19-0499; Rev 1; 7/98
Low-Pow er, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs
MAX9000–MAX9005
General Description Features
The MAX9000 family features the combination of a high- speed operational amplifier, a 185ns comparator, and a precision 1.230V reference. These devices operate from a single +2.5V to +5.5V supply and draw less than 500µA of quiescent current. The MAX9001/MAX9004 feature a shut- down mode that reduces supply current to 2µA and puts the outputs into a high-impedance state, making them ideal for portable and battery-powered applications.
The amplifiers in the MAX9000/MAX9001/MAX9002 are unity-gain stable with a 1.25MHz gain-bandwidth product, while the amplifiers in the MAX9003/MAX9004/MAX9005 are stable for closed-loop gains of +10V/V or greater with an 8MHz gain-bandwidth product. The input common- mode voltage extends from 150mV below the negative supply to within 1.2V of the positive supply for the amplifi- er, and to within 1.1V for the comparator. The amplifier and comparator outputs can swing Rail-to-Rail® and deliver up to ±2.5mA and ±4.0mA, respectively, to an external load while maintaining excellent DC accuracy. The unique design of the comparator output stage substantially reduces switching current during output transitions, virtually eliminating power-supply glitches.
The comparator’s ±2mV of built-in hysteresis provides noise immunity and prevents oscillations even with a slow-moving input signal. The MAX9000/MAX9001/ MAX9003/MAX9004 have an internal 1.230V ±1% preci-
Op Amp + Comparator + Reference in Space-Saving µMAX Package
♦ +2.5V to +5.5V Single-Supply Voltage Range
340µA Supply Current (MAX9002/MAX9005)
Unity-Gain Stable (GBW = 1.25MHz) and Decompensated (AV 10V/V, GBW = 8MHz) Options
Op-Amp/Comparator Outputs Swing Rail-to-Rail
Ground-Sensing Inputs for Both Op Amp and Comparator
Op Amp Stable with Capacitive Loads up to 250pF
Internal ±2mV Comparator Hysteresis
Fast 185ns Propagation-Delay Comparator
No Phase Reversal for Overdriven Inputs (Both Op Amp and Comparator)
Internal 1.230V Precision Reference (MAX9000/ MAX9001/MAX9003/MAX9004)
±1% Initial Accuracy
Low 8ppm/°C Temperature Drift Sink or Source up to 1mA
Stable for Capacitive Loads up to 100nF
sion reference with a low 8ppm/°C temperature coeffi- Ordering Information
PART | TEMP. RANGE | PIN-PACKAGE | |
MAX9000EUA | -40°C to | +85°C | 8 µMAX |
MAX9000ESA | -40°C to | +85°C | 8 SO |
MAX9001EUB | -40°C to | +85°C | 10 µMAX |
MAX9001ESD | -40°C to | +85°C | 14 SO |
cient that can sink or source up to 1mA. The amplifier and reference are stable with capacitive loads up to 250pF and 100nF, respectively. The comparator’s inverting input is internally connected to the reference output in the MAX9000/MAX9003.
Applications
Single-Supply Zero- Photodiode Preamps Crossing Detector Smart Card Readers Instruments, Terminals, Infrared Receivers and Bar-Code Readers for Remote Controls
Keyless Entry Sensor Signal Detection
Ordering Information continued at end of data sheet.
Pin Configurations and Typical Operating Circuit appear at end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Selector Guide
PART | INTERNAL PRECISION REFERENCE | OP-AMP GAIN STABILITY (V/V) | SHUTDOWN | OP-AMP GAIN BANDWIDTH (MHz) | PIN-PACKAGE |
MAX9000 | Yes | 1 | No | 1.25 | 8 SO/µMAX |
MAX9001 | Yes | 1 | Yes | 1.25 | 10 µMAX, 14 SO |
MAX9002 | No | 1 | No | 1.25 | 8 SO/µMAX |
MAX9003 | Yes | 10 | No | 8 | 8 SO/µMAX |
MAX9004 | Yes | 10 | Yes | 8 | 10 µMAX, 14 SO |
MAX9005 | No | 10 | No | 8 | 8 SO/µMAX |
Maxim Integrated Products 1
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VDD to VSS) ....................................-0.3V to +6V Voltage Inputs (AIN_, CIN_).............(VSS - 0.3V) to (VDD + 0.3V)
Output Short-Circuit Duration (AOUT, COUT, REF)...Continuous
to either VSS or VDD Continuous Power Dissipation (TA = +70°C)
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW
10-Pin µMAX (derate 5.6mW/°C above +70°C) ............444mW
14-Pin SO (derate 8.3mW/°C above +70°C).................667mW
Operating Temperature Range
MAX900_E _ _...................................................-40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering, 10sec) .............................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for
MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.)
PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |
Supply Voltage Range | VDD | Guaranteed by PSRR tests | 2.5 | 5.5 | V | ||
Supply Current | IDD | MAX9000/MAX9001/ MAX9003/MAX9004 | VDD = 3V | 410 | 500 | µA | |
VDD = 5V | 450 | 550 | |||||
MAX9002/MAX9005 | VDD = 3V | 340 | 425 | µA | |||
VDD = 5V | 375 | 475 | |||||
Supply Current in Shutdown | ISHDN | MAX9001/MAX9004 (V SHDN = 0) | 2 | 5 | µA | ||
Shutdown Input Bias Current | IIN(SHDN) | MAX9001/MAX9004 (V SHDN = 0 to VDD) | 1 | 2.5 | µA | ||
Shutdown Logic High | VIH(SHDN) | 0.7 x VDD | V | ||||
Shutdown Logic Low | VIL(SHDN) | 0.3 x VDD | V | ||||
OP AMP | |||||||
Input Offset Voltage | VOS | MAX900_ES_ | ±0.5 | ±1.5 | mV | ||
Input Offset Voltage Temperature Coefficient | TCVOS | MAX900_ES_ | ±1 | µV/°C | |||
Input Bias Current | IBIAS | AIN+, AIN- | ±0.05 | ±2 | nA | ||
Input Offset Current | AIN+, AIN- | ±0.02 | ±1 | nA | |||
Input Resistance | RIN | Differential or common mode | 1000 | M | |||
Input Common-Mode Voltage Range | CMVR | Guaranteed by CMRR test | -0.15 | VDD - 1.2 | V | ||
Common-Mode Rejection Ratio | CMRR | MAX900_ES_, (VSS - 0.15V) VCM (VDD - 1.2V), VDD = 5.5V | 72 | 96 | dB | ||
Power-Supply Rejection Ratio | PSRR | VDD = 2.5V to 5.5V | 74 | 100 | dB | ||
Output Resistance | AV = 1V/V | 0.01 | | ||||
Output Short-Circuit Current | Shorted to VSS | 10 | mA | ||||
Shorted to VDD | 65 | ||||||
Disabled Mode Output Leakage | IOUT (DISABLED) | V SHDN (0.3V x VDD), VAOUT = 0 to VDD | ±0.01 | ±1 | µA |
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for
MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.)
PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | ||
Large-Signal Voltage Gain | AVOL | VDD = 2.5V | VAOUT = 0.05V to 2.45V, RL = 100k | 94 | 125 | dB | ||
VAOUT = 0.2V to 2.3V, RL = 1k | 84 | 115 | ||||||
VDD = 5.5V | VAOUT = 0.05V to 5.4V, RL = 100k | 94 | 120 | |||||
VAOUT = 0.25V to 5.2V, RL = 1k | 86 | 106 | ||||||
Output Voltage Swing | VOL / VOH | VAIN+ - VAIN- 10mV | RL = 100k | VDD - VOH | 1 | 5 | mV | |
VOL | 1 | 5 | ||||||
RL = 1k | VDD - VOH | 140 | 250 | |||||
VOL | 60 | 100 | ||||||
Gain-Bandwidth Product | GBW | MAX9000/MAX9001/MAX9002 | 1.25 | MHz | ||||
MAX9003/MAX9004/MAX9005 | 8 | |||||||
Phase Margin | MAX9000/MAX9001/MAX9002 | 75 | degrees | |||||
MAX9003/MAX9004/MAX9005 | 80 | |||||||
Gain Margin | MAX9000/MAX9001/MAX9002 | 30 | dB | |||||
MAX9003/MAX9004/MAX9005 | 40 | |||||||
Total Harmonic Distortion plus Noise | THD+N | f = 10kHz, VAOUT = 2Vp-p, VDD = 5V | MAX9000/MAX9001/ MAX9002 (AV = 1V/V) | 0.009 | % | |||
MAX9003/MAX9004/ MAX9005 (AV = 10V/V) | 0.028 | |||||||
Slew Rate | SR | VDD = 5V, VAOUT = 4V step | MAX9000/MAX9001/ MAX9002 (AV = 1V/V) | 0.85 | V/µs | |||
MAX9003/MAX9004/ MAX9005 (AV = 10V/V) | 6.0 | |||||||
Settling Time to within 0.01% | VDD = 5V, VAOUT = 4V step | MAX9000/MAX9001/ MAX9002 (AV = 1V/V) | 6.9 | µs | ||||
MAX9003/MAX9004/ MAX9005 (AV = 10V/V) | 2.1 | |||||||
Input Capacitance | CIN | 2.5 | pF | |||||
Input Noise Voltage Density | VNOISE | f = 10kHz | 36 | nV/Hz | ||||
Input Noise Current Density | INOISE | f = 10kHz | 1 | fA/Hz | ||||
Shutdown Delay Time | 0.2 | µs | ||||||
Enable Delay Time | 2 | µs | ||||||
Power-On Time | 2 | µs | ||||||
Capacitive-Load Stability | CLOAD | MAX9000/MAX9001/MAX9002 (AV = 1V/V) | 250 | pF | ||||
MAX9003/MAX9004/MAX9005 (AV = 10V/V) | 250 | |||||||
COMPARATOR | ||||||||
Input Offset Voltage | VOS | MAX900_ES_ (Notes 1, 2) | ±1 | ±2 | mV | |||
Input Offset Voltage Temperature Coefficient | TCVOS | MAX900_ES_ | ±1 | µV/°C | ||||
Input-Referred Hysteresis | VDD = 5V (Notes 2, 3) | 4 | 7 | mV |
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for
MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.)
PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |
Input Bias Current | IBIAS | 8 | 80 | nA | |||
Input Offset Current | IOS | MAX9001/MAX9002/MAX9004/MAX9005 | ±2 | ±15 | nA | ||
Common-Mode Voltage Range | VCM | Guaranteed by CMRR test | VSS - 0.15 | VDD - 1.1 | V | ||
Common-Mode Rejection Ratio | CMRR | MAX9001/MAX9002/MAX9004/MAX9005, 0.15V VCM (VDD - 1.1V), VDD = 5.5V | 72 | 100 | dB | ||
Power-Supply Rejection Ratio | PSRR | VDD = 2.5V to 5.5V | 72 | 100 | dB | ||
Output Voltage Swing | VOL/VOH | (VCIN+ - VCIN-) 20mV | VDD - VOH | ISOURCE = 10µA | 5 | mV | |
ISOURCE = 4mA | 400 | ||||||
VOL | ISINK = 10µA | 5 | |||||
ISINK = 4mA | 400 | ||||||
Output Short-Circuit Current | 55 | mA | |||||
Disabled Mode Output Leakage | IOUT (DISABLED) | VSHDN (0.3V x VDD), VCOUT = 0 to VDD | ±0.01 | ±1 | µA | ||
Propagation Delay | tPD+, tPD- | VOD = 25mV, RL = 10k, CL = 15pF (Note 4) | 185 | ns | |||
Rise/Fall Time | tR, tF | VDD = 5V, RL = 10k, CL = 15pF (Note 5) | 10 | ns | |||
Shutdown Delay Time | 100 | ns | |||||
Enable Delay Time | 100 | ns | |||||
Power-On Time | 100 | ns | |||||
VOLTAGE REFERENCE (MAX9000/MAX9001/MAX9003/MAX9004) | |||||||
Output Voltage | VREF | MAX900_ES_, VDD = 5V, TA = +25°C | 1.218 | 1.230 | 1.242 | V | |
Output Voltage Temperature Coefficient | TCVREF | 8 | ppm/°C | ||||
Line Regulation | VDD = 2.5V to 5.5V | 20 | 250 | µV/V | |||
Load Regulation | VDD = 5V, IOUT = 0 to 1mA | Sourcing | 0.15 | 0.8 | mV/mA | ||
Sinking | 0.6 | 2.0 | mV/mA | ||||
Output Short-Circuit Current | Shorted to VSS | 6 | mA | ||||
Shorted to VDD | 10 | ||||||
Disabled Mode Output Leakage | VSHDN (0.3V x VDD), VREF = 0 to VDD | ±0.01 | ±1 | µA | |||
Output Noise | 0.1Hz to 10Hz | 20 | µVp-p | ||||
Shutdown Delay Time | 1 | µs | |||||
Enable Delay Time | RL = 100k to VSS, VREF within 1% | 16 | µs | ||||
Power-On Time | RL = 100k to VSS, VREF within 1% | 16 | µs | ||||
Capacitive Load Stability | 0 to 100 | nF |
Note 1: Comparator Input Offset is defined as the center of the input-referred hysteresis zone.
Note 2: Measured at VCM(COMP) = 0 for the MAX9001/MAX9002/MAX9004/MAX9005; or VCM(COMP) = VREF for the MAX9000/MAX9003.
Note 3: Input-referred hysteresis is defined as the difference of the trip points required to change comparator output states.
Note 4: VOD is the overdrive that is beyond the offset and hysteresis-determined trip points.
Note 5: Rise and fall times are measured between 10% and 90% at COUT.
Typical Operating Characteristics
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)
500
SUPPLYCURRENT(A)
450
400
350
300
250
SUPPLY CURRENT vs. SUPPLY VOLTAGE
004
MAX9000/MAX9001/MAX9003/MAX9
MAX9002/MAX9005
3.5
MAX9000TOC01
SHUTDOWNSUPPLYCURRENTA()
3.0
2.5
2.0
1.5
1.0
0.5
SHUTDOWNSUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX9000TOC02
SHUTDOWNLOGICTHRESHOLD(V)
2.5
2.0
1.5
1.0
0.5
SHUTDOWNLOGIC THRESHOLD vs. SUPPLY VOLTAGE
MAX9000TOC03
200
2.5
3.0
3.5 4.0
4.5 5.0 5.5
0
2.5
3.0
3.5 4.0
4.5 5.0 5.5
0
2.5
3.0
3.5
4.0 4.5 5.0 5.5
MAX9000TOC06
SUPPLYVOLTAGE(V)
SUPPLYVOLTAGE(V)
SUPPLYVOLTAGE(V)
500
SUPPLYCURRENT(A)
450
400
350
300
MAX9000/MAX9001/MAX9003/MAX9004 SUPPLY CURRENT vs. TEMPERATURE
5.5V
MAX9000TOC04
VDD=
VDD=2.5V
5.0
SHUTDOWNSUPPLYCURRENTA()
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
SHUTDOWNSUPPLY CURRENT vs. TEMPERATURE
VDD=5.5V
VDD=2.5V
2.00
MAX9000TOC05
SHUTDOWNLOGICTHRESHOLD(V)
1.98
1.96
1.94
1.92
1.90
SHUTDOWNLOGIC THRESHOLD vs. TEMPERATURE
-40
-20 0
20 40 60 80 100
-40 -20 0 20 40 60 80 100
-40
-20 0
20 40 60 80 100
500
TEMPERATURE(°C)
MAX9002/MAX9005
MAX9000TOC07
SUPPLY CURRENT vs. TEMPERATURE
TEMPERATURE(°C)
OP-AMPOUTPUT VOLTAGESWINGHIGH (VOH) vs. SOURCECURRENT
MAX9000TOC08
450
TEMPERATURE(°C)
OP-AMPOUTPUT VOLTAGESWINGLOW (VOL) vs. SINKCURRENT
MAX9000TOC09
600
SUPPLYCURRENT(A)
450
400
350
300
-40
-20 0
VDD=5.5V
.5V
VDD=2
20 40 60 80 100
400
350
VDD- VOH (mV)
300
250
200
150
100
50
0
0
TA=+85°C TA=+25°C
TA= -40°C
1 2 3 4 5 6
500
VOL (mV)
400
300
200
100
0
0
2 4 6
TA=+85°C TA=+25°C
TA= -40°C
8 10 12 14 16 18 20
TEMPERATURE(°C)
SOURCECURRENT(mA)
SINKCURRENT(mA)
CHANGEINVOS (V)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)
CHANGE INOP-AMPOFFSET VOLTAGE (VOS) vs. SUPPLY VOLTAGE
MAX9000TOC10
30
20
10
0
-10
-20
-30
CHANGE INOP-AMPOFFSET VOLTAGE (VOS) vs. TEMPERATURE
MAX9000TOC11
100
CHANGEINVOS (V)
50
0
-50
-100
-150
OP-AMP COMMON-MODEREJECTIONRATIO vs. TEMPERATURE
MAX9000TOC12
92
91
90
CMRR(dB)
89
88
87
86
85
84
2.5
3.0
3.5 4.0
4.5 5.0 5.5
-40
-20 0
20 40 60 80 100
-40
-20 0
20 40 60 80 100
SUPPLYVOLTAGE(V)
TEMPERATURE(°C)
TEMPERATURE(°C)
140
130
GAIN(dB)
120
110
100
90
80
OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE
VDD=5.5V RLTOGND
RL=100k
RL=10k
RL=2k
140
MAX9000TOC13
130
GAIN(dB)
120
110
100
90
80
OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE
RL=100k
2k
RL=10k
RL=
VDD=2.5V RLTOGND
140
MAX9000TOC14
130
GAIN(dB)
120
110
100
90
80
OP-AMP LARGE-SIGNALGAIN vs. TEMPERATURE
MAX9000TOC15
RL=100k
RL=10k
3V
2
G=0.2
OVDD/
TSWIN
RLT VOU
=5.5V
VDD
RL=1k
VTO5.
0 100
200 300
400 500 600
0 100
200 300
400 500 600
-40
-20
0 20
40 60 80 100
140
130
GAIN(dB)
120
110
100
90
80
OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)
MAX9000TOC16
OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE
RL=100k
RL=10k
RL=2k
VDD=5.5V RLTOVDD
140
GAIN(dB)
130
120
110
100
OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)
MAX9000TOC17
OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE
VDD=2.7V RLTOVDD
RL=100k RL=10k
RL=2k
140
130
GAIN(dB)
120
110
100
90
80
TEMPERATURE(°C)
MAX9000TOC18
OP-AMP LARGE-SIGNALGAIN vs. TEMPERATURE
RL=100k RL=10k
RL=1k
VDD=2.5V RLTOVDD/2
VOUTSWING=0.2VTO2.3V
0 100
200 300
400 500 600
0 100
200 300
400 500 600
-40
-20
0 20
40 60 80 100
OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)
OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)
TEMPERATURE(°C)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)
MAX9000/MAX9001/MAX9002 OP-AMPGAINAND PHASE vs. FREQUENCY (NOLOAD)
60 MAX9000TOC19 180
MAX9000/MAX9001/MAX9002 OP-AMPGAINAND PHASE
vs. FREQUENCY (WITHCLOAD)
60 MAX9000TOC20
180
MAX9000/MAX9001/MAX9002
OP-AMP POWER-SUPPLY REJECTION vs. FREQUENCY
AV=+1 NOLOAD
MAX9000TOC21
0
40
GAIN(dB)
20
0
-20
-40
AV=+1000 NOLOAD
GAIN
PHASE
144
108
PHASE(DEGREES)
72
36
0
-36
-72
-108
-144
-180
40
GAIN(dB)
20
0
-20
-40
AV=+1000 CL=270pF
GAIN
PHASE
144
PHASE(DEGREES)
POWER-SUPPLYREJECTION(dB)
108
72
36
0
-36
-72
-108
-144
-180
-20
-40
-60
-80
-100
100 1k
10k
100k 1M
10M
100 1k
10k
100k 1M
10M
100 1k 10k 100k 1M 10M
FREQUENCY(Hz)
MAX9003/MAX9004/MAX9005 OP-AMPGAINAND PHASE vs. FREQUENCY (NOLOAD)
60 MAX9000TOC22 180
FREQUENCY(Hz)
MAX9003/MAX9004/MAX9005 OP-AMPGAINAND PHASE
vs. FREQUENCY (WITHCLOAD)
60 MAX9000TOC23 180
FREQUENCY(Hz)
MAX9003/MAX9004/MAX9005
OP-AMP POWER-SUPPLY REJECTION vs. FREQUENCY
AV=+10 NOLOAD
MAX9000TOC24
0
40
GAIN(dB)
20
0
-20
-40
AV=+1000 NOLOAD
144
AIN
G
PHASE(DEGREES)
108
72
36
0
E
PHA
-36
S -72
-108
-144
-180
40
GAIN(dB)
20
0
-20
-40
AV=+1000 CL=270pF
144
AIN
G
PHASE(DEGREES)
POWER-SUPPLYREJECTION(dB)
108
72
36
0
E
PHA
-36
S -72
-108
-144
-180
-20
-40
-60
-80
-100
100 1k 10k 100k 1M 10M FREQUENCY(Hz)
MAX9000/MAX9001/MAX9002
OP-AMP PERCENTOVERSHOOT vs. LOADCAPACITANCE
MAX9000TOC25
AV=+1 RLTOVDD/2 | |||||||||
RL=100k | |||||||||
RL=1k | |||||||||
RL=10k | |||||||||
50
40
100 1k 10k 100k 1M 10M FREQUENCY(Hz)
MAX9003/MAX9004/MAX9005 OP-AMP PERCENTOVERSHOOT vs. LOADCAPACITANCE
AV=+10 RLTOVDD/2
MAX9000TOC26
50
RL=10k
40
VOLTAGENOISE(nV/Hz)
1000
100 1k 10k 100k 1M 10M FREQUENCY(Hz)
MAX9000TOC27
OP-AMP VOLTAGENOISEDENSITY vs. FREQUENCY
OVERSHOOT(%)
OVERSHOOT(%)
RL=100k
300
30 30
20 20
10 10
RL=1k
100
30
0
0 100 200 300 400 500 600 700 800 9001000
CLOAD(pF)
0
0 100 200 300 400 500 600 700 800 9001000
CLOAD(pF)
10
1 10 100 1k 10k 100k FREQUENCY(Hz)
THD+NOISE(%)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)
1
0.1
0.01
MAX9000/MAX9001/MAX9002
MAX9000TOC28
OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. FREQUENCY
AV=+1 VIN=2Vp-p
500kHzLOWPASSFILTER RLTOVDD/2
RL=1k RL=10k
0.25
0.20
THD+NOISE(%)
0.15
0.10
MAX9000/MAX9001/MAX9002
MAX9000TOC29
OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. VAOUT
AV=+1
VIN=10kHzSINEWAVE 500kHzLOWPASSFILTER
RLTOVDD/2 RL=10k
RL=1k
MAX9000/MAX9001/MAX9002
OP-AMPOUTPUT IMPEDANCE vs. FREQUENCY
MAX9000TOC30
1k
AV=+1 NOLOAD
OUTPUTIMPEDANCE( )
100
10
1
RL=100k
0.05
RL=100k
0.1
0.001
10
100 1k
10k
100k
0
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
0.01
100 1k
10k
100k 1M
10M
FREQUENCY(Hz)
MAX9003/MAX9004/MAX9005
OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. FREQUENCY
MAX9000TOC31
1
AV=+10
VIN=200mVp-p
0.25
VAOUTSWING(Vp-p)
MAX9003/MAX9004/MAX9005
MAX9000TOC32
OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. VAOUT
AV=+10
VIN=10kHzSINEWAVE
FREQUENCY(Hz)
MAX9003/MAX9004/MAX9005
OP-AMPOUTPUT IMPEDANCE vs. FREQUENCY
MAX9000TOC33
10k
OUTPUTIMPEDANCE( )
AV=+10 NOLOAD
THD+NOISE(%)
0.1
500kHzLOWPASSFILTER
RLTOVDD/2
RL=1k
RL=10k
0.20
THD+NOISE(%)
0.15
500kHzLOWPASSFILTER
RLTOVDD/2
VIN VOUT
RL
1k
100
VIN VOUT
RL=100k
0.10
4k 36k 10
RL=1k
0.01
10
4k 36k
100
RL
1k 10k 100k
0.05
0
RL=10k
RL=100k 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
1
0.1
100 1k
10k
100k 1M
10M
200
150
CHANGEINVOS (V)
100
50
0
-50
FREQUENCY(Hz)
CHANGE INCOMPARATOROFFSET VOLTAGE (VOS) vs. SUPPLY VOLTAGE
MAX9000TOC34
200
150
CHANGEINVOS (V)
100
50
0
-50
VAOUTSWING(Vp-p)
CHANGE INCOMPARATOROFFSET VOLTAGE (VOS) vs. TEMPERATURE
FREQUENCY(Hz)
COMPARATORCOMMON-MODE REJECTIONRATIO (CMRR)
vs. TEMPERATURE
MAX9000TOC35
MAX9000TOC36
95
93
CMRR(dB)
91
89
-100
-150
-200
2.5
3.0
3.5
4.0 4.5 5.0 5.5
-100
-150
-200
-40
-20 0
20 40 60 80 100
87
85
-40
-20 0
20 40 60 80 100
SUPPLYVOLTAGE(V)
TEMPERATURE(°C)
TEMPERATURE(°C)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)
3.5
HYSTERESIS(mV)
3.2
2.9
2.6
2.3
COMPARATORHYSTERESIS vs. TEMPERATURE
MAX9000TOC37
600
500
VDD- VOH (mV)
400
300
200
100
COMPARATOROUTPUT VOLTAGE SWINGHIGH (VOH) vs. SOURCECURRENT
MAX9000TOC38
TA=+85°C TA=+25°C
TA= -40°C
600
500
VOL (mV)
400
300
200
100
COMPARATOROUTPUT VOLTAGE SWINGLOW (VOL) vs. SINKCURRENT
MAX9000TOC39
TA=+85°C TA=+25°C
TA= -40°C
2.0
-40
-20 0
20 40 60 80 100
0
0 1 2 3 4
5 6 7 8 9 10
0
0 1 2 3 4
5 6 7 8 9 10
300
PROPAGATIONDELAY (ns)
275
250
225
TEMPERATURE(°C)
COMPARATOR PROPAGATIONDELAY vs. INPUTOVERDRIVE
MAX9000TOC40
800
700
600
tPD+(ns)
500
SOURCECURRENT(mA)
MAX9000TOC41
POSITIVECOMPARATOR PROPAGATION DELAY (tPD+) vs. LOADCAPACITANCE
OVERDRIVE=5mV OVERDRIVE=25mV
800
700
600
tPD- (ns)
500
SINKCURRENT(mA)
MAX9000TOC42
NEGATIVECOMPARATOR PROPAGATION DELAY (tPD-) vs. LOADCAPACITANCE
OVERDRIVE=5mV
OVERDRIVE=25mV
200
175
400
tPD- | |||||||||
tPD+ | |||||||||
300
200
OVERDRIVE=100mV
400
300
200
OVERDRIVE=100mV
150
0
10 20
30 40
50 60 70 80 90 100
100
0 2000 4000 6000 8000 10,000
100
0 2000 4000 6000 8000 10,000
INPUTOVERDRIVE(mV)
CLOAD(pF)
CLOAD(pF)
200
COMPARATOR PROPAGATIONDELAY vs. TEMPERATURE
MAX9000TOC43
OVERDRIVEVOLTAGE=50mV
VREFPOWER-SUPPLY REJECTION vs. FREQUENCY
0
MAX9000TOC44
1.0
VREFOUTPUT VOLTAGECHANGE vs. TEMPERATURE
PROPAGATIONDELAY(ns)
175
150
125
tPD- tPD+
POWER-SUPPLYREJECTION(dB)
-20
-40
-60
-80
0.5
VREFOUTPUTVOLTAGECHANGE(mV)
MAX9000TOC45
0
-0.5
-1.0
-1.5
100
-40
-20
0 20
40 60 80 100
-100
1
10 100 1k
10k
100k 1M
-2.0
-40
-20 0
20 40
60 80 100
TEMPERATURE(°C)
FREQUENCY(Hz)
TEMPERATURE(°C)
VREFOUTPUTVOLTAGECHANGE(mV)
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)
VREFOUTPUT VOLTAGECHANGE vs. LOADCURRENT
4
3
2 SINKING
SOURCING
1
0
-1
100
MAX9000TOC46
VREFOUTPUTVOLTAGECHANGE(V)
50
0
-50
VREFOUTPUT VOLTAGECHANGE vs. SUPPLY VOLTAGE
MAX9000TOC47
IOUT
2mA/div
VREF
200mV/div
VREFLOAD-TRANSIENT RESPONSE
MAX9000-TOC48
+1mA
-1mA
-2
-2.0
-1.5
-1.0
-0.5 0 0.5 1.0 1.5 2.0
-100
2.5
3.0
3.5
4.0 4.5 5.0 5.5
50s/div
LOADCURRENT(mA) SUPPLYVOLTAGE(V)
VDD
500mV/div
VREFLINE-TRANSIENT RESPONSE
5.0V
4.5V
VREF 0.1Hz to 10Hz VOLTAGENOISE
MAX9000-TOC50
VIN+
50mV/div
COMPARATOR PROPAGATIONDELAY
MAX9000-TOC51
VIN-=GND NOLOAD
+50mW
MAX9000-TOC49
-50mW
5V/div
VREF VOUT
100mV/div
2V/div
tPD+
tPD-
5s/div
1sec/div
100ns/div
MAX9000/MAX9001/MAX9002
OP-AMP SMALL-SIGNAL TRANSIENT RESPONS
MAX9000/MAX9001/MAX9002 OP-AMP SMALL-SIGNAL TRANSIENT
RESPONSEWITHCLOAD
MAX9003/MAX9004/MAX9005
MAX9000-TOC54
OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE
VIN
50mV/div
VOUT
50mV/div
AV=+1 NOLOAD
MAX9000-TOC52
VIN
50mV/div
VOUT
50mV/div
AV=+1
CL=270pF
VIN
MAX9000-TOC53
10mV/div
VOUT
50mV/div
AV=+10 NOLOAD
500ns/div
1s/div
500ns/div
(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)
MAX9003/MAX9004/MAX9005 OP-AMP SMALL-SIGNAL TRANSIENT
RESPONSEWITHCLOAD
AV=+1
MAX9000/MAX9001/MAX9002
MAX9000-TOC55
MAX9000-TOC56
OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE
AV=+1
MAX9003/MAX9004/MAX9005
MAX9000-TOC57
OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE
AV=+10
VIN
10mV/div
VOUT
50mV/div
CL=270pF
VIN
5V/div
4V VOUT
1V/div
NOLOAD
VIN
0.5V/div
5V
VOUT
1V/div
NOLOAD
0V
1s/div
2s/div
0V
500ns/div
PIN | NAME | FUNCTION | |||
MAX9000/ MAX9003 | MAX9002/ MAX9005 | MAX9001/MAX9004 | |||
10 µMAX | 14 SO | ||||
— | — | 1 | 2 | SHDN | Shutdown Logic Input |
1 | 1 | 2 | 3 | AOUT | Op-Amp Output |
2 | 2 | 3 | 4 | AIN- | Inverting Op-Amp Input |
3 | 3 | 4 | 5 | AIN+ | Noninverting Op-Amp Input |
4 | 4 | 5 | 6 | VSS | Negative Supply or Ground |
5 | — | 6 | 9 | REF | Internal Reference Output |
— | 5 | 7 | 10 | CIN- | Inverting Comparator Input |
6 | 6 | 8 | 11 | CIN+ | Noninverting Comparator Input |
7 | 7 | 9 | 12 | COUT | Comparator Output |
8 | 8 | 10 | 13 | VDD | Positive Supply |
— | — | — | 1, 7, 8, 14 | N.C. | No Connection. Not internally connected. |
Figure 1. MAX9000–MAX90005 Functional Diagrams
COMP REF
COMP
NORMAL/SHUTDOWNCONTROL 4M OPAMP COMP MAX9004 |
The MAX9001–MAX9005 are combinations of a high- speed operational amplifier, a 185ns comparator, and a 1%-accurate, 8ppm/°C, 1.230V reference. The devices are offered in space-saving 8-pin and 10-pin µMAX pack- ages. The comparator’s inverting input is internally con- nected to the reference output in the MAX9000/MAX9003. The MAX9002/MAX9005 do not have an internal refer- ence, but the inverting input of the comparator is avail- able externally. The MAX9001/MAX9004 include both the inverting input and the reference output. The MAX9000/ MAX9001/MAX9003/MAX9004 typically consume only 410µA of quiescent current, while the MAX9002/ MAX9004 typically consume 340µA. These low-power, Rail-to-Rail devices provide excellent AC and DC perfor- mance and are ideally suited to operate from a single supply. The MAX9001/MAX9004 feature a shutdown mode that sets the outputs in a high-impedance state and reduces the supply current to 2µA, making these devices ideal for portable and battery-powered systems.
Op Amp The op amps in the MAX9000/MAX9001/MAX9002 are unity-gain stable with a gain-bandwidth product of 1.25MHz and a slew rate of 0.85V/µs. The amplifiers in the MAX9003/MAX9004/MAX9005 are stable at closed- loop gains greater than or equal to 10V/V, with a gain- bandwidth product of 8MHz and a slew rate of 6.0V/µs.
The common-mode input voltage range extends from 150mV below the negative rail to within 1.2V of the pos- itive rail. The amplifier output does not undergo phase reversal when the common-mode input range is exceeded, and the input impedance is relatively con- stant for input voltages within both supply rails. The MOS differential inputs of the amplifiers feature extremely high input impedance and ultra-low input bias currents. The CMOS output stage achieves true rail-to-rail operation; the outputs swing to within a few millivolts of the supply rails, thus extending the dynamic range. A proprietary design achieves high open-loop gain, enabling these devices to operate at low quies- cent currents yet maintain excellent DC and AC char- acteristics under various load conditions. These devices have been designed to maintain low offset volt- age over the entire operating-temperature, common- mode, and supply-voltage ranges.
Comparator The common-mode input range extends from 150mV below the negative rail to within 1.1V of the positive rail. The bipolar differential inputs of the comparator feature high input impedance and low input bias currents. The comparators are designed to maintain low offset volt- age over the entire operating-temperature, common- mode, and supply-voltage ranges. In the MAX9000/ MAX9003, the comparator’s inverting input is internally connected to the reference output.
The CMOS output stage achieves true rail-to-rail opera- tion; the outputs swing to within a few millivolts of the supply rails. The comparator’s propagation delay is 185ns and is a function of the overdrive (see Typical Operating Characteristics). TTL/CMOS compatibility is maintained even with a ±4mA output load. A propri- etary design of the output stage substantially reduces the cross-conduction current during output transitions, thereby minimizing power-supply glitches typical of most comparators. In addition, the comparator’s ±2mV of built-in hysteresis provides noise immunity and pre- vents unstable outputs even with slow-moving input signals.
Voltage Reference The 1%-accurate, precision 1.230V internal bandgap reference in the MAX9000/MAX9001/MAX9003/ MAX9004 achieves an 8ppm/°C temperature coefficient (tempco). The reference can sink or source 1mA of load current with excellent load regulation. The output typical- ly changes only 60µV for a 3V change in input voltage (line regulation). The reference is stable for capacitive loads up to 100nF.
The MAX9000–MAX9005 offer excellent performance and low power consumption, and are available in space-saving µMAX packages. The following section provides some practical application guidelines.
Bypassing and Layout The MAX9000–MAX9005 operate from a +2.5V to +5.5V single supply or from ±1.25V to ±2.75V dual supplies. (In the MAX9000/MAX9001/MAX9003/MAX9004, the
reference voltage is referred to as VSS.). For single- supply operation, bypass the power supply with a 0.1µF capacitor. For dual supplies, bypass each supply to ground. Bypass with capacitors as close as possible to the device to minimize lead inductance and noise. Use a low-inductance ground plane if possible. A print- ed circuit board with a ground plane is recommended. Avoid using wire-wrap boards, breadboards, or IC sockets. For heavy loads at the comparator’s and/or
amplifier’s output, add a 1µF to 10µF power-supply bypass capacitor.
The device has a high degree of isolation between the various blocks. To maintain isolation, careful layout is required. Take special precautions to avoid crossing signal traces, especially from the outputs to the inputs. For sensitive applications, shielding might be required. In addition, stray capacitance may affect the stability and frequency response of the amplifier. Decrease stray capacitance by minimizing lead lengths in the board layout, as well as placing external components as close to the device as possible.
Op-Amp Frequency Stability Driving large capacitive loads can cause instability in most low-power, rail-to-rail output amplifiers. These amplifiers are stable with capacitive loads up to 250pF in their minimum gain configuration. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output, as shown in Figure 2. This resistor improves the circuit’s phase mar- gin by isolating the load capacitor from the amplifier’s output. Figures 3 and 4 show the response of the ampli- fier with and without an isolation resistor, respectively.
The total capacitance at the op amp’s inputs (input capacitance + stray capacitance) along with large-value feedback resistors can cause additional poles within the amplifier’s bandwidth, thus degrading the phase margin. To compensate for this effect, place a 2pF to 10pF capacitor across the feedback resistor, as shown in Figure 5.
RS MAX9000 CLOAD MAX9001 MAX9002 RS CLOAD R R MAX9003 MAX9004 MAX9005 |
Figure 2. Isolation Resistors to Drive Capacitive Loads
VIN 50mV/ div VOUT 50mV/ div 2s/div |
VIN 50mV/ div VOUT 50mV/ VDD=+1 div CL=510pF 2s/div |
MAX9000-FIG03
MAX9000-FIG04
AIN+ AOUT R2 R1 2pFTO10pF |
Figure 3. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal Transient Response with Capacitive Load (CL = 510pF) and Isolation Resistor (RISO = 91)
Figure 5. Compensation for Input Capacitance
Figure 4. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal Transient Response with Capacitive Load (CL = 510pF) and No Isolation Resistor
R2 VIN R1 COUT REF |
Figure 6. External Hysteresis
Reference Bypassing While the internal reference is stable with capacitive loads up to 100nF, it does not require an output capaci- tor for stability. However, in applications where the load or the supply could experience large step changes, an output capacitor reduces the amount of overshoot and improves the circuit’s transient response.
Comparator Input Stage The comparator’s input bias current is typically 8nA. To reduce the offset error caused by the bias current flow- ing through the external source impedance, match the effective impedance seen by each input. High source impedance together with the comparator’s input capaci- tance can increase the propagation delay through the
comparator. The outputs do not undergo phase rever- sal when the input common-mode range is exceeded, and the input impedance is relatively constant for input voltages within both supply rails.
Comparator Hysteresis Built-in ±2mV hysteresis improves the comparator’s noise immunity. It prevents unstable outputs with slow- moving or noisy input signals. If additional hysteresis is required, add positive feedback as shown in Figure 6. This configuration increases the hysteresis band to desired levels, but also increases power consumption and slows down the output response.
To add hysteresis, use the following procedure:
Step 1: The device’s input bias current can be as high as 80nA. To minimize error due to the input bias, choose a value for R2 of 100k (VREF / R2), which allows a current of 12.33µA at the upper trip point.
Step 2: Choose the width of the hysteresis band. In this example, choose 20mV for the added external hystere- sis (VEHYST = 20mV). Total hysteresis = VEHYST + VIHYST = 24mV.
R1 = R2 (VEHYST - 2VIHYST) / (VDD + 2VIHYST)
where IHYST is the device’s internal hysteresis.
Step 3: Determine R1. If VDD = 5V, then R1 = 319.
Step 4: Check the hysteresis trip points. The following equation represents the upper trip point (VIN(H)):
VIN(H) = [(R1 + R2) / R2] (VREF + VIHYST) = 1.238V
The lower trip point is 24mV lower than upper trip point. VIN(L) = 1.238V - 0.024V = 1.214V.
Comparator Propagation Delay The comparator’s propagation delay is a function of the input overdrive voltage. Overdrive voltage is measured from beyond the edge of the offset and hysteresis- determined trip points (see Typical Operating Characteristics for a graph of Propagation Delay vs. Input Overdrive). High source impedance coupled with the comparator’s input capacitance increases the prop- agation delay. Large capacitive loads also increase the propagation delay.
MAX9000-FIG07
Shutdown (SHDN) Shutdown is active-low enabled. The SHDN input for the MAX9001/MAX9004 can be taken above the posi-
SHDN
5V/div
AOUT
2V/div
COUT
5V/div
VREF
1V/div
5s/div AV=+1V/V,CAIN+=2.5V,CCIN+=2.5V
Figure 7. Enable/Disable Response of Op Amp, Comparator, and Reference to SHDN
tive supply without an increase in the SHDN input cur- rent, allowing them to be driven from independent logic circuits powered from a different supply voltage. However, the logic threshold voltage requirements must be met for proper operation. If SHDN is left unconnected, the device defaults to the enabled mode through an internal 4M pull-up to VDD. If SHDN is to be left unconnected, take proper care to ensure that no signals are coupled to this pin, as this may cause false triggering.
MAX9000–MAX9005
In shutdown mode, all outputs are set to a high-imped- ance state and the supply current reduces to 2µA. Enable times for the op amp, comparator, and refer- ence are 2µs, 100ns, and 16µs, respectively. Shutdown delay times for the op amp, comparator, and reference are 200ns, 100ns, and 1µs, respectively (Figure 7).
Application Cir cuits
Radio Receiver for Alarms
and Detectors Figure 8’s circuit is useful as a front end for RF alarms. An unshielded inductor is used with capacitors C1A, C1B, and C1C in a resonant circuit to provide frequen- cy selectivity. The op amp from a MAX9003 amplifies the signal received. The comparator improves noise immunity, provides a signal-strength threshold, and translates the received signal into a pulse train. The tuned LC circuit in Figure 8 is set for 300kHz. The lay- out and routing of components for the amplifier should be tight to minimize 60Hz interference and crosstalk from the comparator. Metal shielding is recommended to prevent RFI from the comparator or digital circuitry from exciting the receiving antenna. The transmitting
VCC=5V ANTENNA MAX9003 0.1F 0.1F 20k 10M C1A AMP 390pFC1B L1 0.01nF 33H 9.1k C1C 50-100pF 10k COMP 5.1M 1.230V REF L1xC1= 1 LAYOUT-SENSITIVEAREA, (2 fC) 2 METALRFISHIELDINGADVISED |
Figure 8. Radio Receiver Application
VCC=5V 100kHz, C2 5Vp-p 15pF, 5% NEC R2 NEC PH302B 100k, 0.1F SE307-C 4.99k 1% 51 R1A 49.9k C1 AMP 1% R1B 150pF, 4.99k 5% 1% 100k 1.230V COMP MAX9003 0.1F REF LAYOUT-SENSITIVEAREA R1xC1=R2xC2= 1 2 fC |
antenna can be long parallel wires spaced about 7.2cm apart, with equal but opposite currents. Radio waves from this antenna are detectable when the receiver is brought within close proximity, but cancel out at greater distances.
Infrared Receiver Front End for Remote Controls and Data Links
The circuit in Figure 9 uses the MAX9003 as a PIN pho- todiode preamplifier and discriminator for an infrared receiver. The op amp is configured as a Delyiannis- noise and eliminates low-frequency interference from sunlight, fluorescent lights, etc. This circuit is applica- ble for TV remote controls and low-frequency data links up to 200kbps. Carrier frequencies are limited to around 100kHz, as in the example circuit. Component layout and routing for the amplifier should be tight to reduce stray capacitance, 60Hz interference, and RFI from the comparator. Crosstalk from comparator edges distorts the amplifier signal. To minimize this effect, add a lowpass RC filter to the connection from the reference to the op amp’s noninverting input.
Signal Conditioning For incoming signals that require filtering, the internal amplifier provides an opportunity to create an active fil- ter. This may be required for relatively high-speed sig- nals that require adequate filtering of high-speed carrier frequencies, harmonics, and external noise. In addition, the amplifier can be used to amplify the signal prior to digitizing it through the comparator to improve the comparator’s overall output response and improve its noise immunity.
Figure 9. Infrared Receiver Application
TOPVIEW
AOUT AIN- AIN+ VSS
SO/MAX
VDD COUT CIN+
1 | 8 | |
2 | MAX9000 | 7 |
3 | MAX9002 | 6 |
MAX9003 | ||
MAX9005 | ||
4 | 5 | |
REF(CIN-)
AIN- 3
AIN+ 4
VSS 5
MAX9001 MAX9004
SHDN | 1 | 10 | VDD | N.C. | 1 | 14 | N.C. | |||||
AOUT | 2 | 9 | COUT | SHDN | 2 | 13 | VDD |
MAX
8 CIN+
7 CIN-
6 REF
AOUT 3
AIN- 4
AIN+ 5
VSS 6
N.C. 7
MAX9001 MAX9004
12 COUT
11 CIN+
10 CIN-
9 REF
8 N.C.
SO
( )AREFORTHEMAX9002/MAX9005.
0.1F AIN+ VDD INPUT OPAMP MAX9000 AIN- MAX9003 AOUT 1M R2 CIN+ COUT COMP R1 REF REF 1.230V VSS |
PART | TEMP. RANGE | PIN-PACKAGE | |
MAX9002EUA | -40°C to | +85°C | 8 µMAX |
MAX9002ESA | -40°C to | +85°C | 8 SO |
MAX9003EUA | -40°C to | +85°C | 8 µMAX |
MAX9003ESA | -40°C to | +85°C | 8 SO |
MAX9004EUB | -40°C to | +85°C | 10 µMAX |
MAX9004ESD | -40°C to | +85°C | 14 SO |
MAX9005EUA | -40°C to | +85°C | 8 µMAX |
MAX9005ESA | -40°C to | +85°C | 8 SO |
TRANSISTOR COUNT: 283
8LUMAXD.EPS
10LUMAXB.EPS
SOICN.EPS
Package Infor mation (continued)
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1998 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
MAX9000ESA+ MAX9000ESA+T MAX9000EUA+ MAX9000EUA+T MAX9001ESD+ MAX9001ESD+T MAX9001EUB+ MAX9001EUB+T MAX9002ESA+ MAX9002ESA+T MAX9002EUA+ MAX9002EUA+T MAX9003ESA+ MAX9003ESA+T MAX9003EUA+ MAX9003EUA+T MAX9004ESD+ MAX9004ESD+T MAX9004EUB+ MAX9004EUB+T MAX9005ESA+ MAX9005ESA+T MAX9005EUA+ MAX9005EUA+T MAX9000ESA MAX9000ESA-T MAX9000EUA MAX9000EUA-T MAX9001EUB MAX9001EUB-T MAX9002ESA MAX9002ESA-T MAX9002EUA MAX9002EUA-T MAX9003ESA MAX9003ESA-T MAX9003EUA MAX9003EUA-T MAX9004ESD MAX9004ESD-T MAX9004EUB MAX9004EUB-T MAX9005ESA MAX9005ESA-T