19-0499; Rev 1; 7/98


Low-Pow er, High-Speed, Single-Supply Op Amp + Comparator + Reference ICs

MAX9000–MAX9005

General Description Features

The MAX9000 family features the combination of a high- speed operational amplifier, a 185ns comparator, and a precision 1.230V reference. These devices operate from a single +2.5V to +5.5V supply and draw less than 500µA of quiescent current. The MAX9001/MAX9004 feature a shut- down mode that reduces supply current to 2µA and puts the outputs into a high-impedance state, making them ideal for portable and battery-powered applications.

The amplifiers in the MAX9000/MAX9001/MAX9002 are unity-gain stable with a 1.25MHz gain-bandwidth product, while the amplifiers in the MAX9003/MAX9004/MAX9005 are stable for closed-loop gains of +10V/V or greater with an 8MHz gain-bandwidth product. The input common- mode voltage extends from 150mV below the negative supply to within 1.2V of the positive supply for the amplifi- er, and to within 1.1V for the comparator. The amplifier and comparator outputs can swing Rail-to-Rail® and deliver up to ±2.5mA and ±4.0mA, respectively, to an external load while maintaining excellent DC accuracy. The unique design of the comparator output stage substantially reduces switching current during output transitions, virtually eliminating power-supply glitches.

The comparator’s ±2mV of built-in hysteresis provides noise immunity and prevents oscillations even with a slow-moving input signal. The MAX9000/MAX9001/ MAX9003/MAX9004 have an internal 1.230V ±1% preci-

±1% Initial Accuracy

Low 8ppm/°C Temperature Drift Sink or Source up to 1mA

Stable for Capacitive Loads up to 100nF

sion reference with a low 8ppm/°C temperature coeffi- Ordering Information

PART

TEMP. RANGE

PIN-PACKAGE

MAX9000EUA

-40°C to

+85°C

8 µMAX

MAX9000ESA

-40°C to

+85°C

8 SO

MAX9001EUB

-40°C to

+85°C

10 µMAX

MAX9001ESD

-40°C to

+85°C

14 SO

cient that can sink or source up to 1mA. The amplifier and reference are stable with capacitive loads up to 250pF and 100nF, respectively. The comparator’s inverting input is internally connected to the reference output in the MAX9000/MAX9003.

Applications

Single-Supply Zero- Photodiode Preamps Crossing Detector Smart Card Readers Instruments, Terminals, Infrared Receivers and Bar-Code Readers for Remote Controls

Keyless Entry Sensor Signal Detection

Ordering Information continued at end of data sheet.


Pin Configurations and Typical Operating Circuit appear at end of data sheet.


Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Selector Guide



PART

INTERNAL PRECISION REFERENCE

OP-AMP GAIN STABILITY (V/V)


SHUTDOWN

OP-AMP GAIN BANDWIDTH (MHz)


PIN-PACKAGE

MAX9000

Yes

1

No

1.25

8 SO/µMAX

MAX9001

Yes

1

Yes

1.25

10 µMAX, 14 SO

MAX9002

No

1

No

1.25

8 SO/µMAX

MAX9003

Yes

10

No

8

8 SO/µMAX

MAX9004

Yes

10

Yes

8

10 µMAX, 14 SO

MAX9005

No

10

No

8

8 SO/µMAX

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.


MAX9000–MAX9005

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to VSS) ....................................-0.3V to +6V Voltage Inputs (AIN_, CIN_).............(VSS - 0.3V) to (VDD + 0.3V)

Output Short-Circuit Duration (AOUT, COUT, REF)...Continuous

to either VSS or VDD Continuous Power Dissipation (TA = +70°C)

8-Pin SO (derate 5.88mW/°C above +70°C).................471mW

8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW


10-Pin µMAX (derate 5.6mW/°C above +70°C) ............444mW

14-Pin SO (derate 8.3mW/°C above +70°C).................667mW

Operating Temperature Range

MAX900_E _ _...................................................-40°C to +85°C

Maximum Junction Temperature .....................................+150°C

Storage Temperature Range .............................-65°C to +160°C

Lead Temperature (soldering, 10sec) .............................+300°C


Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for

MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.)

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

Supply Voltage Range

VDD

Guaranteed by PSRR tests

2.5


5.5

V


Supply Current


IDD

MAX9000/MAX9001/ MAX9003/MAX9004

VDD = 3V


410

500

µA

VDD = 5V


450

550

MAX9002/MAX9005

VDD = 3V


340

425

µA

VDD = 5V


375

475

Supply Current in Shutdown

ISHDN

MAX9001/MAX9004 (V SHDN = 0)


2

5

µA

Shutdown Input Bias Current

IIN(SHDN)

MAX9001/MAX9004 (V SHDN = 0 to VDD)


1

2.5

µA

Shutdown Logic High

VIH(SHDN)


0.7 x VDD

V

Shutdown Logic Low

VIL(SHDN)


0.3 x VDD

V

OP AMP

Input Offset Voltage

VOS

MAX900_ES_


±0.5

±1.5

mV

Input Offset Voltage Temperature Coefficient

TCVOS

MAX900_ES_

±1

µV/°C

Input Bias Current

IBIAS

AIN+, AIN-


±0.05

±2

nA

Input Offset Current


AIN+, AIN-


±0.02

±1

nA

Input Resistance

RIN

Differential or common mode

1000

M

Input Common-Mode Voltage Range

CMVR

Guaranteed by CMRR test

-0.15


VDD - 1.2

V

Common-Mode Rejection Ratio

CMRR

MAX900_ES_, (VSS - 0.15V) VCM (VDD - 1.2V), VDD = 5.5V

72

96


dB

Power-Supply Rejection Ratio

PSRR

VDD = 2.5V to 5.5V

74

100


dB

Output Resistance


AV = 1V/V

0.01

Output Short-Circuit Current


Shorted to VSS

10

mA

Shorted to VDD

65

Disabled Mode Output Leakage

IOUT (DISABLED)

V SHDN (0.3V x VDD), VAOUT = 0 to VDD


±0.01

±1

µA


MAX9000–MAX9005

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for

MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.)

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS


Large-Signal Voltage Gain


AVOL

VDD = 2.5V

VAOUT = 0.05V to 2.45V, RL = 100k

94

125



dB

VAOUT = 0.2V to 2.3V, RL = 1k

84

115


VDD = 5.5V

VAOUT = 0.05V to 5.4V, RL = 100k

94

120


VAOUT = 0.25V to 5.2V, RL = 1k

86

106



Output Voltage Swing


VOL / VOH


VAIN+ - VAIN- 10mV

RL = 100k

VDD - VOH


1

5


mV

VOL


1

5

RL = 1k

VDD - VOH


140

250

VOL


60

100

Gain-Bandwidth Product

GBW

MAX9000/MAX9001/MAX9002

1.25

MHz

MAX9003/MAX9004/MAX9005

8

Phase Margin


MAX9000/MAX9001/MAX9002

75

degrees

MAX9003/MAX9004/MAX9005

80

Gain Margin


MAX9000/MAX9001/MAX9002

30

dB

MAX9003/MAX9004/MAX9005

40


Total Harmonic Distortion plus Noise


THD+N


f = 10kHz, VAOUT = 2Vp-p, VDD = 5V

MAX9000/MAX9001/ MAX9002 (AV = 1V/V)

0.009


%

MAX9003/MAX9004/ MAX9005 (AV = 10V/V)

0.028


Slew Rate


SR


VDD = 5V,

VAOUT = 4V step

MAX9000/MAX9001/ MAX9002 (AV = 1V/V)

0.85


V/µs

MAX9003/MAX9004/ MAX9005 (AV = 10V/V)

6.0


Settling Time to within 0.01%



VDD = 5V,

VAOUT = 4V step

MAX9000/MAX9001/ MAX9002 (AV = 1V/V)

6.9


µs

MAX9003/MAX9004/ MAX9005 (AV = 10V/V)

2.1

Input Capacitance

CIN


2.5

pF

Input Noise Voltage Density

VNOISE

f = 10kHz

36

nV/Hz

Input Noise Current Density

INOISE

f = 10kHz

1

fA/Hz

Shutdown Delay Time



0.2

µs

Enable Delay Time



2

µs

Power-On Time



2

µs

Capacitive-Load Stability

CLOAD

MAX9000/MAX9001/MAX9002 (AV = 1V/V)

250

pF

MAX9003/MAX9004/MAX9005 (AV = 10V/V)

250

COMPARATOR

Input Offset Voltage

VOS

MAX900_ES_ (Notes 1, 2)


±1

±2

mV

Input Offset Voltage Temperature Coefficient

TCVOS

MAX900_ES_

±1

µV/°C

Input-Referred Hysteresis


VDD = 5V (Notes 2, 3)


4

7

mV


MAX9000–MAX9005

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +2.5V to +5.5V, VSS = 0, SHDN = VDD (MAX9001/MAX9004 only), VCM(OP AMP) = 0, VAOUT = VDD / 2, VCM(COMP) = 0 (for

MAX9001/MAX9002/MAX9004/MAX9005), COUT = low, IOUT(REF) = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = 5V and TA = +25°C.)


PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

Input Bias Current

IBIAS



8

80

nA

Input Offset Current

IOS

MAX9001/MAX9002/MAX9004/MAX9005


±2

±15

nA

Common-Mode Voltage Range

VCM

Guaranteed by CMRR test

VSS - 0.15


VDD - 1.1

V

Common-Mode Rejection Ratio

CMRR

MAX9001/MAX9002/MAX9004/MAX9005,

0.15V VCM (VDD - 1.1V), VDD = 5.5V

72

100


dB

Power-Supply Rejection Ratio

PSRR

VDD = 2.5V to 5.5V

72

100


dB


Output Voltage Swing


VOL/VOH


(VCIN+ - VCIN-)

20mV

VDD - VOH

ISOURCE = 10µA

5


mV

ISOURCE = 4mA

400

VOL

ISINK = 10µA

5

ISINK = 4mA

400

Output Short-Circuit Current



55

mA

Disabled Mode Output Leakage

IOUT (DISABLED)

VSHDN (0.3V x VDD), VCOUT = 0 to VDD


±0.01

±1

µA

Propagation Delay

tPD+, tPD-

VOD = 25mV, RL = 10k, CL = 15pF (Note 4)

185

ns

Rise/Fall Time

tR, tF

VDD = 5V, RL = 10k, CL = 15pF (Note 5)

10

ns

Shutdown Delay Time



100

ns

Enable Delay Time



100

ns

Power-On Time



100

ns

VOLTAGE REFERENCE (MAX9000/MAX9001/MAX9003/MAX9004)

Output Voltage

VREF

MAX900_ES_, VDD = 5V, TA = +25°C

1.218

1.230

1.242

V

Output Voltage Temperature Coefficient

TCVREF


8

ppm/°C

Line Regulation


VDD = 2.5V to 5.5V


20

250

µV/V

Load Regulation


VDD = 5V,

IOUT = 0 to 1mA

Sourcing


0.15

0.8

mV/mA

Sinking


0.6

2.0

mV/mA

Output Short-Circuit Current


Shorted to VSS

6

mA

Shorted to VDD

10

Disabled Mode Output Leakage


VSHDN (0.3V x VDD), VREF = 0 to VDD


±0.01

±1

µA

Output Noise


0.1Hz to 10Hz

20

µVp-p

Shutdown Delay Time



1

µs

Enable Delay Time


RL = 100k to VSS, VREF within 1%

16

µs

Power-On Time


RL = 100k to VSS, VREF within 1%

16

µs

Capacitive Load Stability



0 to 100

nF

Note 1: Comparator Input Offset is defined as the center of the input-referred hysteresis zone.

Note 2: Measured at VCM(COMP) = 0 for the MAX9001/MAX9002/MAX9004/MAX9005; or VCM(COMP) = VREF for the MAX9000/MAX9003.

Note 3: Input-referred hysteresis is defined as the difference of the trip points required to change comparator output states.

Note 4: VOD is the overdrive that is beyond the offset and hysteresis-determined trip points.

Note 5: Rise and fall times are measured between 10% and 90% at COUT.


MAX9000–MAX9005

Typical Operating Characteristics

(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)



500


SUPPLYCURRENT(A)

450


400


350


300


250

SUPPLY CURRENT vs. SUPPLY VOLTAGE


004

MAX9000/MAX9001/MAX9003/MAX9


MAX9002/MAX9005


3.5


MAX9000TOC01

SHUTDOWNSUPPLYCURRENTA()

3.0


2.5


2.0


1.5


1.0


0.5

SHUTDOWNSUPPLY CURRENT vs. SUPPLY VOLTAGE


MAX9000TOC02

SHUTDOWNLOGICTHRESHOLD(V)











































2.5


2.0


1.5


1.0


0.5

SHUTDOWNLOGIC THRESHOLD vs. SUPPLY VOLTAGE


MAX9000TOC03

200


2.5


3.0


3.5 4.0


4.5 5.0 5.5


0

2.5


3.0


3.5 4.0


4.5 5.0 5.5


0































2.5


3.0


3.5


4.0 4.5 5.0 5.5

MAX9000TOC06

SUPPLYVOLTAGE(V)

SUPPLYVOLTAGE(V)

SUPPLYVOLTAGE(V)



500


SUPPLYCURRENT(A)

450


400


350


300

MAX9000/MAX9001/MAX9003/MAX9004 SUPPLY CURRENT vs. TEMPERATURE



5.5V

MAX9000TOC04

VDD=


VDD=2.5V


5.0

SHUTDOWNSUPPLYCURRENTA()

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

SHUTDOWNSUPPLY CURRENT vs. TEMPERATURE


VDD=5.5V


VDD=2.5V


2.00


MAX9000TOC05

SHUTDOWNLOGICTHRESHOLD(V)

1.98


1.96


1.94


1.92


1.90

SHUTDOWNLOGIC THRESHOLD vs. TEMPERATURE





































-40

-20 0

20 40 60 80 100

-40 -20 0 20 40 60 80 100

-40

-20 0

20 40 60 80 100


500

TEMPERATURE(°C)


MAX9002/MAX9005

MAX9000TOC07

SUPPLY CURRENT vs. TEMPERATURE

TEMPERATURE(°C)


OP-AMPOUTPUT VOLTAGESWINGHIGH (VOH) vs. SOURCECURRENT

MAX9000TOC08

450

TEMPERATURE(°C)


OP-AMPOUTPUT VOLTAGESWINGLOW (VOL) vs. SINKCURRENT

MAX9000TOC09

600


SUPPLYCURRENT(A)

450


400


350


300


-40


-20 0


VDD=5.5V


.5V

VDD=2


20 40 60 80 100

400

350

VDD- VOH (mV)

300

250

200

150

100

50

0

0


TA=+85°C TA=+25°C


TA= -40°C


1 2 3 4 5 6


500


VOL (mV)

400


300


200


100


0

0


2 4 6


TA=+85°C TA=+25°C


TA= -40°C


8 10 12 14 16 18 20

TEMPERATURE(°C)

SOURCECURRENT(mA)

SINKCURRENT(mA)


MAX9000–MAX9005

CHANGEINVOS (V)

Typical Operating Characteristics (continued)

(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)


CHANGE INOP-AMPOFFSET VOLTAGE (VOS) vs. SUPPLY VOLTAGE

MAX9000TOC10





































30


20


10


0


-10


-20


-30

CHANGE INOP-AMPOFFSET VOLTAGE (VOS) vs. TEMPERATURE

MAX9000TOC11




































100


CHANGEINVOS (V)

50


0


-50


-100


-150

OP-AMP COMMON-MODEREJECTIONRATIO vs. TEMPERATURE

MAX9000TOC12

























































92


91


90


CMRR(dB)

89


88


87


86


85


84

2.5

3.0

3.5 4.0

4.5 5.0 5.5

-40

-20 0

20 40 60 80 100

-40

-20 0

20 40 60 80 100

SUPPLYVOLTAGE(V)

TEMPERATURE(°C)

TEMPERATURE(°C)



140


130


GAIN(dB)

120


110


100


90


80

OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE


VDD=5.5V RLTOGND

RL=100k


RL=10k


RL=2k


140


MAX9000TOC13

130


GAIN(dB)

120


110


100


90


80

OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE


RL=100k



2k

RL=10k


RL=


VDD=2.5V RLTOGND


140


MAX9000TOC14

130


GAIN(dB)

120


110


100


90


80

OP-AMP LARGE-SIGNALGAIN vs. TEMPERATURE


MAX9000TOC15

RL=100k


RL=10k



3V

2

G=0.2

OVDD/

TSWIN

RLT VOU


=5.5V


VDD

RL=1k


VTO5.

0 100

200 300

400 500 600

0 100

200 300

400 500 600

-40

-20

0 20

40 60 80 100


140


130


GAIN(dB)

120


110


100


90


80

OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)


MAX9000TOC16

OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE


RL=100k


RL=10k


RL=2k


VDD=5.5V RLTOVDD


140


GAIN(dB)

130


120


110


100

OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)


MAX9000TOC17

OP-AMP LARGE-SIGNALGAIN vs. OUTPUT VOLTAGE


VDD=2.7V RLTOVDD


RL=100k RL=10k


RL=2k


140


130


GAIN(dB)

120


110


100


90


80

TEMPERATURE(°C)


MAX9000TOC18

OP-AMP LARGE-SIGNALGAIN vs. TEMPERATURE


RL=100k RL=10k


RL=1k


VDD=2.5V RLTOVDD/2

VOUTSWING=0.2VTO2.3V

0 100

200 300

400 500 600

0 100

200 300

400 500 600

-40

-20

0 20

40 60 80 100

OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)

OUTPUTVOLTAGEFROMEITHERSUPPLY(mV)

TEMPERATURE(°C)


MAX9000–MAX9005

yTpical Operating Characteristics (continued)

(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)

MAX9000/MAX9001/MAX9002 OP-AMPGAINAND PHASE vs. FREQUENCY (NOLOAD)

60 MAX9000TOC19 180

MAX9000/MAX9001/MAX9002 OP-AMPGAINAND PHASE

vs. FREQUENCY (WITHCLOAD)

60 MAX9000TOC20


180

MAX9000/MAX9001/MAX9002

OP-AMP POWER-SUPPLY REJECTION vs. FREQUENCY

AV=+1 NOLOAD

MAX9000TOC21

0


40


GAIN(dB)

20


0


-20


-40

AV=+1000 NOLOAD


GAIN


PHASE

144

108

PHASE(DEGREES)

72

36

0

-36

-72

-108

-144

-180


40


GAIN(dB)

20


0


-20


-40

AV=+1000 CL=270pF


GAIN


PHASE

144

PHASE(DEGREES)

POWER-SUPPLYREJECTION(dB)

108

72

36

0

-36

-72

-108

-144

-180


-20


-40


-60


-80


-100

100 1k

10k

100k 1M

10M

100 1k

10k

100k 1M

10M

100 1k 10k 100k 1M 10M

FREQUENCY(Hz)

MAX9003/MAX9004/MAX9005 OP-AMPGAINAND PHASE vs. FREQUENCY (NOLOAD)

60 MAX9000TOC22 180

FREQUENCY(Hz)

MAX9003/MAX9004/MAX9005 OP-AMPGAINAND PHASE

vs. FREQUENCY (WITHCLOAD)

60 MAX9000TOC23 180

FREQUENCY(Hz)

MAX9003/MAX9004/MAX9005

OP-AMP POWER-SUPPLY REJECTION vs. FREQUENCY

AV=+10 NOLOAD

MAX9000TOC24

0


40


GAIN(dB)

20


0


-20


-40

AV=+1000 NOLOAD

144


AIN


G

PHASE(DEGREES)

108

72

36

0


E


PHA

-36

S -72

-108

-144

-180


40


GAIN(dB)

20


0


-20


-40

AV=+1000 CL=270pF

144


AIN


G

PHASE(DEGREES)

POWER-SUPPLYREJECTION(dB)

108

72

36

0


E


PHA

-36

S -72

-108

-144

-180


-20


-40


-60


-80


-100

100 1k 10k 100k 1M 10M FREQUENCY(Hz)

MAX9000/MAX9001/MAX9002

OP-AMP PERCENTOVERSHOOT vs. LOADCAPACITANCE

MAX9000TOC25

AV=+1 RLTOVDD/2








RL=100k


















RL=1k

RL=10k























50


40

100 1k 10k 100k 1M 10M FREQUENCY(Hz)

MAX9003/MAX9004/MAX9005 OP-AMP PERCENTOVERSHOOT vs. LOADCAPACITANCE

AV=+10 RLTOVDD/2

MAX9000TOC26

50


RL=10k

40


VOLTAGENOISE(nV/Hz)

1000

100 1k 10k 100k 1M 10M FREQUENCY(Hz)


MAX9000TOC27

OP-AMP VOLTAGENOISEDENSITY vs. FREQUENCY

OVERSHOOT(%)

OVERSHOOT(%)

RL=100k

300


30 30


20 20


10 10


RL=1k


100


30


0

0 100 200 300 400 500 600 700 800 9001000

CLOAD(pF)

0

0 100 200 300 400 500 600 700 800 9001000

CLOAD(pF)

10

1 10 100 1k 10k 100k FREQUENCY(Hz)


MAX9000–MAX9005

THD+NOISE(%)

yTpical Operating Characteristics (continued)

(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)


1


0.1


0.01


MAX9000/MAX9001/MAX9002

MAX9000TOC28

OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. FREQUENCY

AV=+1 VIN=2Vp-p

500kHzLOWPASSFILTER RLTOVDD/2


RL=1k RL=10k


0.25


0.20


THD+NOISE(%)

0.15


0.10


MAX9000/MAX9001/MAX9002

MAX9000TOC29

OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. VAOUT


AV=+1

VIN=10kHzSINEWAVE 500kHzLOWPASSFILTER

RLTOVDD/2 RL=10k


RL=1k


MAX9000/MAX9001/MAX9002

OP-AMPOUTPUT IMPEDANCE vs. FREQUENCY

MAX9000TOC30

1k

AV=+1 NOLOAD

OUTPUTIMPEDANCE( )

100


10


1

RL=100k


0.05

RL=100k


0.1


0.001

10


100 1k


10k


100k

0

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0.01


100 1k


10k


100k 1M


10M

FREQUENCY(Hz)

MAX9003/MAX9004/MAX9005

OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. FREQUENCY

MAX9000TOC31

1

AV=+10

VIN=200mVp-p


0.25

VAOUTSWING(Vp-p)

MAX9003/MAX9004/MAX9005

MAX9000TOC32

OP-AMP TOTALHARMONICDISTORTION PLUSNOISE vs. VAOUT

AV=+10

VIN=10kHzSINEWAVE

FREQUENCY(Hz)


MAX9003/MAX9004/MAX9005

OP-AMPOUTPUT IMPEDANCE vs. FREQUENCY

MAX9000TOC33

10k

OUTPUTIMPEDANCE( )

AV=+10 NOLOAD


THD+NOISE(%)

0.1

500kHzLOWPASSFILTER

RLTOVDD/2

RL=1k


RL=10k

0.20


THD+NOISE(%)

0.15

500kHzLOWPASSFILTER

RLTOVDD/2

VIN VOUT

RL

1k


100


VIN VOUT


RL=100k

0.10

4k 36k 10

RL=1k

0.01

10

4k 36k


100

RL


1k 10k 100k

0.05


0

RL=10k

RL=100k 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

1


0.1


100 1k


10k


100k 1M


10M


200


150


CHANGEINVOS (V)

100


50


0


-50

FREQUENCY(Hz)


















































CHANGE INCOMPARATOROFFSET VOLTAGE (VOS) vs. SUPPLY VOLTAGE


MAX9000TOC34

200


150


CHANGEINVOS (V)

100


50


0


-50

VAOUTSWING(Vp-p)


























































CHANGE INCOMPARATOROFFSET VOLTAGE (VOS) vs. TEMPERATURE

FREQUENCY(Hz)

COMPARATORCOMMON-MODE REJECTIONRATIO (CMRR)

vs. TEMPERATURE

MAX9000TOC35

MAX9000TOC36




































95


93


CMRR(dB)

91


89


-100


-150


-200


2.5


3.0


3.5


4.0 4.5 5.0 5.5


-100


-150


-200


-40


-20 0


20 40 60 80 100


87


85

-40


-20 0


20 40 60 80 100

SUPPLYVOLTAGE(V)

TEMPERATURE(°C)

TEMPERATURE(°C)


MAX9000–MAX9005

yTpical Operating Characteristics (continued)

(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)



3.5


HYSTERESIS(mV)

3.2


2.9


2.6


2.3

COMPARATORHYSTERESIS vs. TEMPERATURE


MAX9000TOC37




































600


500


VDD- VOH (mV)

400


300


200


100

COMPARATOROUTPUT VOLTAGE SWINGHIGH (VOH) vs. SOURCECURRENT


MAX9000TOC38

TA=+85°C TA=+25°C


TA= -40°C


600


500


VOL (mV)

400


300


200


100

COMPARATOROUTPUT VOLTAGE SWINGLOW (VOL) vs. SINKCURRENT


MAX9000TOC39

TA=+85°C TA=+25°C


TA= -40°C


2.0


-40


-20 0


20 40 60 80 100

0

0 1 2 3 4


5 6 7 8 9 10

0

0 1 2 3 4


5 6 7 8 9 10


300


PROPAGATIONDELAY (ns)

275


250


225

TEMPERATURE(°C)


COMPARATOR PROPAGATIONDELAY vs. INPUTOVERDRIVE


MAX9000TOC40

800


700


600


tPD+(ns)

500

SOURCECURRENT(mA)


MAX9000TOC41

POSITIVECOMPARATOR PROPAGATION DELAY (tPD+) vs. LOADCAPACITANCE


OVERDRIVE=5mV OVERDRIVE=25mV


800


700


600


tPD- (ns)

500

SINKCURRENT(mA)


MAX9000TOC42

NEGATIVECOMPARATOR PROPAGATION DELAY (tPD-) vs. LOADCAPACITANCE


OVERDRIVE=5mV


OVERDRIVE=25mV


200


175

400













tPD-






























tPD+





















300


200

OVERDRIVE=100mV

400


300


200


OVERDRIVE=100mV


150

0


10 20


30 40


50 60 70 80 90 100


100


0 2000 4000 6000 8000 10,000


100


0 2000 4000 6000 8000 10,000

INPUTOVERDRIVE(mV)

CLOAD(pF)

CLOAD(pF)



200

COMPARATOR PROPAGATIONDELAY vs. TEMPERATURE


MAX9000TOC43

OVERDRIVEVOLTAGE=50mV

VREFPOWER-SUPPLY REJECTION vs. FREQUENCY







































































0


MAX9000TOC44

1.0

VREFOUTPUT VOLTAGECHANGE vs. TEMPERATURE


PROPAGATIONDELAY(ns)

175


150


125

tPD- tPD+


POWER-SUPPLYREJECTION(dB)

-20


-40


-60


-80

0.5


VREFOUTPUTVOLTAGECHANGE(mV)

MAX9000TOC45











































0


-0.5


-1.0


-1.5


100


-40


-20


0 20


40 60 80 100

-100

1


10 100 1k


10k


100k 1M

-2.0


-40


-20 0


20 40


60 80 100

TEMPERATURE(°C)

FREQUENCY(Hz)

TEMPERATURE(°C)


MAX9000–MAX9005

VREFOUTPUTVOLTAGECHANGE(mV)

Typical Operating Characteristics (continued)

(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)


VREFOUTPUT VOLTAGECHANGE vs. LOADCURRENT

4


3


2 SINKING


SOURCING

1


0


-1


100


MAX9000TOC46

VREFOUTPUTVOLTAGECHANGE(V)

50


0


-50

VREFOUTPUT VOLTAGECHANGE vs. SUPPLY VOLTAGE


MAX9000TOC47

























IOUT

2mA/div


VREF

200mV/div


VREFLOAD-TRANSIENT RESPONSE


MAX9000-TOC48

+1mA


-1mA


-2

-2.0


-1.5


-1.0


-0.5 0 0.5 1.0 1.5 2.0

-100


2.5


3.0


3.5


4.0 4.5 5.0 5.5


50s/div

LOADCURRENT(mA) SUPPLYVOLTAGE(V)



VDD

500mV/div

VREFLINE-TRANSIENT RESPONSE


5.0V


4.5V

VREF 0.1Hz to 10Hz VOLTAGENOISE


MAX9000-TOC50

VIN+

50mV/div

COMPARATOR PROPAGATIONDELAY

MAX9000-TOC51


VIN-=GND NOLOAD


+50mW


MAX9000-TOC49

-50mW

5V/div


VREF VOUT

100mV/div

2V/div

tPD+

tPD-


5s/div

1sec/div


100ns/div



MAX9000/MAX9001/MAX9002

OP-AMP SMALL-SIGNAL TRANSIENT RESPONS

MAX9000/MAX9001/MAX9002 OP-AMP SMALL-SIGNAL TRANSIENT

RESPONSEWITHCLOAD


MAX9003/MAX9004/MAX9005

MAX9000-TOC54

OP-AMP SMALL-SIGNAL TRANSIENT RESPONSE



VIN

50mV/div


VOUT

50mV/div

AV=+1 NOLOAD


MAX9000-TOC52

VIN

50mV/div


VOUT

50mV/div

AV=+1

CL=270pF


VIN

MAX9000-TOC53

10mV/div


VOUT

50mV/div

AV=+10 NOLOAD


500ns/div

1s/div

500ns/div


MAX9000–MAX9005

Typical Operating Characteristics (continued)

(VDD = +5V, VSS = 0, VCM (op amp) = 0, SHDN = VDD, COUT = low, RL = , TA = +25°C, unless otherwise noted.)



MAX9003/MAX9004/MAX9005 OP-AMP SMALL-SIGNAL TRANSIENT

RESPONSEWITHCLOAD


AV=+1


MAX9000/MAX9001/MAX9002

MAX9000-TOC55

MAX9000-TOC56

OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE


AV=+1


MAX9003/MAX9004/MAX9005

MAX9000-TOC57

OP-AMP LARGE-SIGNAL TRANSIENT RESPONSE


AV=+10

VIN

10mV/div


VOUT

50mV/div

CL=270pF

VIN

5V/div

4V VOUT

1V/div

NOLOAD

VIN

0.5V/div


5V


VOUT

1V/div

NOLOAD


0V


1s/div


2s/div


0V

500ns/div


Pin Description


PIN


NAME


FUNCTION

MAX9000/ MAX9003

MAX9002/ MAX9005

MAX9001/MAX9004

10 µMAX

14 SO

1

2

SHDN

Shutdown Logic Input

1

1

2

3

AOUT

Op-Amp Output

2

2

3

4

AIN-

Inverting Op-Amp Input

3

3

4

5

AIN+

Noninverting Op-Amp Input

4

4

5

6

VSS

Negative Supply or Ground

5

6

9

REF

Internal Reference Output

5

7

10

CIN-

Inverting Comparator Input

6

6

8

11

CIN+

Noninverting Comparator Input

7

7

9

12

COUT

Comparator Output

8

8

10

13

VDD

Positive Supply

1, 7, 8, 14

N.C.

No Connection. Not internally connected.



Figure 1. MAX9000–MAX90005 Functional Diagrams

Detailed Description

MAX9000–MAX9005


  1. AOUT MAX9000 VDD 8 OPAMP MAX9003

  2. AIN- COUT 7

  3. AIN+ CIN+ 6

  4. VSS REF 5


COMP



REF


  1. AOUT MAX9002 VDD 8 OPAMP MAX9005

  2. AIN- COUT 7

  3. AIN+ CIN+ 6

  4. VSS CIN- 5


COMP




  1. SHDN VDD 13

  2. AOUT VDD 12

  3. AIN- CIN+ 11

  4. AIN+ CIN- 10

  5. VSS MAX9001 REF REF 9

NORMAL/SHUTDOWNCONTROL 4M


OPAMP COMP




MAX9004

The MAX9001–MAX9005 are combinations of a high- speed operational amplifier, a 185ns comparator, and a 1%-accurate, 8ppm/°C, 1.230V reference. The devices are offered in space-saving 8-pin and 10-pin µMAX pack- ages. The comparator’s inverting input is internally con- nected to the reference output in the MAX9000/MAX9003. The MAX9002/MAX9005 do not have an internal refer- ence, but the inverting input of the comparator is avail- able externally. The MAX9001/MAX9004 include both the inverting input and the reference output. The MAX9000/ MAX9001/MAX9003/MAX9004 typically consume only 410µA of quiescent current, while the MAX9002/ MAX9004 typically consume 340µA. These low-power, Rail-to-Rail devices provide excellent AC and DC perfor- mance and are ideally suited to operate from a single supply. The MAX9001/MAX9004 feature a shutdown mode that sets the outputs in a high-impedance state and reduces the supply current to 2µA, making these devices ideal for portable and battery-powered systems.

Op Amp The op amps in the MAX9000/MAX9001/MAX9002 are unity-gain stable with a gain-bandwidth product of 1.25MHz and a slew rate of 0.85V/µs. The amplifiers in the MAX9003/MAX9004/MAX9005 are stable at closed- loop gains greater than or equal to 10V/V, with a gain- bandwidth product of 8MHz and a slew rate of 6.0V/µs.

The common-mode input voltage range extends from 150mV below the negative rail to within 1.2V of the pos- itive rail. The amplifier output does not undergo phase reversal when the common-mode input range is exceeded, and the input impedance is relatively con- stant for input voltages within both supply rails. The MOS differential inputs of the amplifiers feature extremely high input impedance and ultra-low input bias currents. The CMOS output stage achieves true rail-to-rail operation; the outputs swing to within a few millivolts of the supply rails, thus extending the dynamic range. A proprietary design achieves high open-loop gain, enabling these devices to operate at low quies- cent currents yet maintain excellent DC and AC char- acteristics under various load conditions. These devices have been designed to maintain low offset volt- age over the entire operating-temperature, common- mode, and supply-voltage ranges.


Comparator The common-mode input range extends from 150mV below the negative rail to within 1.1V of the positive rail. The bipolar differential inputs of the comparator feature high input impedance and low input bias currents. The comparators are designed to maintain low offset volt- age over the entire operating-temperature, common- mode, and supply-voltage ranges. In the MAX9000/ MAX9003, the comparator’s inverting input is internally connected to the reference output.

The CMOS output stage achieves true rail-to-rail opera- tion; the outputs swing to within a few millivolts of the supply rails. The comparator’s propagation delay is 185ns and is a function of the overdrive (see Typical Operating Characteristics). TTL/CMOS compatibility is maintained even with a ±4mA output load. A propri- etary design of the output stage substantially reduces the cross-conduction current during output transitions, thereby minimizing power-supply glitches typical of most comparators. In addition, the comparator’s ±2mV of built-in hysteresis provides noise immunity and pre- vents unstable outputs even with slow-moving input signals.

Voltage Reference The 1%-accurate, precision 1.230V internal bandgap reference in the MAX9000/MAX9001/MAX9003/ MAX9004 achieves an 8ppm/°C temperature coefficient (tempco). The reference can sink or source 1mA of load current with excellent load regulation. The output typical- ly changes only 60µV for a 3V change in input voltage (line regulation). The reference is stable for capacitive loads up to 100nF.

Applications Infor mation

The MAX9000–MAX9005 offer excellent performance and low power consumption, and are available in space-saving µMAX packages. The following section provides some practical application guidelines.

Bypassing and Layout The MAX9000–MAX9005 operate from a +2.5V to +5.5V single supply or from ±1.25V to ±2.75V dual supplies. (In the MAX9000/MAX9001/MAX9003/MAX9004, the

reference voltage is referred to as VSS.). For single- supply operation, bypass the power supply with a 0.1µF capacitor. For dual supplies, bypass each supply to ground. Bypass with capacitors as close as possible to the device to minimize lead inductance and noise. Use a low-inductance ground plane if possible. A print- ed circuit board with a ground plane is recommended. Avoid using wire-wrap boards, breadboards, or IC sockets. For heavy loads at the comparator’s and/or

amplifier’s output, add a 1µF to 10µF power-supply bypass capacitor.

MAX9000–MAX9005

The device has a high degree of isolation between the various blocks. To maintain isolation, careful layout is required. Take special precautions to avoid crossing signal traces, especially from the outputs to the inputs. For sensitive applications, shielding might be required. In addition, stray capacitance may affect the stability and frequency response of the amplifier. Decrease stray capacitance by minimizing lead lengths in the board layout, as well as placing external components as close to the device as possible.

Op-Amp Frequency Stability Driving large capacitive loads can cause instability in most low-power, rail-to-rail output amplifiers. These amplifiers are stable with capacitive loads up to 250pF in their minimum gain configuration. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output, as shown in Figure 2. This resistor improves the circuit’s phase mar- gin by isolating the load capacitor from the amplifier’s output. Figures 3 and 4 show the response of the ampli- fier with and without an isolation resistor, respectively.

The total capacitance at the op amp’s inputs (input capacitance + stray capacitance) along with large-value feedback resistors can cause additional poles within the amplifier’s bandwidth, thus degrading the phase margin. To compensate for this effect, place a 2pF to 10pF capacitor across the feedback resistor, as shown in Figure 5.



RS

MAX9000 CLOAD

MAX9001

MAX9002


RS

CLOAD


R

R

MAX9003 MAX9004 MAX9005

Figure 2. Isolation Resistors to Drive Capacitive Loads



VIN

50mV/ div


VOUT

50mV/ div


2s/div


VIN

50mV/ div


VOUT

50mV/ VDD=+1

div CL=510pF


2s/div

MAX9000–MAX9005

MAX9000-FIG03

MAX9000-FIG04


AIN+

AOUT


R2

R1


2pFTO10pF

Figure 3. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal Transient Response with Capacitive Load (CL = 510pF) and Isolation Resistor (RISO = 91)


Figure 5. Compensation for Input Capacitance

Figure 4. MAX9000/MAX9001/MAX9002 Op-Amp Small-Signal Transient Response with Capacitive Load (CL = 510pF) and No Isolation Resistor



R2

VIN

R1 COUT


REF

Figure 6. External Hysteresis



Reference Bypassing While the internal reference is stable with capacitive loads up to 100nF, it does not require an output capaci- tor for stability. However, in applications where the load or the supply could experience large step changes, an output capacitor reduces the amount of overshoot and improves the circuit’s transient response.

Comparator Input Stage The comparator’s input bias current is typically 8nA. To reduce the offset error caused by the bias current flow- ing through the external source impedance, match the effective impedance seen by each input. High source impedance together with the comparator’s input capaci- tance can increase the propagation delay through the

comparator. The outputs do not undergo phase rever- sal when the input common-mode range is exceeded, and the input impedance is relatively constant for input voltages within both supply rails.

Comparator Hysteresis Built-in ±2mV hysteresis improves the comparator’s noise immunity. It prevents unstable outputs with slow- moving or noisy input signals. If additional hysteresis is required, add positive feedback as shown in Figure 6. This configuration increases the hysteresis band to desired levels, but also increases power consumption and slows down the output response.


To add hysteresis, use the following procedure:

Step 1: The device’s input bias current can be as high as 80nA. To minimize error due to the input bias, choose a value for R2 of 100k (VREF / R2), which allows a current of 12.33µA at the upper trip point.

Step 2: Choose the width of the hysteresis band. In this example, choose 20mV for the added external hystere- sis (VEHYST = 20mV). Total hysteresis = VEHYST + VIHYST = 24mV.

R1 = R2 (VEHYST - 2VIHYST) / (VDD + 2VIHYST)

where IHYST is the device’s internal hysteresis.

Step 3: Determine R1. If VDD = 5V, then R1 = 319.

Step 4: Check the hysteresis trip points. The following equation represents the upper trip point (VIN(H)):

VIN(H) = [(R1 + R2) / R2] (VREF + VIHYST) = 1.238V

The lower trip point is 24mV lower than upper trip point. VIN(L) = 1.238V - 0.024V = 1.214V.

Comparator Propagation Delay The comparator’s propagation delay is a function of the input overdrive voltage. Overdrive voltage is measured from beyond the edge of the offset and hysteresis- determined trip points (see Typical Operating Characteristics for a graph of Propagation Delay vs. Input Overdrive). High source impedance coupled with the comparator’s input capacitance increases the prop- agation delay. Large capacitive loads also increase the propagation delay.

MAX9000-FIG07

Shutdown (SHDN) Shutdown is active-low enabled. The SHDN input for the MAX9001/MAX9004 can be taken above the posi-



SHDN

5V/div


AOUT

2V/div


COUT

5V/div


VREF

1V/div


5s/div AV=+1V/V,CAIN+=2.5V,CCIN+=2.5V

Figure 7. Enable/Disable Response of Op Amp, Comparator, and Reference to SHDN

tive supply without an increase in the SHDN input cur- rent, allowing them to be driven from independent logic circuits powered from a different supply voltage. However, the logic threshold voltage requirements must be met for proper operation. If SHDN is left unconnected, the device defaults to the enabled mode through an internal 4M pull-up to VDD. If SHDN is to be left unconnected, take proper care to ensure that no signals are coupled to this pin, as this may cause false triggering.

MAX9000–MAX9005

In shutdown mode, all outputs are set to a high-imped- ance state and the supply current reduces to 2µA. Enable times for the op amp, comparator, and refer- ence are 2µs, 100ns, and 16µs, respectively. Shutdown delay times for the op amp, comparator, and reference are 200ns, 100ns, and 1µs, respectively (Figure 7).

Application Cir cuits

Radio Receiver for Alarms

and Detectors Figure 8’s circuit is useful as a front end for RF alarms. An unshielded inductor is used with capacitors C1A, C1B, and C1C in a resonant circuit to provide frequen- cy selectivity. The op amp from a MAX9003 amplifies the signal received. The comparator improves noise immunity, provides a signal-strength threshold, and translates the received signal into a pulse train. The tuned LC circuit in Figure 8 is set for 300kHz. The lay- out and routing of components for the amplifier should be tight to minimize 60Hz interference and crosstalk from the comparator. Metal shielding is recommended to prevent RFI from the comparator or digital circuitry from exciting the receiving antenna. The transmitting



VCC=5V

ANTENNA


MAX9003 0.1F

0.1F

20k 10M

C1A AMP

390pFC1B

L1 0.01nF

33H 9.1k

C1C

50-100pF 10k COMP

5.1M

1.230V REF

L1xC1= 1 LAYOUT-SENSITIVEAREA, (2 fC) 2 METALRFISHIELDINGADVISED

Figure 8. Radio Receiver Application


MAX9000–MAX9005


VCC=5V

100kHz, C2

5Vp-p 15pF, 5%

NEC R2

NEC PH302B 100k, 0.1F

SE307-C 4.99k 1%

51 R1A

49.9k C1 AMP

1% R1B 150pF, 4.99k 5%

1%

100k 1.230V COMP

MAX9003 0.1F

REF

LAYOUT-SENSITIVEAREA


R1xC1=R2xC2= 1

2 fC

antenna can be long parallel wires spaced about 7.2cm apart, with equal but opposite currents. Radio waves from this antenna are detectable when the receiver is brought within close proximity, but cancel out at greater distances.

Infrared Receiver Front End for Remote Controls and Data Links

The circuit in Figure 9 uses the MAX9003 as a PIN pho- todiode preamplifier and discriminator for an infrared receiver. The op amp is configured as a Delyiannis- noise and eliminates low-frequency interference from sunlight, fluorescent lights, etc. This circuit is applica- ble for TV remote controls and low-frequency data links up to 200kbps. Carrier frequencies are limited to around 100kHz, as in the example circuit. Component layout and routing for the amplifier should be tight to reduce stray capacitance, 60Hz interference, and RFI from the comparator. Crosstalk from comparator edges distorts the amplifier signal. To minimize this effect, add a lowpass RC filter to the connection from the reference to the op amp’s noninverting input.

Signal Conditioning For incoming signals that require filtering, the internal amplifier provides an opportunity to create an active fil- ter. This may be required for relatively high-speed sig- nals that require adequate filtering of high-speed carrier frequencies, harmonics, and external noise. In addition, the amplifier can be used to amplify the signal prior to digitizing it through the comparator to improve the comparator’s overall output response and improve its noise immunity.


Figure 9. Infrared Receiver Application


MAX9000–MAX9005

Pin Configurations



TOPVIEW



AOUT AIN- AIN+ VSS


SO/MAX


VDD COUT CIN+




1


8




2

MAX9000

7



3

MAX9002

6

MAX9003



MAX9005

4

5




REF(CIN-)


AIN- 3

AIN+ 4

VSS 5


MAX9001 MAX9004















SHDN


1



10

VDD

N.C.


1


14

N.C.

AOUT


2



9

COUT

SHDN


2


13

VDD

MAX


8 CIN+

7 CIN-

6 REF


AOUT 3

AIN- 4

AIN+ 5

VSS 6

N.C. 7


MAX9001 MAX9004


12 COUT

11 CIN+

10 CIN-

9 REF

8 N.C.


SO


( )AREFORTHEMAX9002/MAX9005.


Typical Operating Cir cuit


0.1F AIN+ VDD

INPUT

OPAMP MAX9000

AIN- MAX9003


AOUT

1M

R2 CIN+ COUT

COMP

R1 REF


REF 1.230V VSS


MAX9000–MAX9005

PART

TEMP. RANGE

PIN-PACKAGE

MAX9002EUA

-40°C to

+85°C

8 µMAX

MAX9002ESA

-40°C to

+85°C

8 SO

MAX9003EUA

-40°C to

+85°C

8 µMAX

MAX9003ESA

-40°C to

+85°C

8 SO

MAX9004EUB

-40°C to

+85°C

10 µMAX

MAX9004ESD

-40°C to

+85°C

14 SO

MAX9005EUA

-40°C to

+85°C

8 µMAX

MAX9005ESA

-40°C to

+85°C

8 SO

Ordering Infor mation (continued) Chip Infor mation


TRANSISTOR COUNT: 283


8LUMAXD.EPS

Package Infor mation




















MAX9000–MAX9005

10LUMAXB.EPS

Package Infor mation (continued)



















































































MAX9000–MAX9005

SOICN.EPS

Package Infor mation (continued)






















































































































Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1998 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

Mouser Electronics


Authorized Distributor


Click to View Pricing, Inventory, Delivery & Lifecycle Information:


Maxim Integrated:

MAX9000ESA+ MAX9000ESA+T MAX9000EUA+ MAX9000EUA+T MAX9001ESD+ MAX9001ESD+T MAX9001EUB+ MAX9001EUB+T MAX9002ESA+ MAX9002ESA+T MAX9002EUA+ MAX9002EUA+T MAX9003ESA+ MAX9003ESA+T MAX9003EUA+ MAX9003EUA+T MAX9004ESD+ MAX9004ESD+T MAX9004EUB+ MAX9004EUB+T MAX9005ESA+ MAX9005ESA+T MAX9005EUA+ MAX9005EUA+T MAX9000ESA MAX9000ESA-T MAX9000EUA MAX9000EUA-T MAX9001EUB MAX9001EUB-T MAX9002ESA MAX9002ESA-T MAX9002EUA MAX9002EUA-T MAX9003ESA MAX9003ESA-T MAX9003EUA MAX9003EUA-T MAX9004ESD MAX9004ESD-T MAX9004EUB MAX9004EUB-T MAX9005ESA MAX9005ESA-T