LM158W, LM258W, LM358W


Low-power dual operational amplifier




D and S

SO8 and MiniSO8

(plastic micropackage)


P TSSOP8

(thin shrink small outline package)


Pin connections

(top view)


1

8


2

-

7


3

+

-

6


4

+

5


  1. - Output 1

  2. - Inverting input

  3. - Non-inverting input


4 - V


  1. - Non-inverting input 2

  2. - Inverting input 2

  3. - Output 2


+ CC


8 - V

CC

-

Features

1.5 V


Description

The LM158W, LM258W, and LM358W circuits consist of two independent, high-gain, operational amplifiers (op-amps), which employ an internal frequency compensation and are specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the power supply voltage magnitude. Application areas include transducer amplifiers, DC gain blocks, and all the conventional op-amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V, which is used in logic systems and easily provide the required interface electronics with no additional power supply. In linear mode, the input common mode voltage range includes ground. The output voltage can also swing to ground, even though operated from a single power supply voltage.


July 2019 DocID9159 Rev 14 1/20

This is information on a product in full production. www.st.com


Contents

  1. Schematic diagram 3

  2. Absolute maximum ratings and operating conditions 4

  3. Electrical characteristics 6

  4. Typical applications 11

  5. Package information 13

    1. SO8 package information 14

    2. MiniSO8 package information 15

    3. TSSOP8 package information 16

  6. Ordering information 17

  7. Revision history 18

  1. Schematic diagram

    Figure 1. Schematic diagram (1/2 LM158W/LM258W/LM358W)


    DocID9159 Rev 14 3/20


  2. Absolute maximum ratings and operating conditions


    Table 1. Absolute maximum ratings

    Symbol

    Parameter

    LM158W/AW

    LM258W/AW

    LM358W/AW

    Unit

    +

    VCC

    Supply voltage

    +32


    V

    Vin

    Input voltage

    +

    -0.3 to VCC +0.3

    Vid

    Differential input voltage

    +

    -0.3 to VCC +0.3


    Output short-circuit duration(1)

    Infinite


    Iin

    Input current(2)

    5 mA in DC or 50 mA in AC (duty cycle=10%, T=1 s)

    mA

    Toper

    Operating free-air temperature range

    -55 to +125

    -40 to +105

    0 to +70


    °C

    Tstg

    Storage temperature range

    -65 to +150

    Tj

    Maximum junction temperature

    150


    Rthja

    Thermal resistance junction-to-ambient(3) SO8

    MiniSO8

    TSSOP8


    125

    190

    120


    °C/W


    Rthjc

    Thermal resistance junction-to-case(3) SO8

    MiniSO8

    TSSOP8


    40

    39

    37


    ESD

    HBM: human body model(4)

    2

    kV

    MM: machine model(5)

    200

    V

    CDM: charged device model(6)

    1.5

    kV

    1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short- circuits on all amplifiers.

    2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op

      amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output will be restored for input voltage higher than -0.3 V.

    3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.

    4. Human body model: a 100 pF capacitor is discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

    5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

    6. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.


      4/20 DocID9159 Rev 14


      Table 2. Operating conditions

      Symbol

      Parameter

      Value

      Unit

      V +

      CC

      Supply voltage

      3 to 30


      V

      Vicm

      Common mode input voltage range(1)

      VDD -0.3 to VCC -1.5


      Toper

      Operating free air temperature range LM158W

      LM258W

      LM358W


      -55 to +125

      -40 to +105

      0 to +70


      °C

      1. When used in comparator, the functionality is guaranteed as long as at least one input remains within the operating common mode voltage range.



        DocID9159 Rev 14 5/20


  3. Electrical characteristics


    Table 3. V + = +5 V, V - = ground, V = 1.4 V, T


    = +25 °C

    CC CC o amb

    (unless otherwise specified)

    Symbol

    Parameter

    Min.

    Typ.

    Max.

    Unit


    Input offset voltage(1)






    LM158AW

    1

    2



    LM258AW, LM358AW

    1

    3



    LM158W, LM258W

    2

    5


    Vio

    LM358W

    Tmin Tamb Tmax

    2

    7

    mV


    LM158AW, LM258AW, LM358AW


    4



    LM158W, LM258W


    7



    LM358W


    9



    Input offset voltage drift





    ΔVio/ΔT

    LM158AW, LM258AW, LM358AW

    7

    15

    µV/°C


    LM158W, LM258W, LM358W

    7

    30



    Input offset current






    LM158AW, LM258AW, LM358AW

    2

    10


    Iio

    LM158W, LM258W, LM358W

    Tmin Tamb Tmax

    2

    30

    nA


    LM158AW, LM258AW, LM358AW


    30



    LM158W, LM258W, LM358W


    40



    Input offset current drift





    ΔIio/ΔT

    LM158AW, LM258AW, LM358AW

    10

    200

    pA/°C


    LM158W, LM258W, LM358W

    10

    300



    Input bias current(2)






    LM158AW, LM258AW, LM358AW

    20

    50


    Iib

    LM158W, LM258W, LM358W

    Tmin Tamb Tmax

    20

    150

    nA


    LM158AW, LM258AW, LM358AW


    100



    LM158W, LM258W, LM358W


    200



    Avd

    Large signal voltage gain

    V + = +15 V, R = 2 kΩ V = 1.4 V to 11.4 V

    CC L o

    Tmin Tamb Tmax


    50


    100



    V/mV


    25




    SVR

    Supply voltage rejection ratio

    Rs 10 kΩ V + = 5 V to 30 V

    CC

    Tmin Tamb Tmax


    65


    100



    dB


    65




    ICC

    Supply current, all amp, no load

    Tmin Tamb Tmax, VCC+ = +5 V Tmin Tamb Tmax, VCC+ = +30 V



    0.7


    1.2


    mA



    2



    6/20 DocID9159 Rev 14


    Table 3. V + = +5 V, V - = ground, V = 1.4 V, T

    = +25 °C

    CC CC o amb

    (unless otherwise specified) (continued)

    Symbol

    Parameter

    Min.

    Typ.

    Max.

    Unit


    Vicm

    Input common mode voltage range

    V + = +30 V(3) CC

    Tamb = +25° C

    Tmin Tamb Tmax


    0

    0



    V + -1.5

    CC

    V + -2

    CC


    V


    CMR

    Common mode rejection ratio Rs 10 kΩ

    Tmin Tamb Tmax


    70


    85



    dB


    60



    Isource

    Output current source

    V + = +15 V, V = +2 V, V = +1 V

    CC o id


    20


    40


    60


    mA


    Output sink current





    Isink

    VCC+ = +15 V, Vo = +2 V, Vid = -1 V VCC+ = +15 V, Vo = +0.2 V, Vid = -1 V

    10

    12

    20

    50

    mA

    µA


    High level output voltage RL = 2 kΩ VCC+ = 30 V

    Tmin Tamb Tmax

    RL = 10 kΩ V + = 30 V

    CC

    Tmin Tamb Tmax


    26


    27



    VOH

    26


    V


    27

    28



    27




    VOL

    Low level output voltage RL = 10 kΩ

    Tmin Tamb Tmax



    5


    20


    mV



    20



    SR

    Slew rate

    V + = 15 V, V = 0.5 to 3 V, R = 2 kΩ, C = 100 pF,

    CC i L L

    unity gain


    0.3


    0.6



    V/µs


    GBP

    Gain bandwidth product

    V + = 30 V, f =100 kHz, V =10 mV, R =2 kΩ,

    CC in L

    CL = 100 pF


    0.7


    1.1



    MHz


    THD

    Total harmonic distortion

    f = 1 kHz, Av = 20 dB, RL = 2 kΩ Vo = 2 Vpp CL = 100 pF, VO = 2 Vpp



    0.02



    %

    en

    Equivalent input noise voltage

    f = 1 kHz, Rs = 100 Ω VCC+ = 30 V



    55


    ---n---V-----

    Hz

    Vo1/Vo2

    Channel separation (4)

    1 kHz f 20 kHz



    120



    dB

    CC

    1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC+ < 30 V, 0 < Vic < V + - 1.5 V.

      1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines.

      2. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V.

        The upper end of the common-mode voltage range is V + - 1.5 V, but either or both inputs can go to +32 V without

        CC

        damage.

      3. Due to the proximity of external components ensure that there is no coupling originating via stray capacitance between these external parts. Typically, this can be detected at higher frequencies because then this type of capacitance increases.


    DocID9159 Rev 14 7/20



    FREQUENCY (Hz)

    FREQUENCY (Hz)


    Figure 4. Voltage follower pulse response (large signal)

    4

    Figure 5. Voltage follower pulse response (small signal)

    500



    0

    10

    20

    30

    40

    0

    2 3 4 5 6 7 8


    TIME (µs)

    TIME ( s)


    ::::> 40

    ()

    vee=+15v

    >

    0


    :a:::.>.

    30


    20

    10

    I-

    ::::>

    0

    0.1


    0

    -55 -35 -15 5 25 45 65 85 105 125

    TEMPERATURE (°C)

    0


    OUTPUT SINK CURRENT (mA)

    I-

    :a:::.>.

    0

    ...J

    <X:

    I-

    w

    ('.)

    Figure 7. Output characteristics (sink)

    10

    vee = +5 v

    I-

    0:::

    w 50

    0:::

    Figure 6. Input bias current vs. temperature


    90

    80

    70

    Iz- 60

    Vee= +30 v

    1 =OV

    V

    300


    250

    u

    I-

    ::::> 0

    350

    Input

    I-

    :a:::.>.

    -

    t

    400

    0>

    ...J

    T 50pF

    e I

    <X:

    I-

    eo

    450

    w

    ('.)

    .>s

    0

    >

    ...J

    ('.)

    z I-

    I-

    :a:::.>. <X:

    2

    w

    3

    >

    0

    >

    ::::> I-

    0 ...J

    0

    2

    a.. CJ

    I- <X:

    RL< 2ko

    VCC = +15V

    3

    t- 2:.-

    ::::> w


    Tamb = +25 °C vcc=3ov

    t


    Outp

    1M

    100k

    10k

    1k

    0

    l-

    i5 5

    I-

    :a:>..

    Figure 3. Large signal frequency response

    20


    a:

    15

    CzJ

    Cl) 10

    ...J

    >

    20 Vee = +10 to+ 1sv &

    -sse < Tamb < +12se

    0

    1.0 10 100 1k 10k 100k 1M 10M

    0

    40

    -sse < Tamb < +125°e

    60

    Vee= 30v &

    80

    = V ee ';_ +

    z

    <(

    CJ

    w

    CJ

    V

    t

    VI

    in

    2- 100

    ,,,4:i

    140


    120

    Figure 2. Open loop frequency response

    --0-0

    2k D

    +7V 0- +t

    VO

    V 1 ':r

    15V

    n

    8/20 DocID9159 Rev 14


    Figure 10. Input voltage range

    15

    Figure 11. Open loop gain


    160

    RL = 20kȍ


    ('.) 10

    Negative


    Figure 12. Supply current


    4

    Figure 13. Input bias current vs. positive supply voltage

    100


    -S 3

    1z-

    ,s 75

    Iz-


    ()

    _J

    g0.;.

    (/)

    2

    0:::

    0:::

    :J

    ()

    I-

    :J 0..

    50


    Tamb = -55' C



    POSITIVE SUPPLY VOLTAGE (V)

    30

    20

    10

    0

    = +25°C

    amb

    T

    25

    w

    POSITIVE SUPPLY VOLTAGE (V)

    30

    20

    10

    0

    1

    Tamb = 0' C to +125' C

    w

    0:::

    POSITIVE SUPPLY VOLTAGE (V)

    40

    30

    20

    10

    0

    40

    _J

    0>

    <I'.

    I-

    RL = 2kȍ

    120


    80

    z

    <(

    ('.)

    w

    ('.)

    10 15

    POWER SUPPLY VOLTAGE (±V)

    Positive

    5

    _J

    0>

    I-

    :J

    z0..

    <I'.

    I-

    w

    10


    0

    -55 -35 -15 5 25 45 65 85 105 125


    TEMPERATURE (°C)

    20

    30

    I-

    :J 0.. I-

    :J

    0

    0:::

    0::: 50

    :J

    () 40

    Q-+

    60

    w

    Iz-

    ---0

    0--

    90


    80

    -S 70

    Figure 9. Current limiting

    OUTPUT SOURCE CURRENT (mA)

    10 100

    :J

    0

    0,001 0,01 0,1

    2

    0..

    I-

    Independent of Vcc

    Tamb = +25 ' C

    :J

    3

    I-

    >

    I-

    0

    0

    r l

    _J

    0

    4

    .y

    <I'.

    I-

    +()

    5

    ---0

    >

    6 V ee t2 o-+

    LL

    w

    0:::

    w

    ('.)

    w

    0:::

    7

    z

    w

    Vee

    ()

    Figure 8. Output characteristics (source)

    0

    w 8

    DocID9159 Rev 14 9/20


























    S

    V

    R















































































































































































    0

    -100 0 100 200 300 fil!uq ( '19 600 700 800 900 1000

    Source for positive values/ Sink for negative values

    10

    "-

    ."c'

    '2>

    3l 20

    :".'

    Figure 17. Phase margin vs. capacitive load

    Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value

    50 -


    40 -


    30

    105

    100

    95

    90

    85

    80

    75

    70

    65

    60-55-35-15 5 25 45 65 85 105 125

    TEMPERATURE (QC)

    z

    0

    i=

    (_)


    UJ

    0:::


    O

    z

    0


    u

    Figure 16. Common mode rejection ratio

    iii'

    0"O 115

    i= 110

    100

    95

    90

    85

    80

    75

    70

    65

    60-55-35-15 5 25 45 65 85 105 125

    TEMPERATURE (QC)

    i=

    0

    -U-J, UJ 0:::

    >-

    _J

    0...

    0...

    :J

    Cf)

    0:::

    sUJ

    0

    0...

    z

    0

    0::: 105

    115

    110

    0"O

    Figure 15. Power supply rejection ratio

    co

    25 45 65 85 105 125

    TEMPERATURE (QC)

    <(

    al

    0z

    15V

    Vee=

    1.5

    1.35

    1.2

    1.05

    0.9

    0.75

    0.6

    0.45

    0.3

    0.15

    0

    -55-35-15 5

    N

    I


    I-

    (_)

    :J 0

    0

    a0:.:.:

    I

    I-

    0


    z

    <(

    (9

    Figure 14. Gain bandwidth product

    10/20 DocID9159 Rev 14


  4. Typical applications


    H 2 100Nȍ


    H 3 100Nȍ

    H2

    1/2

    /0158

    100Nȍ

    Figure 21. DC summing amplifier

    H 1 100Nȍ

    R4

    100k

    e 0

    o

    I

    2VPP

    Co

    1/2

    LM158

    C

    R1

    V

    A = 1 + R2

    R1 R2

    100k 1M

    Figure 20. AC-coupled non-inverting amplifier

    +5V

    eO

    1/2

    LM158

    R1

    (As shown AV = 101)

    R2

    eI ~

    o

    2VPP

    e 0

    Co

    1/2

    LM158

    R1

    f

    AV= -

    e O (V)

    Single supply voltage VCC = +5 VDC


    Figure 18. AC-coupled inverting amplifier

    Rf

    100k R

    Figure 19. Non-inverting DC amplifier

    AV= 1 + R2

    CI

    R1

    10k

    (as shown AV = -10)

    10k



    VCC 100k

    RB

    6.2k

    R3

    100k

    RL

    10k

    R1

    10k

    R2

    1M


    C1 10F


    0

    e I (mV)


    C1 0.1F

    (as shown AV = 11)


    R3

    eI ~ 1M

    RB

    6.2k

    RL

    10k


    VCC

    100Nȍ


    C2 R5

    10F 100k

    H 4

    100Nȍ

    e (e1 + e2) (e3 + e4)


    LI 51 55 DQG 53 54 56 5?

    H 2


    52

    $V VKRZQ HR 101 (H2 + H1)

    ,I 51 55 DQG 53 54 56 5?

    H0 >1 + 251/52@ ((H2 + H1)

    $V VKRZQ H0 101 (H2 + H1)


    56 5?

    100N 100N

    1/2

    /0158

    1/2

    /0158

    *DLQ DGMXVW

    55

    100N

    52

    2N

    H2

    54

    100N

    53

    100N

    1/2

    /0158

    H 1

    Figure 23. High input Z adjustable gain DC instrumentation amplifier

    51

    100N

    HR >1 + 251 @ ((H2+ H1)

    9R

    1/2

    /0158

    +91

    +92

    53

    100N

    1/2

    /0158

    51

    100N

    54

    100N

    52

    100N

    Figure 22. High input Z, DC differential amplifier

    o 1 2 3 4

    to keep eo 0V

    wher

    e = e + e - e - e

    DocID9159 Rev 14 11/20


    Input current compensation

    1/2

    LM158

    3R

    3M

    IB

    IB

    2IB

    R

    1M

    0.001 F

    2N 929

    2IB


    ZI

    1 F

    Zo

    C

    e I

    IB LM158

    1/2

    LM158

    eo

    Figure 25. Low drift peak detector


    IB


    1/2

    1.5M

    B

    Input current compensation

    I

    1/2

    3M LM158

    IB

    0.001F

    IB

    2N 929

    IB

    e I

    eo

    1/2

    I I IB LM158

    Figure 24. Using symmetrical amplifiers to reduce input current

    &3 10 —)

    58

    100Nȍ

    9&&

    1/2

    /0158

    55

    4?0Nȍ

    1/2

    /0158


    54

    100ȍ

    Figure 26. Active band-pass filter


    51

    100Nȍ


    +91

    52

    100Nȍ

    &1 330S)


    53

    100Nȍ

    &2

    330S)

    56

    4?0Nȍ

    9R

    1/2

    /0158

    5?

    100Nȍ



    12/20 DocID9159 Rev 14


  5. Package information


    In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com.

    ECOPACK is an ST trademark.


    DocID9159 Rev 14 13/20


    1. SO8 package information

      Figure 27. SO8 package outline


      Table 4. SO8 package mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      1.75



      0.069

      A1

      0.10


      0.25

      0.004


      0.010

      A2

      1.25



      0.049



      b

      0.28


      0.48

      0.011


      0.019

      c

      0.17


      0.23

      0.007


      0.010

      D

      4.80

      4.90

      5.00

      0.189

      0.193

      0.197

      E

      5.80

      6.00

      6.20

      0.228

      0.236

      0.244

      E1

      3.80

      3.90

      4.00

      0.150

      0.154

      0.157

      e


      1.27



      0.050


      h

      0.25


      0.50

      0.010


      0.020

      L

      0.40


      1.27

      0.016


      0.050

      L1


      1.04



      0.040


      k

      1 °


      8 °

      1 °


      8 °

      ccc



      0.10



      0.004


      14/20 DocID9159 Rev 14


    2. MiniSO8 package information

      Figure 28. MiniSO8 package outline


      Table 5. MiniSO8 package mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      1.1



      0.043

      A1

      0


      0.15

      0


      0.006

      A2

      0.75

      0.85

      0.95

      0.030

      0.033

      0.037

      b

      0.22


      0.40

      0.009


      0.016

      c

      0.08


      0.23

      0.003


      0.009

      D

      2.80

      3.00

      3.20

      0.11

      0.118

      0.126

      E

      4.65

      4.90

      5.15

      0.183

      0.193

      0.203

      E1

      2.80

      3.00

      3.10

      0.11

      0.118

      0.122

      e


      0.65



      0.026


      L

      0.40

      0.60

      0.80

      0.016

      0.024

      0.031

      L1


      0.95



      0.037


      L2


      0.25



      0.010


      k

      0 °


      8 °

      0 °


      8 °

      ccc



      0.10



      0.004


      DocID9159 Rev 14 15/20


    3. TSSOP8 package information

      Figure 29. TSSOP8 package outline


      Table 6. TSSOP8 package mechanical data


      Ref.

      Dimensions

      Millimeters

      Inches

      Min.

      Typ.

      Max.

      Min.

      Typ.

      Max.

      A



      1.2



      0.047

      A1

      0.05


      0.15

      0.002


      0.006

      A2

      0.80

      1.00

      1.05

      0.031

      0.039

      0.041

      b

      0.19


      0.30

      0.007


      0.012

      c

      0.09


      0.20

      0.004


      0.008

      D

      2.90

      3.00

      3.10

      0.114

      0.118

      0.122

      E

      6.20

      6.40

      6.60

      0.244

      0.252

      0.260

      E1

      4.30

      4.40

      4.50

      0.169

      0.173

      0.177

      e


      0.65



      0.0256


      k

      0 °


      8 °

      0 °


      8 °

      L

      0.45

      0.60

      0.75

      0.018

      0.024

      0.030

      L1


      1



      0.039


      aaa


      0.1



      0.004



      16/20 DocID9159 Rev 14


  6. Ordering information


    Table 7. Order codes

    Order code

    Temperature range

    Package

    Packing

    Marking

    LM158WDT

    -55 °C, +125 °C


    SO8


    Tape and reel

    158W

    LM258AWDT


    -40 °C, +105 °C

    258AW

    LM258WDT

    258W

    LM258WPT

    TSSOP8

    258W

    LM258WYDT(1)

    SO8 (automotive grade)

    258WY

    LM258WYPT

    TSSOP8

    (automotive grade)

    258WY

    LM258AWYPT

    K410

    LM358WST


    0 °C, +70 °C

    MiniSO8

    K417

    LM358AWDT

    SO8


    358AW

    LM358AWPT

    TSSOP8

    LM358AWST

    MiniSO8

    K418

    LM358WDT

    SO8

    358W

    1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are qualified.


    DocID9159 Rev 14 17/20


  7. Revision history


Table 8. Document revision history

Date

Revision

Changes

01-Nov-2002

1

First release.

01-Jul-2005

2

ESD protection inserted in Table 1: Absolute maximum ratings on page 4.


06-Oct-2006


3

ESD tolerance for model HBM improved to 2kV inTable 1: Absolute maximum ratings on page 4.

Rthja and Rthjc typical values added in Table 1: Absolute maximum ratings on page 4.

Added Figure 17: Phase margin vs. capacitive load on page 10.

02-Jan-2007

4

Order codes added (automotive grade level) to Section 6: Ordering information.


15-Mar-2007


5

Previously called revision 4.

Footnote for automotive grade order codes added to Section 6: Ordering information.

25-Apr-2007

6

Added missing Revision 4 of January 2007 in revision history. Corrected revision number of March 2007 to Revision 5.


11-Feb-2008


7

Reformatted electrical characteristics table. Reformatted package information.

Corrected MiniSO8 package information.

Corrected operating temperature range for automotive grade parts.


26-Aug-2008


8

Corrected ESD values in Table 1: Absolute maximum ratings. Added limitations on input current in Table 1: Absolute maximum ratings.

Corrected title for Figure 11.

Added E and L1 parameters in Table 4: SO8 package mechanical data.

Added automotive grade products for MSO8 package in Table 7: Order codes.


03-Jul-2012


9

Automotive grade level updated in Table 7: Order codes. Removed order codes: LM358WYD, LM358AWYD, LM258WYD, LM258AWYD.


09-Jan-2013


10

Small text changes in Features and Description.

Figure 1: Schematic diagram (1/2 LM158W/LM258W/LM358W): replaced.

Table 7: Order codes: added order codes LM358WST and LM358AWST.


15-Jul-2013


11

Table 3: replaced DVio with ΔVio/ΔT and DIio with ΔIio/ΔT

Table 7: Order codes: removed the following order codes: LM158WN, LM158WD, LM258AWYST, LM258WAN, LM258WAD, LM258WD, LM258WYST, LM358WN, LM358WD, LM358AWD, LM358WDT, LM358AWDT, LM358WPT, LM358AWPT,

LM358WYDT, LM358AWYDT, LM358AWYPT; updated footnote 1.


18/20 DocID9159 Rev 14


Table 8. Document revision history

Date

Revision

Changes


18-Sep-2014


12

Removed DIP8 package

Table 7: Order codes: removed the order codes LM258WN, LM258AWYDT, LM258AWPT, LM358AWYST, LM358WYST, and

LM358WYPT; added the order codes LM258WYDT, LM358AWDT, LM358AWPT, and LM358WDT.


06-May-2015


13

Section 5: Package information: replaced “package mechanical drawing” with “package outline”.

Table 7: Order codes: removed “tube” packaging from all products

31-Jul-2019

14

Updated Table 7: Order codes.


DocID9159 Rev 14 19/20



IMPORTANT NOTICE – PLEASE READ CAREFULLY


STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.


Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.


No license, express or implied, to any intellectual property right is granted by ST herein.


Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.


ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.


Information in this document supersedes and replaces information previously supplied in any prior versions of this document.


© 2019 STMicroelectronics – All rights reserved


20/20 DocID9159 Rev 14

Mouser Electronics


Authorized Distributor


Click to View Pricing, Inventory, Delivery & Lifecycle Information:


STMicroelectronics:

LM358AWST LM358WST LM258WDT LM258AWDT LM258WPT LM258WYDT LM258WYPT LM258AWYPT LM358WDT LM358AWDT LM358AWPT LM158WDT