Micropower (45 A, 200 kHz) rail-to-rail 16 V CMOS
operational amplifiers
Datasheet - production data
Single
SOT23-5
Dual
DFN8 2x2
MiniSO-8
Quad
QFN16 3x3
TSSOP14
Features
Low power consumption: 60 µA max at 16 V
Supply voltage: 3.3 V to 16 V
Rail-to-rail input and output
Gain bandwidth product: 200 kHz typ
Low offset voltage:
500 µV max for “A” version
1 mV max for standard version
Low input bias current: 1 pA typ
Automotive qualification
Benefits
Power savings in power-conscious applications
Easy interfacing with high impedance sensors
Related products
See TSX56x or TSX92x series for higher gain bandwidth products (900 kHz or 10 MHz)
Applications
Industrial signal conditioning
Automotive signal conditioning
Active filtering
Medical instrumentation
High impedance sensors
Description
The TSX63x and TSX63xA series of operational amplifiers offer low voltage operation and rail-to- rail input and output. TSX631 is the single version, TSX632 the dual version and TSX634 the quad version, with pinouts compatible with industry standards.
The TSX63x and TSX63xA series offer a 200 kHz gain bandwidth product while consuming 60 µA maximum at 16 V.
The devices are housed in the tiniest industrial packages.
These features make the TSX63x and TSX63xA family ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease the use in harsh automotive applications.
Op-amp version | Standard Vio | Enhanced Vio |
Single | TSX631 | TSX631A |
Dual | TSX632 | TSX632A |
Quad | TSX634 | TSX634A |
March 2013 DocID024293 Rev 1 1/31
This is information on a product in full production. www.st.com
Figure 1. Pin connections for each package (top view)
Single
SOT23-5 (TSX631)
Dual
2871 | 1 | 8 | 9&&+ | 2871 | 9&&+ |
,11- | 2 | 7 | 2872 | ,11- | 2872 |
,11+ | 3 | 6 | ,12- | ,11+ | ,12- |
9&&- | 4 | 5 | ,12+ | 9&&- | ,12+ |
DFN8 2x2 (TSX632) Mini-SO8 (TSX632)
,11-
2871
2874
,14-
Quad
,11+ 1
9&&+ 2
1& 3
,12+ 4
16 15 14 13
,12-
2872
2873
,13-
5 6 7 8
12 ,14+
11 9&&-
10 1&
9 ,13+
QFN16 3x3 (TSX634) TSSOP14 (TSX634)
DocID024293 Rev 1 3/31
Table 2. Absolute maximum ratings (AMR)
Symbol | Parameter | Value | Unit |
VCC | Supply voltage(1) | 18 | V |
Vid | Differential input voltage (2) | ±VCC | |
Vin | Input voltage(3) | VCC- - 0.2 to VCC++ 0.2 | |
Iin | Input current(4) | 10 | mA |
Tstg | Storage temperature | -65 to +150 | °C |
Rthja | Thermal resistance junction to ambient(5)(6) SOT23-5 DFN8 2x2 MiniSO-8 QFN16 3x3 TSSOP14 | 250 120 190 80 100 | °C/W |
Rthjc | Thermal resistance junction to case DFN8 2x2 QFN16 3x3 | 33 30 | |
Tj | Maximum junction temperature | 160 | °C |
ESD | HBM: human body model(7) | 4 | kV |
MM: machine model(8) | 200 | V | |
CDM: charged device model(9) | 1.3 | kV | |
Latch-up immunity | 200 | mA |
All voltage values, except the differential voltage are with respect to network ground terminal.
The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. See
Section 4.5 for precautions of using the TSX631 with high differential input voltage.
VCC-Vin must not exceed 18 V, Vin must not exceed 18 V.
Input current must be limited by a resistor in series with the inputs.
Short-circuits can cause excessive heating and destructive dissipation.
Rth are typical values.
Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
Symbol | Parameter | Value | Unit |
VCC | Supply voltage | 3.3 to 16 | V |
Vicm | Common mode input voltage range | VCC- - 0.1 to VCC+ + 0.1 | |
Toper | Operating free air temperature range | -40 to +125 | °C |
4/31 DocID024293 Rev 1
Table 4. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | V | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
TSX63x, T = 25 °C | 1.6 | mV | ||||
TSX63x, -40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) | T = 25 °C | 4 | |||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | V/°C | |
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(2) | pA | |
-40°C < T < 125 °C | ||||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | |||
-40°C < T < 125 °C | ||||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩs) | T = 25 °C | 65 | 79 | dB | |
-40°C < T < 125 °C | 62 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 59 | 74 | ||
-40°C < T < 125 °C | 55 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) | T = 25 °C | 100 | 110 | ||
-40°C < T < 125°C | 90 | |||||
VOH | High level output voltage Vid = +1 V, VOH = VCC-Vout | RL = 10 kΩ, T = 25 °C | 70 | mV | ||
RL = 10 kΩ, -40 °C < T < 125 °C | 100 | |||||
VOL | Low level output voltage Vid = -1 V, | RL = 10 kΩ, T = 25 °C | 70 | |||
RL = 10 kΩ, -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 4.3 | 5.3 | mA | |
-40°C < T < 125 °C | 2.5 | |||||
Isource (Vout = 0 V) | T = 25 °C | 3.3 | 4.3 | |||
-40°C < T < 125 °C | 2.5 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | µA | |
-40°C < T < 125 °C | 60 |
DocID024293 Rev 1 5/31
Table 4. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
AC performance | ||||||
GBP | Gain bandwidth product | RL = 100 kΩ, CL = 100 pF | 160 | 200 | kHz | |
Fu | Unity gain frequency | 160 | ||||
m | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/s | ||
en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | µVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | ---n--V----- Hz | ||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = 0.9V, BW = 22 kHz, Vout = 1 Vpp | 0.005 | % |
6/31 DocID024293 Rev 1
Table 5. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | V | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
TSX63x, T = 25 °C | 1.6 | mV | ||||
TSX63x, -40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) | T = 25 °C | 4 | |||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | V/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 17 | ---------n V------------- month | ||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | ||||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | |||
-40°C < T < 125 °C | ||||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 65 | 79 | dB | |
-40°C < T < 125 °C | 62 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 62 | 77 | ||
-40°C < T < 125 °C | 58 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) | T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage Vid = +1 V, VOH = VCC-Vout | RL = 10 kΩ, T=25 °C | 70 | mV | ||
RL = 10 kΩ, -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage Vid = -1 V, | RL = 10 kΩ, T = 25 °C | 70 | |||
RL = 10 kΩ, -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 11 | 14 | mA | |
-40°C < T < 125 °C | 8 | |||||
Isource (Vout = 0 V) | T = 25 °C | 9 | 12 | |||
-40°C < T < 125 °C | 7 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | µA | |
-40°C < T < 125 °C | 60 |
DocID024293 Rev 1 7/31
Table 5. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL= 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
AC performance | ||||||
GBP | Gain bandwidth product | RL = 100 kΩ, CL = 100 pF | 160 | 200 | kHz | |
Fu | Unity gain frequency | 160 | ||||
m | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/s | ||
en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | µVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | ---n--V----- Hz | ||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = 2.5V, BW = 22 kHz, Vout = 1 Vpp | 0.005 | % |
See Chapter 4.3: Input offset voltage drift over temperature on page 18
Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.
8/31 DocID024293 Rev 1
Table 6. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 500 | V | ||
TSX63xA, -40°C < T < 125 °C | 1300 | |||||
TSX63x, T = 25 °C | 1 | mV | ||||
TSX63x, -40°C < T < 125 °C | 1.8 | |||||
Vio | Offset voltage, high common mode (Vicm=VCC, RL > 1 MΩ) | T = 25 °C | 4 | |||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | V/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 180 | ---------n V------------- month | ||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | ||||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | |||
-40°C < T < 125 °C | ||||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 71 | 84 | dB | |
-40°C < T < 125 °C | 68 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 69 | 82 | ||
-40°C < T < 125 °C | 66 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) | T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage Vid = +1 V, VOH = VCC-Vout | RL = 10 kΩ, T = 25 °C | 70 | mV | ||
RL = 10 kΩ, -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage Vid = -1 V, | RL = 10 kΩ, T = 25 °C | 70 | |||
RL = 10 kΩ, -40°C < T < 125 °C | 100 | |||||
Iout | Isink (Vout = VCC) | T = 25 °C | 35 | 51 | mA | |
-40°C < T < 125 °C | 25 | |||||
Isource (Vout = 0 V) | T = 25 °C | 30 | 42 | |||
-40°C < T < 125 °C | 20 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | µA | |
-40°C < T < 125 °C | 60 |
DocID024293 Rev 1 9/31
Table 6. Electrical characteristics at VCC+ = +10 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
AC performance | ||||||
GBP | Gain bandwidth product | RL = 100 kΩ, CL = 100 pF | 160 | 200 | kHz | |
Fu | Unity gain frequency | 160 | ||||
m | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/s | ||
en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | µVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | ---n--V----- Hz | ||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = 5 V, BW = 22 kHz, Vout = 1 Vpp | 0.004 | % |
See Chapter 4.3: Input offset voltage drift over temperature on page 18
Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.
Guaranteed by design
10/31 DocID024293 Rev 1
Table 7. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
DC performance | ||||||
Vio | Offset voltage | TSX63xA, T = 25 °C | 700 | V | ||
TSX63xA, -40°C < T < 125 °C | 1500 | |||||
T = 25 °C | 1.6 | mV | ||||
-40°C < T < 125 °C | 2.4 | |||||
Vio | Offset voltage, high common- mode (Vicm=VCC, RL > 1 MΩ) | T = 25°C | 4 | |||
-40°C < T < 125 °C | 5 | |||||
ΔVio/ΔT | Input offset voltage drift | -40°C < T < 125 °C(1) | 1 | 8 | V/°C | |
ΔVio | Long term input offset voltage drift | T = 25 °C(2) | 3.4 | --------- V------------- month | ||
Iio | Input offset current (Vout = VCC/2) | T = 25 °C | 1 | 100(3) | pA | |
-40°C < T < 125 °C | ||||||
Iib | Input bias current (Vout = VCC/2) | T = 25 °C | 1 | |||
-40°C < T < 125 °C | ||||||
RIN | Input resistance | 1 | TΩ | |||
CIN | Input capacitance | 5 | pF | |||
CMR1 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC-1.65 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 71 | 85 | dB | |
-40°C < T < 125 °C | 68 | |||||
CMR2 | Common mode rejection ratio CMR = 20 log (ΔVicm/ΔVio) (Vicm = -0.1 V to VCC+0.1 V, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 69 | 83 | ||
-40°C < T < 125 °C | 66 | |||||
SVR | Common mode rejection ratio 20 log (ΔVCC/ΔVio) (VCC =3.3 V to 16 V, Vout = Vicm VCC/2) | T = 25 °C | 73 | 87 | ||
-40°C < T < 125 °C | 70 | |||||
Avd | Large signal voltage gain (Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ) | T = 25 °C | 100 | 110 | ||
-40°C < T < 125 °C | 90 | |||||
VOH | High level output voltage Vid = +1 V, VOH = VCC-Vout | RL = 10 kΩ, T = 25 °C | 70 | mV | ||
RL = 10 kΩ, -40°C < T < 125 °C | 100 | |||||
VOL | Low level output voltage Vid = -1 V, | RL = 10 kΩ, T = 25 °C | 70 | |||
RL = 10 kΩ, -40°C < T < 125 °C | 100 |
DocID024293 Rev 1 11/31
Table 7. Electrical characteristics at VCC+ = +16 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL=10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
Iout | Isink | Vout = VCC, T = 25 °C | 40 | 92 | mA | |
Vout = VCC, -40°C < T < 125 °C | 35 | |||||
Isource | Vout = 0 V, T = 25 °C | 30 | 90 | |||
Vout = 0 V, -40°C < T < 125 °C | 25 | |||||
ICC | Supply current (per operator, Vout = VCC/2, RL > 1 MΩ) | T = 25 °C | 45 | 60 | µA | |
-40°C < T < 125 °C | 60 | |||||
AC performance | ||||||
GBP | Gain bandwidth product | RL = 100 kΩ, CL = 100 pF | 160 | 200 | kHz | |
Fu | Unity gain frequency | 160 | ||||
m | Phase margin | 55 | degrees | |||
Gm | Gain margin | 9 | dB | |||
SR | Slew rate | RL = 100 kΩ CL = 100 pF, Vout = 0.5 V to VCC - 0.5V | 0.12 | V/s | ||
en | Low-frequency peak-to-peak input noise | Bandwidth: f = 0.1 to 10 Hz | 5 | µVpp | ||
en | Equivalent input noise voltage | f = 1 kHz | 60 | ---n--V----- Hz | ||
f = 10 kHz | ||||||
THD+N | Total harmonic distortion + noise | Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = 8 V, BW = 22 kHz, Vout = 1 Vpp | 0.004 | % |
See Chapter 4.3: Input offset voltage drift over temperature on page 18
Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.
12/31 DocID024293 Rev 1
Supply Current (µA)
Population (%)
Figure 2. Supply current vs. supply voltage at Vicm = VCC/2
Figure 3. Input offset voltage distribution at VCC = 16 V
50 | 20 | Vcc=16V | ||||||||
40 | Vicm=Vcc/2 | 15 | Vicm=8V T=25°C | |||||||
30 | ||||||||||
10 | ||||||||||
20 | ||||||||||
T=25°C | T=-40°C | 5 | ||||||||
10 | T=125°C | |||||||||
0 | 0 | |||||||||
0 | 2 | 4 6 8 10 | 12 | 14 | 16 | -1500 | -1000 | -500 0 500 | 1000 | 1500 |
Supply Voltage (V) | Input offset voltage (µV) |
35
Vcc=3.3V
30 Vicm=1.65V T=25°C
25
20
15
10
5
0
-250 -200 -150 -100 -50 0 50 100 150 200 250
Input offset voltage (µV)
Population (%)
Figure 4. Input offset voltage distribution at VCC = 10 V
Population (%)
Figure 6. Input offset voltage temperature coefficient distribution
Figure 5. Input offset voltage vs. temperature at VCC=16 V
Limit for TSX63x | |||||||||||
Limit for TSX63xA | |||||||||||
Vcc=16V | |||||||||||
3000
2000
1000
0
-1000
-2000
-3000
-40 -20 0 20 40 60 80 100 120
Temperature (°C)
Input offset voltage (µV)
Input Offset Voltage (µV)
Figure 7. Input offset voltage vs. input common mode voltage
25 | Vcc=16V | 600 | |||||||||||||||
20 | Vicm=8V T=25°C | 400 | |||||||||||||||
200 | |||||||||||||||||
15 | 0 | ||||||||||||||||
T=125°C | |||||||||||||||||
-200 | T=25°C | ||||||||||||||||
10 | -400 | T=-40°C | |||||||||||||||
5 | -600 | ||||||||||||||||
-800 | Vcc=16V | ||||||||||||||||
0 | -1000 | ||||||||||||||||
-8 | -7 -6 -5 | -4 | -3 | -2 | -1 0 1 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 2 4 6 8 10 12 | 14 | 16 | ||
ΔVio/ΔT (µV/°C) | Input Common Mode Voltage (V) |
DocID024293 Rev 1 13/31
Output Current (mA)
Output Current (mA)
Figure 8. Output current vs. output voltage at VCC = 3.3 V
Figure 9. Output current vs. output voltage at VCC = 16 V
10.0 Sink 7.5 Vid=-1V 5.0 2.5 0.0 T=125°C -2.5 -5.0 -7.5 -10.0 0.0 0.5 | T=25°C T=-40°C Vcc=3.3V 1.0 1.5 2.0 2.5 Output Voltage (V) | Source Vid=1V 3.0 | 125 | ||||
100 Sink | |||||||
Vid=-1V | |||||||
75 | |||||||
50 | |||||||
25 | T=-40°C | ||||||
0 | T=25°C | ||||||
-25 T=125°C | |||||||
-50 | |||||||
-75 | |||||||
-100 | Source | ||||||
-125 | Vcc=16V | Vid=1V | |||||
0.0 2.0 | 4.0 | 6.0 8.0 10.0 | 12.0 | 14.0 16.0 | |||
Output Voltage (V) |
0.10
0.15
0.20
Vout (V)
Figure 10. Output low-rail linearity performance (RL≥ 2 kΩ
From Vcc=3.3V to Vcc=16V | |||||
Follower configuration T=25°C | |||||
0.05
0.10
Vin (V)
0.15
0.20
0.00
0.00
0.05
Figure 12. Bode diagram at VCC = 3.3 V, RL= 10 kΩ
Figure 11. Output high-rail linearity performance (RL≥ 2kΩ
From Vcc=3.3V to Vcc=16V | |||||
Follower configuration T=25°C | |||||
0.05
0.10
Vcc - Vin (V)
0.15
0.20
10 -135
T=-40°C
10 -135
T=-40°C
0.00
0.00
0.05
0.10
0.15
0.20
Gain (dB)
Phase (°)
Vcc - Vout (V)
Gain (dB)
Phase (°)
Figure 13. Bode diagram at VCC = 3.3 V, RL= 100 kΩ
40
0
40
0
Gain
Gain
30
-45
30
-45
20
-90
20
-90
Phase
Phase
0
Vcc=3.3V Vicm=1.65V Rl=10kΩ Cl=100pF
Gain=-100
T=25°C
-180
0
T=25°C
-180
-20
-270 1M
-20
Frequency (Hz)
Frequency (Hz)
-270 1M
100k
10k
1k
T=125°C
-225
-10
Vcc=3.3V Vicm=1.65V Rl=100kΩ Cl=100pF
Gain=-100
100k
10k
1k
T=125°C
-225
-10
14/31 DocID024293 Rev 1
10 -135
T=-40°C
10 -135
T=-40°C
Gain (dB)
Phase (°)
Gain (dB)
Phase (°)
Figure 14. Bode diagram at VCC = 16 V, RL = 10 kΩ
Figure 15. Bode diagram at VCC = 16 V, RL = 100 kΩ
40
0
40
0
Gain
Gain
30
-45
30
-45
20
-90
20
-90
Phase
Phase
0
Vcc=16V
Vicm=8V Rl=10kΩ Cl=100pF
Gain=-100
T=25°C
-180
0
T=25°C
-180
-20
-270 1M
-20
Frequency (Hz)
Frequency (Hz)
-270 1M
100k
10k
1k
T=125°C
-225
-10
Vcc=16V
Vicm=8V Rl=100kΩ Cl=100pF
Gain=-100
100k
10k
1k
T=125°C
-225
-10
Gain (dB)
Riso (Ω)
Figure 16. Closed-loop gain vs. capacitive load
Figure 17. In-series resistor (Riso) vs. capacitive load
15 10 5 0 -5 -10 -15 1k | Follower configuration Vcc=16V Vicm=8V Rl=100kΩ T=25°C Cl=20pF Cl=100pF 10k 100k Frequency (Hz) | Cl=470pF Cl=200pF 1M | 10000 | |
Follower configuration | ||||
Stable Vcc=16V | ||||
Vicm=8V | ||||
Rl=100kΩ | ||||
1000 | T=25°C | |||
Unstable | ||||
100 | ||||
10 | ||||
100p | 1n 10n 100n | |||
Cload (F) |
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
-20 0 20 40
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
-20 0 20 40
Output Voltage (V)
Output Voltage (V)
Figure 18. Negative slew rate Figure 19. Positive slew rate
Vcc=16V Vicm=Vcc/2 Rl=100kΩ Cl=100pF | ||||||||
T=-40°C | ||||||||
T=25°C | ||||||||
T=125°C | ||||||||
T=125°C | ||||||||
T=25°C | ||||||||
Vcc=16V Vicm=Vcc/2 Rl=100kΩ Cl=100pF | ||||||||
T=-40°C | ||||||||
60
Time (µs)
80 100 120 140
60
Time (µs)
80 100 120 140
DocID024293 Rev 1 15/31
Slew rate (V/µs)
Output Voltage (V)
Figure 20. Slew rate vs. supply voltage Figure 21. Small step response
0.20 | 0.10 0.05 0.00 -0.05 -0.10 | 0 | 10 | 20 Time (µs) | 30 | Vcc = 16V Vicm=8V Rl=100kΩ Cl=100pF T=25°C 40 | ||||||
0.15 | ||||||||||||
0.10 | ||||||||||||
0.05 | ||||||||||||
Vicm=Vcc/2 | ||||||||||||
0.00 | Vload=Vcc/2 | |||||||||||
T=125°C | T=25°C | T=-40°C | Rl=100kΩ | |||||||||
-0.05 | Cl=100pF | |||||||||||
-0.10 | ||||||||||||
-0.15 | ||||||||||||
-0.20 | ||||||||||||
4 | 6 | 8 | 10 12 | 14 | 16 | |||||||
Supply Voltage (V) |
0
2
Vcc=16V
Vicm=8V T=25°C
4
400
350
300
250
200
150
100
50
0
10
Vcc=16V
Vicm=Vcc/2 T=25°C
Equivalent Input Noise Voltage (nV/VHz)
Input voltage noise (µV)
Figure 22. Noise vs. frequency at VCC = 16 V Figure 23. 0.1 Hz to 10 Hz noise at VCC = 16 V
Time (s)
10
8
6
4
2
-4
0
-2
10000
1000
Frequency (Hz)
100
THD + N (%)
THD + N (%)
Figure 24. THD+N vs. frequency at VCC = 16 V
Figure 25. THD+N vs. output voltage at VCC = 16 V
1 | 1 | ||||||
Vcc=16V | |||||||
Vicm=8V | |||||||
Gain=1 | |||||||
Vin=1Vpp BW=80kHz | 0.1 | ||||||
Rl=100kΩ | |||||||
0.1 | T=25°C | ||||||
Vcc=16V | |||||||
0.01 | Vicm=8V | ||||||
Gain=1 | |||||||
f=1kHz | |||||||
BW=22kHz | |||||||
Rl=100kΩ | |||||||
T=25°C | |||||||
0.01 | 100 | 1000 Frequency (Hz) | 10000 | 1E-3 0.01 | 0.1 1 Output Voltage (Vpp) | 10 |
16/31 DocID024293 Rev 1
Output impedance (Ω)
PSRR (dB)
Figure 26. Output impedance vs. frequency in closed loop configuration
10000 | 10k 100k Frequency (Hz) | 100 | PSRR+ PSRR- 1k 10k Frequency (Hz) | Vcc=16V Vicm=8V Gain=1 Rl=10kΩ Cl=100pF Vosc=100mV PP T=25°C 100k | |||||
Vcc=16V | |||||||||
1000 | Vicm=8V Gain=1 | 80 | |||||||
Vosc=30mV | |||||||||
100 | T=25°C | 60 | |||||||
10 | 40 | ||||||||
1 | 20 | ||||||||
0.1 | 0 | ||||||||
10 | 100 1k | 1M | 10M | 10 | 100 | 1M |
DocID024293 Rev 1 17/31
The amplifiers of the TSX63x and TSX63xA series can operate from 3.3 to 16 V. Their parameters are fully specified at 3.3, 5, 10 and 16 V power supplies. However, the parameters are very stable in the full VCC range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 ° C to +125 ° C.
The TSX63x and TSX63xA are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from VCC-- 0.1 V to VCC+ + 0.1 V.
However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from VCC- - 0.1V to VCC+ - 1.65V).
Beyond VCC+ - 1.65 V, the op-amp is still functional but with a degraded performance as can be observed in the electrical characteristics section of this datasheet (mainly Vio).
These performances are suitable for a number of applications requiring rail-to-rail input and output.
The devices are guaranteed without phase reversal.
Input offset voltage drift over temperature
The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
ΔVio
VioT – Vio25 C
---Δ-------- = max ---------------------------------------------------
T T – 25 C
with T = -40 °C and 125 °C.
The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 2.
18/31 DocID024293 Rev 1
Long term input offset voltage drift
To evaluate product reliability, two types of stress acceleration are used:
Voltage acceleration, by changing the applied voltage
Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using
Equation 2.
FV
A = e VS – VU
Where:
AFV is the voltage acceleration factor
is the voltage acceleration constant in 1/V, constant technology parameter ( = 1) VS is the stress voltage used for the accelerated test
VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.
Ea ⎛ 1 1 ⎞
----- ⎝ ------ – ----- ⎠
k
AFT = e
TU TS
Where:
AFT is the temperature acceleration factor
Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)
TU is the temperature of the die when VU is used (K)
TS is the temperature of the die under temperature stress (K)
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4).
AF = AFT AFV
AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.
DocID024293 Rev 1 19/31
Months = AF 1000 h 12 months
24 h 365.25 days
To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6).
VCC = maxVop with Vicm = VCC 2
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7).
Viodrift
ΔVio = ------------------------------
months
where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration.
High values of input differential voltage
In closed loop configuration, which represents the typical use of an op-amp, the input differential voltage is low (close to Vio). However, some specific conditions can lead to higher input differential values, such as:
operation in an output saturation state
operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate.
use of the amplifier in a comparator configuration, hence in open loop
Use of the TSX631 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of Vio.
All channels of the dual and quad versions of the TSX632 and TSX634 are virtually unaffected when used in comparator configuration.
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.
20/31 DocID024293 Rev 1
Accurate macromodels of the TSX63x and TSX63xA are available on STMicroelectronics’ web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX63x and TSX63xA operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements.
DocID024293 Rev 1 21/31
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
22/31 DocID024293 Rev 1
Figure 28. SOT23-5 package mechanical drawing
Table 8. SOT23-5 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.90 | 1.20 | 1.45 | 0.035 | 0.047 | 0.057 |
A1 | 0.15 | 0.006 | ||||
A2 | 0.90 | 1.05 | 1.30 | 0.035 | 0.041 | 0.051 |
B | 0.35 | 0.40 | 0.50 | 0.013 | 0.015 | 0.019 |
C | 0.09 | 0.15 | 0.20 | 0.003 | 0.006 | 0.008 |
D | 2.80 | 2.90 | 3.00 | 0.110 | 0.114 | 0.118 |
D1 | 1.90 | 0.075 | ||||
e | 0.95 | 0.037 | ||||
E | 2.60 | 2.80 | 3.00 | 0.102 | 0.110 | 0.118 |
F | 1.50 | 1.60 | 1.75 | 0.059 | 0.063 | 0.069 |
L | 0.10 | 0.35 | 0.60 | 0.004 | 0.013 | 0.023 |
K | 0 ° | 10 ° | 0 ° | 10 ° |
DocID024293 Rev 1 23/31
Figure 29. DFN8 2x2 package mechanical drawing
$
'
%
0.10 & 2[
(
3,1 1 ,1'(; $5($
0.10 | & |
2[
&
723 9,(:
0.10
0.08 | & |
3,1 1 ,1'(; $5($
1
$
6,'( 9,(:
H
&
$1
6($7,1* 3/$1(
E (8 SOFV)
%
$
&
0.10
4
3LQ#1 ,'
/
8 5
%27720 9,(:
*$062202131635&%
Table 9. DFN8 2x2 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.70 | 0.75 | 0.80 | 0.028 | 0.030 | 0.031 |
A1 | 0.00 | 0.02 | 0.05 | 0.000 | 0.001 | 0.002 |
b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 |
D | 2.00 | 0.079 | ||||
E | 2.00 | 0.079 | ||||
e | 0.50 | 0.020 | ||||
L | 0.045 | 0.55 | 0.65 | 0.018 | 0.022 | 0.026 |
N | 8 | 8 |
24/31 DocID024293 Rev 1
Figure 30. MiniSO-8 package mechanical drawing
Table 10. MiniSO-8 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.1 | 0.043 | ||||
A1 | 0 | 0.15 | 0 | 0.006 | ||
A2 | 0.75 | 0.85 | 0.95 | 0.030 | 0.033 | 0.037 |
b | 0.22 | 0.40 | 0.009 | 0.016 | ||
c | 0.08 | 0.23 | 0.003 | 0.009 | ||
D | 2.80 | 3.00 | 3.20 | 0.11 | 0.118 | 0.126 |
E | 4.65 | 4.90 | 5.15 | 0.183 | 0.193 | 0.203 |
E1 | 2.80 | 3.00 | 3.10 | 0.11 | 0.118 | 0.122 |
e | 0.65 | 0.026 | ||||
L | 0.40 | 0.60 | 0.80 | 0.016 | 0.024 | 0.031 |
L1 | 0.95 | 0.037 | ||||
L2 | 0.25 | 0.010 | ||||
k | 0 ° | 8 ° | 0 ° | 8 ° | ||
ccc | 0.10 | 0.004 |
DocID024293 Rev 1 25/31
QFN16 3x3 package information
$
$
DDD
& 2[
$1
(
Figure 31. QFN16 3x3 package mechanical drawing
'
%
,1'(; $5($
('/2[(/2)
DDD & 2[
723 9,(:
FFF &
&
6($7,1*
3/$1(
HHH &
6,'( 9,(:
H
/ E
5 8
EEE & $ %
EEE &
4
9
1
12
3LQ#1 ,'
50.11
16
13
*$062502131051&%
%27720 9,(:
26/31 DocID024293 Rev 1
Table 11. QFN16 3x3 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 0.50 | 0.65 | 0.020 | 0.026 | ||
A1 | 0 | 0.05 | 0 | 0.002 | ||
b | 0.18 | 0.25 | 0.30 | 0.007 | 0.010 | 0.012 |
D | 3.00 | 0.118 | ||||
E | 3.00 | 0.118 | ||||
e | 0.50 | 0.020 | ||||
L | 0.30 | 0.50 | 0.012 | 0.020 | ||
aaa | 0.15 | 0.006 | ||||
bbb | 0.10 | 0.004 | ||||
ccc | 0.10 | 0.004 | ||||
ddd | 0.05 | 0.002 | ||||
eee | 0.08 | 0.003 |
DocID024293 Rev 1 27/31
Figure 32. TSSOP14 package mechanical drawing
Table 12. TSSOP14 package mechanical data
Ref. | Dimensions | |||||
Millimeters | Inches | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | |
A | 1.20 | 0.047 | ||||
A1 | 0.05 | 0.15 | 0.002 | 0.004 | 0.006 | |
A2 | 0.80 | 1.00 | 1.05 | 0.031 | 0.039 | 0.041 |
b | 0.19 | 0.30 | 0.007 | 0.012 | ||
c | 0.09 | 0.20 | 0.004 | 0.0089 | ||
D | 4.90 | 5.00 | 5.10 | 0.193 | 0.197 | 0.201 |
E | 6.20 | 6.40 | 6.60 | 0.244 | 0.252 | 0.260 |
E1 | 4.30 | 4.40 | 4.50 | 0.169 | 0.173 | 0.176 |
e | 0.65 | 0.0256 | ||||
L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 |
L1 | 1.00 | 0.039 | ||||
k | 0 ° | 8 ° | 0 ° | 8 ° | ||
aaa | 0.10 | 0.004 |
28/31 DocID024293 Rev 1
Order code | Temperature range | No. of channels | Package | Packing | Marking |
TSX631ILT | -40 to 125 °C | 1 | SOT23-5 | Tape and reel | K27 |
TSX632IQ2T | 2 | DFN8 2x2 | K27 | ||
TSX632IST | 2 | MiniSO8 | K27 | ||
TSX634IQ4T | 4 | QFN16 3x3 | K27 | ||
TSX634IPT | 4 | TSSOP14 | TSX634I | ||
TSX631IYLT | -40 to 125 °C Automotive grade(1) | 1 | SOT23-5 | K188 | |
TSX632IYST | 2 | MiniSO8 | K188 | ||
TSX634IYPT | 4 | TSSOP14 | TSX634IY | ||
TSX631AILT | -40 to 125 °C | 1 | SOT23-5 | K189 | |
TSX632AIST | 2 | MiniSO8 | K189 | ||
TSX634AIPT | 4 | TSSOP14 | TSX634AI | ||
TSX631AIYLT | -40 to 125°C | 1 | SOT23-5 | K190 | |
TSX632AIYST | 2 | MiniSO8 | K190 | ||
TSX634AIYPT | 4 | TSSOP14 | TSX634AIY |
DocID024293 Rev 1 29/31
Table 14. Document revision history
Date | Revision | Changes |
26-Mar-2013 | 1 | Initial release |
30/31 DocID024293 Rev 1
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
DocID024293 Rev 1 31/31
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
TSX631AILT TSX631ILT TSX634IPT TSX634AIPT TSX631AIYLT TSX632AIST TSX634IQ4T TSX631IYLT TSX632IQ2T TSX632IST TSX632AIYST TSX634IYPT TSX632IYST TSX634AIYPT