TSV620, TSV620A, TSV621,

TSV621A

Rail-to-rail input/output 29 µA 420 kHz CMOS operational amplifiers



Description

Datasheet - production data


In+ 1

5 VCC

VDD

2

+


In- 3

4 Out


TSV621ICT/ILT SC70-5/SOT23-5



TSV620ICT/ILT SC70-6/SOT23-6


5 SHDN

4 Out

+

1

2

3

CC-

In-

V

In+

Features

The TSV620, TSV620A, TSV621, and TSV621A

are single operational amplifiers offering low voltage, low power operation, and rail-to-rail input and output.

6 VCC+

With a very low input bias current and low offset voltage (800 µV maximum for the A version), the TSV62x is ideal for applications requiring precision. The device can operate at a power supply ranging from 1.5 to 5.5 V, and therefore suit battery-powered devices and extend their battery life.

This product features an excellent speed/power consumption ratio, offering a 420 kHz gain bandwidth while consuming only 29 µA at a

5 V supply voltage.

These operational amplifiers are unity gain stable for capacitive loads up to 100 pF.

The device is internally adjusted to provide very narrow dispersion of AC and DC parameters, especially power consumption, product gain bandwidth, and slew rate.

The TSV62x present high tolerance to ESD, sustaining 4 kV for the human body model.

The device is offered in macropackages, SC70-6 and SOT23-6 for the TSV620 and

SC70-5 and SOT23-5 for the TSV621. They are guaranteed for industrial temperature ranges from

-40 °C to 125 °C.

All these features make the TSV620, TSV620A, TSV621, and TSV621A ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.



May 2017 DocID14912 Rev 3 1/24

This is information on a product in full production. www.st.com


Contents

  1. Absolute maximum ratings and operating conditions 3

  2. Electrical characteristics 4

  3. Application information 12

    1. Operating voltages 12

    2. Rail-to-rail input 12

    3. Rail-to-rail output 12

    4. Shutdown function (TSV620) 13

    5. Optimization of DC and AC parameters 14

    6. Driving resistive and capacitive loads 14

    7. PCB layouts 14

    8. Macromodel 15

  4. Package information 16

    1. SOT23-5 package information 17

    2. SOT23-6 package information 18

    3. SC70-5 (or SOT323-5) package information 19

    4. SC70-6 (or SOT323-6) package information 20

  5. Ordering information 22

  6. Revision history 23

  1. Absolute maximum ratings and operating conditions


    Table 1. Absolute maximum ratings (AMR)

    Symbol

    Parameter

    Value

    Unit

    VCC

    Supply voltage (1)

    6


    V

    Vid

    Differential input voltage (2)

    ±VCC

    Vin

    Input voltage (3)

    (VCC-) - 0.2 to (VCC+) + 0.2

    Iin

    Input current (4)

    10

    mA

    SHDN

    Shutdown voltage (5)

    (VCC-) - 0.2 to (VCC+) + 0.2

    V

    Tstg

    Storage temperature

    -65 to 150

    °C


    Rthja

    Thermal resistance junction to ambient (6) (7)

    SC70-5 SOT23-5 SOT23-6 SC70-6


    205

    250

    240

    232


    °C/W

    Tj

    Maximum junction temperature

    150

    °C


    ESD

    HBM: human body model(8)

    4

    kV

    MM: machine model (9)

    300

    V

    CDM: charged device model (10)

    1.5

    kV


    Latch-up immunity

    200

    mA

    1. All voltage values, except differential voltage are with respect to network ground terminal.

    2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

    3. Vcc-Vin must not exceed 6 V.

    4. Input current must be limited by a resistor in series with the inputs.

    5. Vcc-SHDN must not exceed 6 V.

    6. Short-circuits can cause excessive heating and destructive dissipation.

    7. Rth are typical values.

    8. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

    9. Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

    10. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.


      Table 2. Operating conditions

      Symbol

      Parameter

      Value

      Unit

      VCC

      Supply voltage

      1.5 to 5.5

      V

      Vicm

      Common mode input voltage range

      (VCC-) - 0.1 to (VCC+) + 0.1

      Toper

      Operating free air temperature range

      -40 to +125

      °C


      DocID14912 Rev 3 3/24


  2. Electrical characteristics

    Table 3. Electrical characteristics at VCC+ = 1.8 V with VDD = 0 V, Vicm = VCC/2, Top = 25 °C, and RL connected to VCC/2 (unless otherwise specified)

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    Vio


    Offset voltage

    TSV62x TSV62xA



    4

    0.8


    mV

    Tmin < Top < Tmax TSV62x TSV62xA




    6

    2.8

    ∆Vio/∆T

    Input offset voltage drift



    2


    µV/°C


    Iio

    Input offset current (Vout = VCC/2)



    1

    10 (1)


    pA

    Tmin < Top < Tmax


    1

    100


    Iib

    Input bias current (Vout = VCC/2)



    1

    10 (1)

    Tmin < Top < Tmax


    1

    100


    CMR

    Common mode rejection ratio 20 log (ΔVic/ΔVio)

    0 V to 1.8 V, Vout = 0.9 V

    53

    74



    dB

    Tmin < Top < Tmax

    51




    Avd


    Large signal voltage gain

    RL= 10 kΩ, Vout= 0.5 V to 1.3 V

    78

    95


    Tmin < Top < Tmax

    73




    VOH

    High level output voltage (VOH = VCC - Vout)

    RL = 10 kΩ


    5

    35


    mV

    Tmin < Top < Tmax



    50

    VOL


    Low level output voltage

    RL = 10 kΩ


    4

    35

    Tmin < Top < Tmax



    50


    Iout


    Isink

    Vo = 1.8 V

    6

    12



    mA

    Tmin < Top < Tmax

    4




    Isource

    Vo = 0 V

    6

    10


    Tmin < Top < Tmax

    4



    ICC


    Supply current (per operator)

    No load, Vout = VCC/2


    25

    31


    µA

    Tmin < Top < Tmax



    33

    AC performance

    GBP

    Gain bandwidth product

    RL = 10 kΩ, CL = 100 pF,

    f = 100 kHz

    275

    340



    kHz

    Fu

    Unity gain frequency


    RL = 10 kΩ, CL = 100 pF


    280


    m

    Phase margin


    45


    Degrees

    Gm

    Gain margin


    9


    dB

    SR

    Slew rate

    RL = 10 kΩ CL = 100 pF, Av = 1

    0.084

    0.11

    0.14

    V/µs

    1. Guaranteed by design.


    4/24 DocID14912 Rev 3


    Table 4. Shutdown characteristics VCC = 1.8 V

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    ICC


    Supply current in shutdown mode (all operators)

    SHDN = VCC-


    2.5

    50


    nA

    Tmin < Top < 85° C



    200

    Tmin < Top < 125° C



    1.5

    µA

    ton

    Amplifier turn-on time

    RL = 2 kΩ,

    Vout = (VCC-) to VCC + 0.2


    300



    ns

    toff

    Amplifier turn-off time

    RL = 2 kΩ,

    Vout = (VCC+) - 0.5 to (VCC+) + 0.7


    30


    VIH

    SHDN logic high


    1.3




    V

    VIL

    SHDN logic low




    0.5

    IIH

    SHDN current high

    SHDN = VCC+


    10



    pA

    IIL

    SHDN current low

    SHDN = VCC-


    10


    IOLeak

    Output leakage in shutdown mode

    SHDN = VCC-


    50


    Tmin < Top < 125 °C


    1


    nA


    DocID14912 Rev 3 5/24


    Table 5. VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2 (unless otherwise specified)

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    Vio


    Offset voltage

    TSV62x TSV62xA



    4

    0.8


    mV

    Tmin < Top < Tmax TSV62x TSV62xA




    6

    2.8

    ∆Vio/∆T

    Input offset voltage drift



    2


    µV/°C

    Iio


    Input offset current



    1

    10 (1)


    pA

    Tmin < Top < Tmax


    1

    100

    Iib


    Input bias current



    1

    10 (1)

    Tmin < Top < Tmax


    1

    100


    CMR

    Common mode rejection ratio 20 log (ΔVic/ΔVio)

    0 V to 3.3 V, Vout = 1.75 V

    57

    79



    dB

    Tmin < Top < Tmax

    53




    Avd


    Large signal voltage gain

    RL=10 kΩ, Vout = 0.5 V to 2.8 V

    81

    98


    Tmin < Top < Tmax

    76



    VOH

    High level output voltage (VOH = VCC - Vout)

    RL = 10 kΩ


    5

    35


    mV

    Tmin < Top < Tmax



    50


    VOL


    Low level output voltage

    RL = 10 kΩ


    4

    35

    Tmin < Top < Tmax



    50


    Iout


    Isink

    Vo = 5 V

    30

    45



    mA

    Tmin < Top < Tmax

    25




    Isource

    Vo = 0 V

    30

    38


    Tmin < Top < Tmax

    25




    ICC


    Supply current (per operator)

    No load, Vout = 2.5 V


    26

    33


    µA

    Tmin < Top < Tmax



    35

    AC performance

    GBP

    Gain bandwidth product

    RL = 10 kΩ, CL = 100 pF,

    f = 100 kHz

    310

    380



    kHz

    Fu

    Unity gain frequency


    RL = 10 kΩ CL = 100 pF


    310


    m

    Phase margin


    45


    Degrees

    Gm

    Gain margin


    9


    dB

    SR

    Slew rate

    RL = 10 kΩ, CL = 100 pF, AV = 1

    0.094

    0.12


    V/µs

    1. Guaranteed by design.



    6/24 DocID14912 Rev 3


    Table 6. VCC+ = 5 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2 (unless otherwise specified)

    Symbol

    Parameter


    Min.

    Typ.

    Max.

    Unit

    DC performance


    Vio


    Offset voltage

    TSV62x TSV62xA



    4

    0.8


    mV

    Tmin < Top < Tmax TSV62x TSV62xA




    6

    2.8

    ∆Vio/∆T

    Input offset voltage drift



    2


    µV/°C

    Iio


    Input offset current



    1

    10 (1)


    pA

    Tmin < Top < Tmax


    1

    100

    Iib


    Input bias current



    1

    10 (1)

    Tmin < Top < Tmax


    1

    100


    CMR

    Common mode rejection ratio 20 log (ΔVic/ΔVio)

    0 V to 5 V, Vout = 2.5 V

    60

    80



    dB

    Tmin < Top < Tmax

    55




    SVR

    Supply voltage rejection ratio 20 log (ΔVCC/ΔVio)

    VCC = 1.8 to 5 V

    75

    102


    Tmin < Top < Tmax

    73



    Avd


    Large signal voltage gain

    RL=10 kΩ, Vout = 0.5 V to 4.5 V

    85

    98


    Tmin < Top < Tmax

    80




    VOH

    High level output voltage (VOH = VCC - Vout)

    RL = 10 kΩ


    7

    35


    mV

    Tmin < Top < Tmax



    50


    VOL


    Low level output voltage

    RL = 10 kΩ


    6

    35

    Tmin < Top < Tmax



    50


    Iout

    Isink

    Vo = 5 V

    40

    69



    mA

    Tmin < Top < Tmax

    35

    65



    Isource

    Vo = 0 V

    40

    74


    Tmin < Top < Tmax

    35

    68



    ICC


    Supply current (per operator)

    No load, Vout = 2.5 V


    29

    36


    µA

    Tmin < Top < Tmax



    38

    AC performance

    GBP

    Gain bandwidth product

    RL = 10 kΩ, CL = 100 pF,

    f = 100 kHz

    350

    420



    kHz

    Fu

    Unity gain frequency


    RL = 10 kΩ CL = 100 pF


    360


    m

    Phase margin


    45


    Degrees

    Gm

    Gain margin


    9


    dB

    SR

    Slew rate

    RL = 10 kΩ, CL = 100 pF, AV = 1

    0.108

    0.14


    V/µs


    DocID14912 Rev 3 7/24


    Table 6. VCC+ = 5 V, VCC- = 0 V, Vicm = VCC/2, Top = 25° C, RL connected to VCC/2 (unless otherwise specified) (continued)

    Symbol

    Parameter


    Min.

    Typ.

    Max.

    Unit

    en

    Equivalent input noise voltage

    f = 1 kHz


    70


    ---n--V-----

    Hz

    THD

    Total harmonic distortion

    Av = 1, f = 1 kHz, RL= 100 kΩ

    Vicm = Vcc/2, Vout = 2 Vpp


    0.004


    %

    1. Guaranteed by design.


    Table 7. Shutdown characteristics VCC = 5 V

    Symbol

    Parameter

    Conditions

    Min.

    Typ.

    Max.

    Unit

    DC performance


    ICC


    Supply current in shutdown mode (all operators)

    SHDN = VCC-


    5

    50


    nA

    Tmin < Top < 85 °C



    200

    Tmin < Top < 125 °C



    1.5

    µA

    ton

    Amplifier turn-on time

    RL = 2 kΩ, Vout = (VCC-) to (VCC-)

    + 0.2


    300



    ns

    toff

    Amplifier turn-off time

    RL = 2 kΩ, Vout = (VCC+) - 0.5 to (VCC+) + 0.7


    30


    VIH

    SHDN logic high


    4.5




    V

    VIL

    SHDN logic low




    0.5

    IIH

    SHDN current high

    SHDN = VCC+


    10



    pA

    IIL

    SHDN current low

    SHDN = VCC-


    10


    IOLeak

    Output leakage in shutdown mode

    SHDN = VCC-


    50


    Tmin < Top < 125 °C


    1


    nA


    8/24 DocID14912 Rev 3




































































































    0.0


    -0.2


    -0.4














































    0.0

    1.0

    2.0

    3.0

    4.0

    5.0


    Input Common Mode Voltage (V)


    Figure 4. Output current vs. output voltage at

    VCC += 1.5 V


    Figure 6. Voltage gain and phase vs. frequency

    at VCC+ = 1.5 V


    Figure 5. Output current vs. output voltage at

    VCC+ = 5 V

    Figure 3. Supply current vs. supply voltage at

    Vicm = VCC/2

    Figure 2. Input offset voltage vs input common mode at VCC+ = 5 V


    0.4


    0.2

    Figure 1. Input offset voltage vs input common

    mode at VCC+ = 1.5 V

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    -0.1

    -0.2

    -0.3

    -0.4

    -0.5

    -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

    Input Common Mode Voltage (V)

    Input Offset Voltage (mV)

    Gain (dB)

    Gain (dB)

    Input Offset Voltage (mV)

    Phase (°)

    Phase (°)

    DocID14912 Rev 3 9/24



    Figure 7. Voltage gain and phase vs. frequency

    Figure 8. Phase margin vs. output current at

    at VCC+ = 5 V

    VCC+ = 1.5 V and VCC+ = 5 V


    90


    80


    Vcc=5V


    70


    60


    50 Vcc=1.5V


    40


    30


    20 Vicm=Vcc/2, Cl=100pF


    10 Rl=4.7kohms, T=25 C


    0


    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5


    Figure 9. Slew rate vs. supply voltage

    Figure 10. Slew rate vs. supply voltage


    10µV/div

    Supply voltage (V)


    Figure 11. Distortion + noise vs. output voltage

    Figure 12. Distortion + noise vs. frequency










































































    Vcc=1.5V

    Rl=10kohms






























    Vcc=1.5V

    Rl=100kohms































    f=1kHz Gain=1 BW=22kHz

    Vicm=Vcc/2















    Vcc=5.5V

    Rl=10kohms



































    Vcc=5.5V

    Rl=100kohms



















    1

    Vcc=1.5V Rl=10kΩ


    Vcc=1.5V Rl=100kΩ


    Output Voltage (Vpp)

    10

    100

    1000

    10000



    Ω

    0.01

    Ω

    0.1

    Gain (dB)

    THD + N (%)

    Phase (°)

    THD + N (%)

    Slew rate (V/ s)

    10/24 DocID14912 Rev 3



    Figure 13. Noise vs. frequency


    Vicm=4.5V


    Vicm=2.5V


    Vcc=5V T=25 C


    Frequency (Hz)


    Input equivalent noise density (nV/VHz)

    DocID14912 Rev 3 11/24


  3. Application information


    1. Operating voltages

      The TSV620, TSV620A, TSV621, and TSV621A can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3, and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV62x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.


    2. Rail-to-rail input

      The TSV62x is built with two complementary PMOS and NMOS input differential pairs. The device has a rail-to-rail input and the input common mode range is extended from

      Figure 15. Input offset voltage vs input common mode at VCC+ = 5 V


      0.4


      0.2

      Figure 14. Input offset voltage vs input common

      mode at VCC+ = 1.5 V

      0.5

      0.4

      0.3

      0.2

      0.1

      0.0

      -0.1

      -0.2

      -0.3

      -0.4

      -0.5

      -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

      Input Common Mode Voltage (V)

      Input Offset Voltage (mV)

      Input Offset Voltage (mV)

      (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at VCC - 0.7 V. In the transition region, the performances of CMRR, PSRR, Vio and THD are slightly degraded (as shown in Figure 14 and Figure 15 for Vio vs. Vicm).




































































































      0.0


      -0.2


      -0.4














































      0.0

      1.0

      2.0

      3.0

      4.0

      5.0

      Input Common Mode Voltage (V)


      The device is guaranteed without phase reversal.


    3. Rail-to-rail output

      The operational amplifier’s output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2.


      12/24 DocID14912 Rev 3


    4. Shutdown function (TSV620)

      The operational amplifier is enabled when the SHDN pin is pulled high. To disable the amplifier, the SHDN pin must be pulled down to VCC-. When in shutdown mode, the amplifier output is in a high impedance state. The SHDN pin must never be left floating but tied to VCC+ or VCC-.

      The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 16

      Shutdown pulse

      Figure 19. Turn-off time, VCC = 5 V, Vout pulled down, T = 25 °C

      Figure 18. Turn-on time, VCC = 5 V, Vout pulled down, T = 25 °C


      Shutdown pulse

      -

      DUT

      -

      DUT

      2KO

      2KO

      and Figure 17 show the test configurations).


      Figure 16. Test configuration for turn-on time (Vout pulled down)

      Figure 17. Test configuration for turn-off time (Vout pulled down)


      +Vcc

      GND

      +Vcc

      GND



      Vcc-0.5V +

      Vcc-0.5V +


      GND

      GND


      Vout

      Vcc = 5V T = 25°C


      Vcc = 5V T = 25°C



      Time( s)

      Time( s)


      Vout

      Voltage (V)

      Output voltage (V)

      DocID14912 Rev 3 13/24


    5. Optimization of DC and AC parameters

      This device uses an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and AVd benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 350 kHz min, SR = 0.15 V/µs min).


    6. Driving resistive and capacitive loads

      These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may significantly increase.

      In a follower configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding a small in-series resistor at the output can improve the stability of the device (see Figure 20 for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.



      In-series resistor Ω

      Figure 20. In-series resistor vs. capacitive load


    7. PCB layouts

      For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.


      14/24 DocID14912 Rev 3


    8. Macromodel

      An accurate macromodel of the TSV620, TSV620A, TSV621, and TSV621A is available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV62x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.


      DocID14912 Rev 3 15/24


  1. Package information


    In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

    ECOPACK® is an ST trademark.


    16/24 DocID14912 Rev 3


    1. SOT23-5 package information

      Figure 21. SOT23-5 package outline


      Table 8. SOT23-5 mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.90

      1.20

      1.45

      0.035

      0.047

      0.057

      A1



      0.15



      0.006

      A2

      0.90

      1.05

      1.30

      0.035

      0.041

      0.051

      B

      0.35

      0.40

      0.50

      0.013

      0.015

      0.019

      C

      0.09

      0.15

      0.20

      0.003

      0.006

      0.008

      D

      2.80

      2.90

      3.00

      0.110

      0.114

      0.118

      D1


      1.90



      0.075


      e


      0.95



      0.037


      E

      2.60

      2.80

      3.00

      0.102

      0.110

      0.118

      F

      1.50

      1.60

      1.75

      0.059

      0.063

      0.069

      L

      0.10

      0.35

      0.60

      0.004

      0.013

      0.023

      K

      0°


      10°





      DocID14912 Rev 3 17/24


    2. SOT23-6 package information

      Figure 22. SOT23-6 package outline


      Table 9. SOT23-6 mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.90


      1.45

      0.035


      0.057

      A1



      0.10



      0.004

      A2

      0.90


      1.30

      0.035


      0.051

      b

      0.35


      0.50

      0.013


      0.019

      c

      0.09


      0.20

      0.003


      0.008

      D

      2.80


      3.05

      0.110


      0.120

      E

      1.50


      1.75

      0.060


      0.069

      e


      0.95



      0.037


      H

      2.60


      3.00

      0.102


      0.118

      L

      0.10


      0.60

      0.004


      0.024

      °

      0


      10°





      18/24 DocID14912 Rev 3


    3. SC70-5 (or SOT323-5) package information

      Figure 23. SC70-5 (or SOT323-5) package outline


      SIDE VIEW

      DIMENSIONS IN MM


      GAUGE PLANE


      COPLANAR LEADS


      SEATING PLANE


      TOP VIEW

      Table 10. SC70-5 (or SOT323-5) mechanical data


      Ref

      Dimensions

      Millimeters

      Inches

      Min

      Typ

      Max

      Min

      Typ

      Max

      A

      0.80


      1.10

      0.315


      0.043

      A1



      0.10



      0.004

      A2

      0.80

      0.90

      1.00

      0.315

      0.035

      0.039

      b

      0.15


      0.30

      0.006


      0.012

      c

      0.10


      0.22

      0.004


      0.009

      D

      1.80

      2.00

      2.20

      0.071

      0.079

      0.087

      E

      1.80

      2.10

      2.40

      0.071

      0.083

      0.094

      E1

      1.15

      1.25

      1.35

      0.045

      0.049

      0.053

      e


      0.65



      0.025


      e1


      1.30



      0.051


      L

      0.26

      0.36

      0.46

      0.010

      0.014

      0.018

      <

      0°


      8°





      DocID14912 Rev 3 19/24


    4. SC70-6 (or SOT323-6) package information

      Figure 24. SC70-6 (or SOT323-6) package outline


      Table 11. SC70-6 (or SOT323-6) mechanical data


      Ref

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.80


      1.10

      0.031


      0.043

      A1



      0.10



      0.004

      A2

      0.80


      1.00

      0.031


      0.039

      b

      0.15


      0.30

      0.006


      0.012

      c

      0.10


      0.18

      0.004


      0.007

      D

      1.80


      2.20

      0.071


      0.086

      E

      1.15


      1.35

      0.045


      0.053

      e


      0.65



      0.026


      HE

      1.80


      2.40

      0.071


      0.094

      L

      0.10


      0.40

      0.004


      0.016

      Q1

      0.10


      0.40

      0.004


      0.016


      20/24 DocID14912 Rev 3


      Figure 25. SC70-6 (or SOT323-6) recommended footprint


      DocID14912 Rev 3 21/24


  2. Ordering information


    Table 12. Order codes


    Part number

    Temperature range


    Package


    Packing


    Marking

    TSV620ILT


    -40 °C to 125 °C

    SOT23-6


    Tape and reel

    K107

    TSV620ICT

    SC70-6

    K14

    TSV620AILT

    SOT23-6

    K110

    TSV620AICT

    SC70-6

    K15

    TSV621ILT

    SOT23-5

    K106

    TSV621ICT

    SC70-5

    K16

    TSV621AILT

    SOT23-5

    K139

    TSV621AICT

    SC70-5

    K39


    22/24 DocID14912 Rev 3


  3. Revision history


Table 13. Document revision history

Date

Revision

Changes

12-Jan-2009

1

Initial release.


19-Oct-2009


2

Added TSV620 device (version with shutdown function). Added Table 4: Shutdown characteristics VCC = 1.8 V. Added Table 7: Shutdown characteristics VCC = 5 V.

Added Section 3.4: Shutdown function (TSV620) on page 13.

Added Section 4.2: SOT23-6 package mechanical data.

Added Section 4.4: SC70-6 (or SOT323-6) package mechanical data.

Added order codes in Table 12.


10-May-2017


3

Table 3, Table 5, and Table 6: changed “DVio to ∆Vio/∆T, updated VOH parameter information, changed min. values for VOH parameter to max. values.

Figure 21, Figure 22, Table 8, and Table 9: removed “L” from titles


DocID14912 Rev 3 23/24


IMPORTANT NOTICE – PLEASE READ CAREFULLY


STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.


Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.


No license, express or implied, to any intellectual property right is granted by ST herein.


Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.


ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.


Information in this document supersedes and replaces information previously supplied in any prior versions of this document.


© 2017 STMicroelectronics – All rights reserved



24/24 DocID14912 Rev 3

Mouser Electronics


Authorized Distributor


Click to View Pricing, Inventory, Delivery & Lifecycle Information:


STMicroelectronics:

TSV621AICT TSV621AILT TSV621ICT TSV621ILT TSV620AICT TSV620AILT TSV620ICT TSV620ILT