dB

    PD

    Total power consumption

    Tamb = +25 °C, no load, no signal



    6


    7.5



    6


    7.5


    mW


    SR

    Slew rate

    Vi = 10 V, RL = 10 kΩ, CL= 100 pF, Av = 1


    1.5


    3.5



    1.5


    3.5


    V/s


    4/15 Doc ID 2294 Rev 4



    Symbol


    Parameter

    TL062I

    TL062C


    Unit

    Min.

    Typ.

    Max.

    Min.

    Typ.

    Max.


    tr

    Rise time

    Vi = 20 mV, RL = 10 kΩ, CL = 100 pF, Av = 1



    0.2




    0.2



    s

    Kov

    Overshoot factor (see Figure 15)

    Vi = 20 mV, RL = 10 kΩ, CL = 100 pF, Av = 1



    10




    10



    %

    en

    Equivalent input noise voltage RS 100 Ω f = 1 kHz



    42




    42


    ---n---V-----

    Hz

    1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.


    Table 4. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified)


    Symbol


    Parameter

    TL062AC, AI

    TL062BC, BI


    Unit

    Min.

    Typ.

    Max.

    Min.

    Typ.

    Max.


    Vio

    Input offset voltage (RS 50 Ω) Tamb = +25 °C

    Tmin Tamb Tmax



    3


    3

    7.5



    2


    3

    5


    mV

    DVio

    Temperature coefficient of input offset voltage (RS 50 Ω)


    10



    10


    µV/°C


    Iio

    Input offset current(1) Tamb = +25 °C

    Tmin Tamb Tmax



    5


    100

    3



    5


    100

    3


    pA nA


    Iib

    Input bias current(1)

    Tamb = +25 °C

    Tmin Tamb Tmax



    30


    200

    7



    30


    200

    7


    nA

    Vicm

    Input common mode voltage range

    ±11.5

    +15

    -12


    ±11.5

    +15

    -12




    Vopp

    Output voltage swing (RL 10 kΩ Tamb = +25 °C

    Tmin Tamb Tmax


    20

    20


    27



    20

    20


    27



    V


    Avd

    Large signal voltage gain

    RL = 10 kΩ, Vo = ±10 V, Tamb = +25 °C

    Tmin Tamb Tmax


    4

    4


    6



    4

    4


    6



    V/mV


    GBP

    Gain bandwidth product

    Tamb = +25 °C, RL =10 kΩ, CL = 100 pF



    1




    1



    MHz

    Ri

    Input resistance


    1012



    1012


    Ω


    CMR

    Common mode rejection ratio RS 50 Ω


    80


    86



    80


    86



    dB


    SVR

    Supply voltage rejection ratio RS 50 Ω


    80


    95



    80


    95



    dB


    Doc ID 2294 Rev 4 5/15



    Symbol


    Parameter

    TL062AC, AI

    TL062BC, BI


    Unit

    Min.

    Typ.

    Max.

    Min.

    Typ.

    Max.

    ICC

    Supply current, no load

    Tamb = +25 °C, no load, no signal


    200

    250


    200

    250

    µA

    Vo1/Vo2

    Channel separation

    Av = 100, Tamb = +25 °C



    120




    120



    PD

    Total power consumption

    Tamb = +25 °C, no load, no signal



    6


    7.5



    6


    7.5


    mW


    SR

    Slew rate

    Vi = 10 V, RL = 10 kΩ, CL = 100 pF, Av = 1


    1.5


    3.5



    1.5


    3.5


    V/s

    tr

    Rise time

    Vi = 20 mV, RL = 10 kΩ, CL = 100 pF, Av = 1



    0.2




    0.2


    s

    Kov

    Overshoot factor (see Figure 15)

    Vi = 20 mV, RL = 10 kΩ, CL = 100 pF, Av = 1



    10




    10



    %

    en

    Equivalent input noise voltage RS 100 Ω f = 1 kHz



    42




    42


    ---n---V-----

    Hz

    1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.


    6/15 Doc ID 2294 Rev 4


    Maximum peak-to-peak output voltage (V)

    Maximum peak-to-peak output voltage (V)

    Figure 2. Maximum peak-to-peak output voltage versus supply voltage

    Figure 3. Maximum peak-to-peak output voltage versus free air temperature


    RL = 10 kΩ Tamb = + 25 °C

    VCC = +/- 15 V RL = 10 kΩ



    Supply voltage (V)

    Free air temperature (°C)


    VCC = +/- 12 V VCC = +/- 5 V

    VCC = +/- 2 V

    Maximum peak-to-peak output voltage (V)

    Maximum peak-to-peak output voltage (V)

    Figure 4. Maximum peak-to-peak output voltage versus load resistance

    Figure 5. Maximum peak-to-peak output voltage versus frequency



    VCC = +/- 15 V Tamb = + 25 °C

    VCC = +/- 15 V

    RL = 10 kΩ Tamb = + 25 °C


    Load resistance (kΩ)

    Frequency (Hz)


    0


    45

    90

    VCC = +/- 5 V to +/- 15 V RL = 2 kΩ

    Tamb = + 25 °C

    Differential voltage amplification (left scale)

    4

    3

    106

    105

    10

    10

    102

    101

    10

    7


    4

    Differential voltage

    amplification (V/mV)

    Differential voltage

    amplification (V/V)

    Figure 6. Differential voltage amplification versus free air temperature

    Figure 7. Large signal differential voltage amplification and phase shift versus frequency


    180

    1 10 100 1k 10k 100k 1M 10M

    Frequency (Hz)

    135

    Phase shift (right scale)

    -75 -50 -25 0 25 50 75 100 125

    Free air temperature (°C)

    2


    1

    VCC = +/- 15 V RL = 10 kΩ

    Doc ID 2294 Rev 4 7/15


    250


    200


    150


    100


    50


    0

    Supply current (A)

    Figure 8. Supply current per amplifier versus supply voltage































    Tamb = + 25 °C No signal






    no load





    0 2 4 6 8 10 12 14 16

    Supply voltage (+/- V)


    Total power dissipated (mW)

    Figure 10. Total power dissipated versus free air temperature


    30


    25

    20

    VCC = +/- 15 V

    No signal no load


    15

    10


    5


    0



    100

    VCC = +/- 15 V

    10


    1


    0.1


    0.01

    -50 -25 0 25 50 75 100 125


    Free air temperature (°C)

    1

    0.99

    VCC = +/- 15 V RL = 10 kΩ

    f = B1 for phase shift

    1

    0.9


    0.8

    1.02

    1.01

    Unity-gain bandwidth (left scale)

    1.2

    1.1

    1.03

    1.3

    Slew rate (left scale)

    Phase shift (right scale)

    -75 -50 -25 0 25 50 75 100 125


    Free air temperature (°C)

    Normalized unity-gain bandwidth and slew rate

    Normalized phase shift

    Input bias current (nA)

    Figure 12. Normalized unity gain bandwidth slew rate and phase shift versus temperature

    Figure 9. Supply current per amplifier versus free air temperature
































    VCC = +/- 15 V

    No signal no load













    -75 -50 -25 0 25 50 75 100 125

    Free air temperature (°C)



    87


    86

    85


    84

    83


    82


    81

    -75 -50 -25 0 25 50 75 100 125


    Free air temperature (°C)

    250


    200


    150


    100


    50


    0

    Common mode rejection ratio (dB)

    Supply current (A)

    Figure 11. Common-mode rejection ratio versus free air temperature







































    VCC = +/- 15 V RL = 10 kΩ












    Figure 13. Input bias current versus free air temperature


    Free air temperature (°C)

    0.97

    50 75 100 125

    25

    0.98


    0.7

    -75 -50 -25 0

    8/15 Doc ID 2294 Rev 4


    28

    24

    20

    16

    12

    8

    4

    0

    -4

    CC

    V = +/- 15 V

    0

    Output

    6


    4


    2

    Input

    Input and output voltages (V)

    Output voltage (mV)

    Figure 14. Voltage follower large signal pulse response

    Figure 15. Output voltage versus elapsed time











    Overshoot









    90%




























    VCC = +/- 15 V RL = 10 kΩ Tamb = + 25 °C


    10%








    tr





    Time (s)

    Time (s)


    0 0.2 0.4 0.6 0.8 1 12 14

    RL = 10 kΩ CL = 100 pF

    Tamb = + 25 °C


    0 2 4 6 8 10

    -2


    -4

    -6

    S

    Tamb = + 25 °C

    R = 100 Ω

    CC

    V = +/- 15 V

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    10

    Equivalent input noise voltage (nV/VHz)

    Figure 16. Equivalent input noise voltage versus frequency


    40 100 400 1k 4k 10k 40k 100k


    Frequency (Hz)

    Parameter measurement information


    Figure 17. Voltage follower Figure 18. Gain of 10 inverting amplifier









    10 kΩ




    -

    1/2

    TL062




    eo


    eI

    1 kΩ


    -

    1/2

    TL062



    eo

    eI


    CL = 100 pF

    RL = 10 kΩ





    RL

    CL = 100 pF


    Doc ID 2294 Rev 4 9/15


  4. Typical applications


    6 sin t

    6 cos t

    1/2

    TL062

    (1)

    Figure 19. 100 kHz quadrature oscillator


    1N 4148

    18 kΩ

    -15 V


    18 pF

    18 pF

    1 kΩ


    -

    88.4 kΩ

    1/2

    TL062

    88.4 kΩ

    -


    18 pF

    1 k Ω



    88.4 kΩ

    1N 4148

    18 kΩ(1)


    +15 V


    1. These resistor values may be adjusted for a symmetrical output.


    10/15 Doc ID 2294 Rev 4


  5. Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK

specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.



Doc ID 2294 Rev 4 11/15


    1. DIP8 package information

      Figure 20. DIP8 package outline


      Table 5. DIP8 package mechanical data


      Symbol

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      5.33



      0.210

      A1

      0.38



      0.015



      A2

      2.92

      3.30

      4.95

      0.115

      0.130

      0.195

      b

      0.36

      0.46

      0.56

      0.014

      0.018

      0.022

      b2

      1.14

      1.52

      1.78

      0.045

      0.060

      0.070

      c

      0.20

      0.25

      0.36

      0.008

      0.010

      0.014

      D

      9.02

      9.27

      10.16

      0.355

      0.365

      0.400

      E

      7.62

      7.87

      8.26

      0.300

      0.310

      0.325

      E1

      6.10

      6.35

      7.11

      0.240

      0.250

      0.280

      e


      2.54



      0.100


      eA


      7.62



      0.300


      eB



      10.92



      0.430

      L

      2.92

      3.30

      3.81

      0.115

      0.130

      0.150

      Note: Dimensions "D" and "E1" do not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.25 mm in total (both sides). Datum plane "H" coincides with the bottom of the lead, where the lead exits the body.


      12/15 Doc ID 2294 Rev 4


    2. SO-8 package information

      Figure 21. SO-8 package outline


      Table 6. SO-8 package mechanical data


      Symbol

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      1.75



      0.069

      A1

      0.10


      0.25

      0.004


      0.010

      A2

      1.25



      0.049



      b

      0.28


      0.48

      0.011


      0.019

      c

      0.17


      0.23

      0.007


      0.010

      D

      4.80

      4.90

      5.00

      0.189

      0.193

      0.197

      E

      5.80

      6.00

      6.20

      0.228

      0.236

      0.244

      E1

      3.80

      3.90

      4.00

      0.150

      0.154

      0.157

      e


      1.27



      0.050


      h

      0.25


      0.50

      0.010


      0.020

      L

      0.40


      1.27

      0.016


      0.050

      L1


      1.04



      0.040


      k

      0



      ccc



      0.10



      0.004


      Doc ID 2294 Rev 4 13/15


  1. Ordering information



    Table 7. Order codes


    Part number

    Temperature range


    Package


    Packaging


    Marking

    TL062IN

    TL062AIN TL062BIN


    -40 °C, +105 °C


    DIP8


    Tube

    TL062IN TL062AIN

    TL062BIN

    TL062ID/IDT TL062AID/AIDT

    TL062BID/BIDT


    SO-8


    Tube or tape and reel

    062I

    062AI

    062BI

    TL062CN

    TL062ACN TL062BCN


    0 °C, +70 °C


    DIP8


    Tube

    TL062CN

    TL062ACN TL062BCN

    TL062CD/CDT TL062ACD/ACDT TL062BCD/BCDT


    SO-8


    Tube or tape and reel

    062C

    062AC

    062BC


  2. Revision history



Table 8. Document revision history

Date

Revision

Changes

28-Mar-2001

1

Initial release.


27-Jul-2007


2

Added values for Rthja and Rthjc in Table 1: Absolute maximum ratings.

Added Table 2: Operating conditions. Updated format.


15-Mar-2010


3

Updated document format.

Added TL062A and TL062B in title on cover page. Updated package information in Chapter 5.


21-Sep-2012


4

Removed TL062M, AM, BM /TL062I, AI, BI / TL062C, AC, BC part

numbers and temperature ranges from Table 1. and TL062M, AM, BM from Table 2.

Removed TL062M, updated min. “Input common mode voltage range” for TL062C device in Table 3.

Removed TL062AM and TL062BM devices, updated max. ”Input offset voltage - Tamb” for TL062AC, AI devices in Table 4.

Removed TL062MN, TL062AMN, TL062BMN, TL062MD/MDT,

TL062AMD/AMDT, TL062BMD/BMDT part numbers from Table 7. Minor corrections throughout document.


14/15 Doc ID 2294 Rev 4


Please Read Carefully:


Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.


UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.


Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.


ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



Doc ID 2294 Rev 4 15/15

Mouser Electronics


Authorized Distributor


Click to View Pricing, Inventory, Delivery & Lifecycle Information:


STMicroelectronics:

TL062ACN TL062ACD TL062ID TL062IN TL062CN TL062CD TL062CDT TL062IDT TL062ACDT TL062BCD TL062BCDT