LM2904, LM2904A LM2904W, LM2904AW

Datasheet


Low-power dual operational amplifier



DFN8 2x2


MiniSO8

Features


TSSOP8 SO8


Description

This circuit consists of two independent, high gain operational amplifiers (op amps) that have frequency compensation implemented internally. They are designed specifically for automotive and industrial control systems. The circuit operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Maturity status link


Enhanced VIO

Enhanced ESD

LM2904



LM2904A


LM2904W


LM2904AW

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard 5 V which is used in logic systems and easily provides the required electronic interfaces without requiring any additional power supply.

In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.


Related products


TSB572

Dual op-amps for low- power consumption

(380 µA with 2.5 MHz GBP)

LM2902 LM2902W

Quad op-amps version

LM2904WH LM2904AH

High temperature

version (150 °C)



DS0508 - Rev 18 - February 2019

For further information contact your local STMicroelectronics sales office.


www.st.com

Schematic diagram


  1. Schematic diagram


    Figure 1. Schematic diagram (LM2904, LM2904A)


    VCC



    6µA 4µA


    C C


    100 µA

    Q5

    Q6


    Inverting input


    Non-inverting input


    Q2 Q3

    Q1 Q4


    Q11


    Q7


    R SC


    Output


    Q13


    Q10 Q12


    Q8 Q9

    50µA


    GND


    Figure 2. Schematic diagram (LM2904W, LM2904AW)



    µA

    µA µA


    µA

    Package pin connections


  2. Package pin connections


    Figure 3. DFN8 2x2 package pin connections (top view)









    Out1

    1




    8

    Vcc+

    In1-

    2




    7

    Out2




    NC (1)




    In1+

    3




    6

    In2-








    Vcc-

    4




    5

    In2+










    1. The exposed pad of the DFN8 2x2 can be connected to (VCC-) or left floating.


      Figure 4. MiniSO8, TSSOP8, and SO8 package pin connections (top view)



      1

      Out1


      2

      In1- -


      3

      In1+ +


      4

      Vcc-


      Vcc+ Out2

      6

      7

      8

      - In2-


      + 5 In2+


  3. Absolute maximum ratings and operating conditions


    Table 1. Absolute maximum ratings


    Symbol

    Parameter

    Value

    Unit

    VCC

    Supply voltage (1)

    ±16 or 32


    V


    Vid

    Differential input voltage (LM2904, LM2904A) (2)

    ±32

    Differential input voltage (LM2904W, LM2904AW) (2)

    -0.3 to VCC +0.3


    Vin

    Input voltage (LM2904, LM2904A)

    -0.3 to 32

    Input voltage (LM2904W, LM2904AW)

    -0.3 to VCC +0.3


    Output short-circuit duration (3)

    Infinite

    s


    Iin

    Input current : Vin driven negative

    5 mA in DC or 50 mA in AC, (duty cycle = 10 %, T = 1 s)


    mA

    Input current : Vin driven positive above AMR value (5)

    0.4

    Toper

    Operating free-air temperature range

    -40 to 125


    °C

    Tstg

    Storage temperature range

    -65 to 150

    Tj

    Maximum junction temperature

    150


    Rthja


    Thermal resistance junction to ambient (6)

    DFN8 2x2

    57


    °C/W

    MiniSO8

    190

    TSSOP8

    120

    SO8

    125


    Rthjc


    Thermal resistance junction to case (6)

    MiniSO8

    39

    TSSOP8

    37

    SO8

    40


    ESD

    HBM: human body model (LM2904, LM2904A) (7)

    300


    V

    HBM: human body model (LM2904W, LM2904AW) (7)

    2000

    MM: machine model (8)

    200

    CDM: charged device model (9)

    1.5

    kV

    1. All voltage values, except differential voltage are with respect to network ground terminal.

    2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

    3. Short-circuits from the output to VCC can cause excessive heating if (Vcc +) > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

    4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as an input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V.

    5. The junction base/substrate of the input PNP transistor polarized in reverse must be protected by a resistor in series with the inputs to limit the input current to 400 µA max (R = (Vin - 32 V)/400 µA).

    6. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.

    7. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

    8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.


    9. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.


    Table 2. Operating conditions


    Symbol

    Parameter

    Value

    Unit

    VCC

    Supply voltage

    3 to 30


    V


    Vicm

    Common mode input voltage range Tamb = 25 °C

    VCC- to VCC+ - 1.5

    Common mode input voltage range Tmin ≤ Tamb ≤ Tmax

    VCC- to VCC+ - 2

    Toper

    Operating free-air temperature range

    -40 to 125

    °C


  4. Electrical characteristics


    Table 3. VCC + = 5 V, VCC- = ground, VO = 1.4 V, RL connected to GND, Tamb = 25 °C (unless otherwise specified)


    Symbol

    Parameter

    Min.

    Typ.

    Max.

    Unit


    Vio

    Input offset voltage, Tamb = 25 °C, LM2904, LM2904W (1)


    2

    7


    mV

    Input offset voltage, Tamb = 25 °C, LM2904A, LM2904AW (1)


    1

    2

    Input offset voltage, Tmin ≤ Tamb ≤ Tmax, LM2904, LM2904W (1)



    9

    Input offset voltage, Tmin ≤ Tamb ≤ Tmax, LM2904A, LM2904AW (1)



    4

    ΔVio/ΔT

    Input offset voltage drift


    7

    30

    µV/°C


    Iio

    Input offset current, Tamb = 25 °C


    2

    30


    nA

    Input offset current, Tmin ≤ Tamb ≤ Tmax



    40

    ΔIio/ΔT

    Input offset current drift


    10

    300

    pA/°C


    Iib

    Input bias current, Tamb = 25 °C (2)


    20

    150


    nA

    Input bias current, Tmin ≤ Tamb ≤ Tmax (2)



    200


    Avd

    Large signal voltage gain, VCC + = 15 V, RL = 2 kΩ,

    Vο = 1.4 V to 11.4 V, Tamb = 25 °C


    50


    100



    V/mV

    Large signal voltage gain, VCC + = 15 V, RL = 2 kΩ,

    Vο = 1.4 V to 11.4 V, Tmin ≤ Tamb ≤ Tmax


    25




    SVR

    Supply voltage rejection ratio, VCC + = 5 V to 30 V, Vicm = 0 V,

    Tamb = 25 °C


    65


    100



    dB

    Supply voltage rejection ratio, VCC + = 5 V to 30 V, Vicm = 0 V,

    Tmin ≤ Tamb ≤ Tmax


    65




    ICC

    Supply current, all amp, no load, Tamb = 25 °C, VCC + = 5 V


    0.7

    1.2


    mA

    Supply current, all amp, no load, Tmin ≤ Tamb ≤ Tmax, VCC + = 30 V



    2


    CMR

    Common-mode rejection ratio, VCC + = 30 V, Vicm = 0 V to 28.5 V,

    Tamb = 25 °C


    70


    85



    dB

    Common-mode rejection ratio, VCC + = 30 V, Vicm = 0 V to 28 V,

    Tmin ≤ Tamb ≤ Tmax


    60



    Isource

    Output short-circuit current, VCC + = 15 V, Vo = 2 V, Vid = 1 V

    20

    40

    60


    mA


    Isink

    Output sink current, VO = 2 V, VCC + = 15 V

    10

    20


    Output sink current, VO = 0.2 V, VCC + = 15 V

    12

    50


    µA


    VOH

    High-level output voltage (VCC + = 30 V), Tamb = 25 °C, RL = 2 kΩ

    26




    V

    High-level output voltage (VCC + = 30 V), Tmin ≤ Tamb ≤ Tmax

    26

    27


    High-level output voltage (VCC + = 30 V), Tamb = 25 °C, RL = 10 kΩ

    27



    High-level output voltage (VCC + = 30 V), Tmin ≤ Tamb ≤ Tmax

    27

    28



    VOL

    Low-level output voltage (RL = 10 kΩ), Tamb = 25 °C


    5

    20


    mV

    Low-level output voltage (RL = 10 kΩ), Tmin ≤ Tamb ≤ Tmax



    20


    Symbol

    Parameter

    Min.

    Typ.

    Max.

    Unit


    SR

    Slew rate, VCC + = 15 V, Vin = 0.5 to 3 V, RL = 2 kΩ, CL =100 pF,

    unity gain, Tamb = 25 °C


    0.3


    0.6



    V/µs

    Slew rate, VCC + = 15 V, Vin = 0.5 to 3 V, RL = 2 kΩ, CL =100 pF,

    unity gain, Tmin ≤ Tamb ≤ Tmax


    0.2




    GBP

    Gain bandwidth product, f = 100 kHz, VCC + = 30 V, Vin = 10 mV,

    RL = 2 kΩ, CL = 100 pF


    0.7


    1.1



    MHz


    THD

    Total harmonic distortion, f = 1 kHz, AV = 20 dB, RL = 2 kΩ,

    Vo = 2 Vpp, CL = 100 pF, VCC + = 30 V



    0.02



    %

    en

    Equivalent input noise voltage, f = 1 kHz, RS = 100 Ω, VCC + = 30 V


    55


    nV/√Hz

    VO1/VO2

    Channel separation, 1 kHz ≤ f ≤ 20 kHz (3)


    120


    dB

    1. VO = 1.4 V, 5 V < VCC + < 30 V, 0 V < Vic < (VCC +) - 1.5 V

    1. The direction of the input current is out of the IC. This current is essentially constant as long as the output is not saturated, so there is no change in the loading charge on the input lines.

    2. Due to the proximity of external components, ensure that the stray capacitance does not cause coupling between these external parts. This can typically be detected at higher frequencies because this type of capacitance increases.


    FRE Q UENCY (Hz)

    1M

    100 k

    10k

    5


    0

    1k

    10

    15

    Figure 6. Large signal frequency response


    20

    40


    20 VCC = +10 to + 15 V &

    -40°C Tamb +125°C

    0

    1.0 10 100 1k 10k 100k 1M 10M


    FREQUENCY (Hz)

    VCC /2 +

    VCC = 30 V &

    -40°C Tamb +125°C

    80


    60

    VO

    VI

    100

    Figure 5. Open-loop frequency response


    140

    10 MΩ

    120 0.1 µF

    - VCC

    +7V + 2kΩ

    V O

    VI

    +15V

    -

    1k Ω

    100k Ω

    INPU T

    VO LT AG E (V)

    OU TP UT VO LT AG E (V)

    VOLTAGE GAIN (dB)

    OUTPUT S W ING (Vpp)

  5. Electrical characteristic curves


    Figure 7. Voltage follower large signal response


    4

    3 RL ≤ 2 kΩ

    VCC = +15V

    2


    1


    0


    3


    2


    1

    0 10 20 30 40


    TIME (µs)

    Figure 8. Current sinking output characteristics


    Figure 9. Voltage follower small signal response

    Figure 10. Current sourcing output characteristics


    µs

    nA

    VOLTAGE GAIN (dB)



    Figure 11. Input current vs. temperature

    Figure 12. Current limiting



    Figure 13. Input voltage range

    Figure 14. Supply current


    Figure 15. Voltage gain

    Figure 16. Input current vs. supply voltage

    16 0


    R L = 20k Ω


    12 0


    80 R L = 2k Ω



    40



    0 1 0 2 0 3 0


    P O S I T I V E S U P P LY V O LTA G E ( V )




    Figure 17. Gain bandwidth product

    Figure 18. Power supply rejection ratio


    Figure 19. Common-mode rejection ratio

    Figure 20. Phase margin vs. capacitive load


    P has e Margin at Vcc= 15V an d Vicm =7.5V Vs . Iout an d Capacitive load value


    1.5 MΩ

    3 MΩ 1/2 LM2904

    Input current compensation IB

    IB

    0.001µF


    IB

    2N 92 9

    IB

    e I

    R2

    As sho wn eo = 101 (e2 - e1)

    eo = [ 1 + 2R1] (e2 - e1)

    If R1 = R5 and R3 = R4 = R6 = R7

    Vo

    1/2

    LM2904

    +V1

    +V2

    R3 100 kΩ

    1/2

    LM2904

    Figure 24. DC summing amplifier


    e 1 100 kΩ

    R1

    AV = 1 + R2

    Figure 23. Non-inverting DC gain

    C2 R5

    10 µF 100 kΩ

    R4 100 kΩ

    R3 1 MΩ

    e I ~

    RL 10 kΩ

    RB

    6.2 kΩ

    o

    2 VPP

    e 0

    1/2

    LM2904

    C I

    (as shown AV = 11)


    Co

    C1 0.1 µF

    R1

    AV = 1 + R2

    RL 10 kΩ

    RB

    6.2 kΩ

    R3 100 kΩ

    VCC 100 kΩ

    R2

    e I ~

    o

    2VPP

    e 0

    1/2

    LM2904

    Co

    V

    C I

    R1 (a s s hown A = - 10)

    10 kΩ

    R f

    AV = - R1

    e O (V)

  6. Typical single-supply applications



    Figure 21. AC coupled inverting amplifier

    Figure 22. AC coupled non-inverting amplifier


    R f

    100 kΩ

    R1 R2

    100 kΩ 1 MΩ


    C1 10µF

    VCC


    10 kΩ

    (a s s how n AV= 101 )


    1/2

    LM2904

    e O

    +5 V

    100 kΩ

    1/2

    LM2904

    e O


    R1 10 kΩ

    R2 1 MΩ

    0

    e I (mV)

    e 2 100 kΩ


    e 3 100 kΩ


    100 kΩ


    e 4 100 kΩ


    eo = e1 + e2 - e3 - e4

    where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0 V


    Figure 25. High input Z, DC differential amplifier

    Figure 26. Using symmetrical amplifiers to reduce input current


    R1 100 kΩ

    R2 100 kΩ

    R4 100 kΩ

    1/2

    I I IB LM2904

    e o



    e I

    Figure 27. Low drift peak detector


    IB


    1/2

    IB LM2904 eo

    1/2

    LM2904 C 2I Zo 1 µF B

    ZI 2N 92 9

    0.00 1µF


    2IB IB

    R 3R 1/2

    1 MΩ 3 MΩ LM2904

    Inpu t c urrent IB compensatio n


    +V1

    Figure 28. Active bandpass filter


    R1 100 k Ω


    C1 330 pF

    R2 1/2

    100 k Ω LM2904 R5

    470 k Ω

    R4

    10 M Ω 1/2

    LM2904

    C2 R6

    R3 330 pF 470 k Ω

    100 k Ω

    1/2 R7

    LM2904 100 k Ω


    R8 C3

    100 k Ω 10 F

    Fo = 1 kHz Q = 50

    Av = 100 (40 dB)


    Vo VCC

    Macromodel


  7. Macromodel


    An accurate macromodel of the LM2904, LM2904A is available on STMicroelectronics’ web site at: www.st.com . This model is a trade-off between accuracy and complexity (that is, time simulation) of the LM2904, LM2904A operational amplifier. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

    Package information


  8. Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.



    1. DFN8 2 x 2 package information


      Figure 29. DFN8 2 x 2 package outline



      Table 4. DFN8 2 x 2 mechanical data



      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A

      0.51

      0.55

      0.60

      0.020

      0.022

      0.024

      A1



      0.05



      0.002

      A3


      0.15



      0.006


      b

      0.18

      0.25

      0.30

      0.007

      0.010

      0.012

      D

      1.85

      2.00

      2.15

      0.073

      0.079

      0.085

      D2

      1.45

      1.60

      1.70

      0.057

      0.063

      0.067

      E

      1.85

      2.00

      2.15

      0.073

      0.079

      0.085

      E2

      0.75

      0.90

      1.00

      0.030

      0.035

      0.039

      e


      0.50



      0.020


      L

      0.225

      0.325

      0.425

      0.009

      0.013

      0.017

      ddd



      0.08



      0.003


      Figure 30. DFN8 2 x 2 recommended footprint

      MiniSO8 package information



    2. MiniSO8 package information


      Figure 31. MiniSO8 package outline


      Table 5. MiniSO8 package mechanical data



      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      1.1



      0.043

      A1

      0


      0.15

      0


      0.0006

      A2

      0.75

      0.85

      0.95

      0.030

      0.033

      0.037

      b

      0.22


      0.40

      0.009


      0.016

      c

      0.08


      0.23

      0.003


      0.009

      D

      2.80

      3.00

      3.20

      0.11

      0.118

      0.126

      E

      4.65

      4.90

      5.15

      0.183

      0.193

      0.203

      E1

      2.80

      3.00

      3.10

      0.11

      0.118

      0.122

      e


      0.65



      0.026


      L

      0.40

      0.60

      0.80

      0.016

      0.024

      0.031

      L1


      0.95



      0.037


      L2


      0.25



      0.010


      k



      ccc



      0.10



      0.004

      TSSOP8 package information



    3. TSSOP8 package information


      Figure 32. TSSOP8 package outline



      a a a



      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      1.20



      0.047

      A1

      0.05


      0.15

      0.002


      0.006

      A2

      0.80

      1.00

      1.05

      0.031

      0.039

      0.041

      b

      0.19


      0.30

      0.007


      0.012

      c

      0.09


      0.20

      0.004


      0.008

      D

      2.90

      3.00

      3.10

      0.114

      0.118

      0.122

      E

      6.20

      6.40

      6.60

      0.244

      0.252

      0.260

      E1

      4.30

      4.40

      4.50

      0.169

      0.173

      0.177

      e


      0.65



      0.0256


      k



      L

      0.45

      0.60

      0.75

      0.018

      0.024

      0.030

      L1


      1



      0.039


      aaa



      0.10



      0.004

      SO8 package information



    4. SO8 package information


      Figure 33. SO8 package outline



      Table 6. SO8 package mechanical data



      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      1.75



      0.069

      A1

      0.10


      0.25

      0.004


      0.010

      A2

      1.25



      0.049



      b

      0.28


      0.48

      0.011


      0.019

      c

      0.17


      0.23

      0.007


      0.010

      D

      4.80

      4.90

      5.00

      0.189

      0.193

      0.197

      E

      5.80

      6.00

      6.20

      0.228

      0.236

      0.244

      E1

      3.80

      3.90

      4.00

      0.150

      0.154

      0.157

      e


      1.27



      0.050


      h

      0.25


      0.50

      0.010


      0.020

      L

      0.40


      1.27

      0.016


      0.050

      L1


      1.04



      0.040


      k



      ccc



      0.10



      0.004

      Ordering information


  1. Ordering information


Table 7. Order codes


Order code

Temperature range

Package

Packing

Marking

LM2904D


-40 °C to 125 °C

SO8

Tube


2904

LM2904DT

SO8


Tape and reel

LM2904PT

TSSOP8

LM2904ST

MiniSO8

K403

LM2904Q2T

DFN8 2x2

K1Y

LM2904YDT (1)


SO8 (automotive grade level)

2904Y

LM2904AYDT(1)

2904AY

LM2904YPT(1)


TSSOP8 (automotive grade level)

2904Y

LM2904AYPT (1)

904AY

LM2904YST (1)

MiniSO8 (automotive grade level)

K409

LM2904WDT

SO8

2904W

LM2904WYDT (1)

SO8 (automotive grade level)

2904WY

LM2904WYPT (1)


TSSOP8 (automotive grade level)

K04WY

LM2904AWYPT (1)

K05WY

1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.


Revision history



Table 8. Document revision history


Date

Revision

Changes

02-Jan-2002

1

Initial release.


20-Jun-2005


2

PPAP references inserted in the datasheet, see Table 9 on page 21.

ESD protection inserted in Table 1 on page 5.

10-Oct-2005

3

PPAP part numbers added in Table 9 on page 21.


12-Dec-2005


4

Pin connections identification added on cover page figure.

Thermal resistance junction to case information added see Table 1 on page 5.

01-Feb-2006

5

Maximum junction temperature parameter added in Table 1 on page 5.

02-May-2006

6

Minimum slew rate parameter in temperature Table 3 on page 7.

13-Jul-2006

7

Modified ESD values and added explanation on VCC, Vid in Table 1 on page 5. Added macromodel information.


28-Feb-2007


8

Modified ESD/HBM values in Table 1 on page 5. Updated MiniSO8 package information.

Added note relative to automotive grade level part numbers in Table 9 on page 21.


18-Jun-2007


9

Power dissipation value corrected in Table 1: Absolute maximum ratings. Table 2: Operating conditions added.

Equivalent input noise voltage parameter added in Table 3.

Electrical characteristics curves updated. Figure 19: Phase margin vs capacitive load added. Section 6: Package information updated.


18-Dec-2007


10

Removed power dissipation parameter from Table 1: Absolute maximum ratings. Removed Vopp from electrical characteristics in Table 3.

Corrected MiniSO8 package mechanical data in Section 6.4: MiniSO8 package information.


08-Apr-2008


11

Added table of contents.

Corrected the scale of Figure 7 (mA not µA). Corrected SO8 package information.


02-Jun-2009


12

Added input current information in Table 1: Absolute maximum ratings. Added L1 parameters in Table 6: SO8 package mechanical data.

Added new order codes, LM2904AYD/DT, LM2904AYPT and LM2904AYST in Table 9: Order codes.


13-Apr-2010


13

Added LM2904A on cover page.

Corrected footnote (5) in Table 1: Absolute maximum ratings. Removed order code LM2904AYST from Table 9: Order codes.


24-Jan-2012


14

Removed macromodel from Chapter 5 (now available on www.st.com).

Added DFN8 2 x 2 mm package information in Chapter 6 and related order codes in Chapter 7. Removed LM2904YD and LM2904AYD order codes from Table 9.

Changed note for LM2904YST order code in Table 9.


24-Jan-2014


15

Updated: marking info for LM2904AYPT, package silhouette drawings in the cover page, ΔVio/ΔT and ΔIio/ΔT symbols in Table 3 on page 7

Added: ESD info in Features section and Section 2: Package pin connections Removed: LM2904N from Table 9: Order codes.

02-Oct-2015

16

Figure 1: Schematic diagram (1/2 LM2904, LM2904A): updated


Date

Revision

Changes


16-Feb-2016


17

Updated layout

Removed “plastic micropackage” from SO8 and DFN8 2x2 package silhouettes; removed “thin shrink small outline package” from TSSOP8 package silhouette

Table 3: unit of VOL parameter changed from “V” to ‘mV” DFN8 2x2 package information: updated “L”

TSSOP8 package information: “aaa” is a typ. value not a max value


15-Feb-2019


18

Added new part numbers LM2904W, LM2904AW, Figure 2. Schematic diagram (LM2904W, LM2904AW) and Table 2. Operating conditions.

Updated: Table 1. Absolute maximum ratings, Section 4 Electrical characteristics and Section 9 Ordering information

Contents


Contents

  1. Schematic diagram

    2

  2. Package pin connections

    3

  3. Absolute maximum ratings and operating conditions

    4

  4. Electrical characteristics

    6

  5. Electrical characteristic curves

    8

  6. Typical single-supply applications

    11

  7. Macromodel

    13

  8. Package information

    14

    1. DFN8 2 x 2 package information 15

    2. MiniSO8 package information 17

    3. TSSOP8 package information 17

    4. SO8 package information 18

  9. Ordering information

    20

Revision history

21

Contents

23

List of tables

24

List of figures

25

List of tables


List of tables

Table 1. Absolute maximum ratings 4

Table 2. Operating conditions 5

Table 3. VCC + = 5 V, VCC- = ground, VO = 1.4 V, RL connected to GND, Tamb = 25 °C (unless otherwise specified) 6

Table 4. DFN8 2 x 2 mechanical data 15

Table 5. MiniSO8 package mechanical data 17

Table 6. SO8 package mechanical data 19

Table 7. Order codes 20

Table 8. Document revision history 21

List of figures


List of figures

Figure 1. Schematic diagram (LM2904, LM2904A) 2

Figure 2. Schematic diagram (LM2904W, LM2904AW) 2

Figure 3. DFN8 2x2 package pin connections (top view) 3

Figure 4. MiniSO8, TSSOP8, and SO8 package pin connections (top view) 3

Figure 5. Open-loop frequency response 8

Figure 6. Large signal frequency response 8

Figure 7. Voltage follower large signal response 8

Figure 8. Current sinking output characteristics 8

Figure 9. Voltage follower small signal response 8

Figure 10. Current sourcing output characteristics 8

Figure 11. Input current vs. temperature 9

Figure 12. Current limiting 9

Figure 13. Input voltage range 9

Figure 14. Supply current 9

Figure 15. Voltage gain 9

Figure 16. Input current vs. supply voltage 9

Figure 17. Gain bandwidth product 10

Figure 18. Power supply rejection ratio 10

Figure 19. Common-mode rejection ratio 10

Figure 20. Phase margin vs. capacitive load 10

Figure 21. AC coupled inverting amplifier 11

Figure 22. AC coupled non-inverting amplifier 11

Figure 23. Non-inverting DC gain 11

Figure 24. DC summing amplifier 11

Figure 25. High input Z, DC differential amplifier 11

Figure 26. Using symmetrical amplifiers to reduce input current 11

Figure 27. Low drift peak detector 12

Figure 28. Active bandpass filter 12

Figure 29. DFN8 2 x 2 package outline 15

Figure 30. DFN8 2 x 2 recommended footprint 16

Figure 31. MiniSO8 package outline 17

Figure 32. TSSOP8 package outline 18

Figure 33. SO8 package outline 19


IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

Mouser Electronics


Authorized Distributor


Click to View Pricing, Inventory, Delivery & Lifecycle Information:


STMicroelectronics:

LM2904D LM2904N LM2904DT LM2904PT LM2904AYPT LM2904ST LM2904Q2T LM2904YST LM2904YPT LM2904YDT LM2904AYDT