CMOS Programmable
Low Power Single Operational Amplifier
Offset null capability (by external compensation)
Dynamic characteristics adjustable ISET
Consumption current and dynamic parameters are stable regarding the voltage power supply variations
Output voltage can swing to ground
Very large ISET range
Stable and low offset voltage
Three input offset voltage selections
The TS271 is a low cost, low power single operational amplifier designed to operate with single or dual supplies. This operational amplifier uses the ST silicon gate CMOS process giving it an excellent consumption-speed ratio. This amplifier is ideally suited for low consumption applications.
The power supply is externally programmable with a resistor connected between pins 8 and 4. It allows to choose the best consumption-speed ratio and supply current can be minimized according to the required speed. This device is specified for the following ISET current values: 1.5µA, 25µA, 130µA.
7 - V +
This CMOS amplifier offers very high input impedance and extremely low input currents. The major advantage versus JFET devices is the very low input currents drift with temperature see Figure 8, Figure 19, Figure 30.
N DIP8
(Plastic Package)
D SO-8
(Plastic Micropackage)
1
8
2
-
7
3 + 6
4
5
- Offset Null 1
- Inverting Input 1
- Non-inverting Input 1 4 - V CC -
- Offset Null 2
- Output
CC
8 - I Set
Part Number | Temperature Range | Package | Packaging |
TS271CN/ACN | 0°C, +70°C | DIP | Tube |
TS271CD/CDT/ACD/ACDT | SO | Tube and Tape & Reel | |
TS271IN/AIN/ | -40°C, +125°C | DIP | Tube |
TS271ID/IDT/AID/AIDT/BID/BIDT | SO | Tube and Tape & Reel | |
TS271BMD | -55°C, +125°C | SO | Tube |
Figure 1. Application block diagram
Table 1. Key parameters and their absolute maximum ratings
Symbol | Parameter | TS271C/AC/BC | TS271I/AI/BI | TS271M/AM/BM | Unit |
VCC+ | Supply Voltage 1 | 18 | V | ||
Vid | Differential Input Voltage 2 | ±18 | V | ||
Vi | Input Voltage 3 | -0.3 to 18 | V | ||
Io | Output Current for VCC+ 15V | ±30 | mA | ||
Iin | Input Current | ±5 | mA | ||
Toper | Operating Free-Air Temperature Range | 0 to +70 | -40 to +125 | -55 to +125 | °C |
Tstg | Storage Temperature Range | -65 to +150 | °C |
All values, except differential voltage are with respect to network ground terminal.
Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage.
Table 2. Operating conditions
Symbol | Parameter | Value | Unit |
VCC+ | Supply Voltage | 3 to 16 | V |
Vicm | Common Mode Input Voltage Range | 0 to VCC+ - 1.5 | V |
4/17
VCC
Figure 3. Offset voltage null circuit
-
5
+ 8
1
25k
Rset
OFFSET COMPENSATION GUARANTEED FOR TS271BCX (ISET > 25A), TS271ACX (ISET > 90A)
Figure 4. Offset voltage null circuit
-
Figure 5. Resistor biasing
VCC
VCC
-
-
-
VO
VO
+
+
Rset
Rset
VCC
VCC
Rset CONNECTED TO GROUND
Rset CONNECTED TO V - (Rset VALUE : SEE Fig. 1)
CC
-
-
+
+
Figure 6. Rset connected to Vcc-
VCC = +3V VCC = +16V
VCC = +5V VCC = +10V
5
Rset
1
-
V
+ 8
10M
25k
CC
1M
Rset
100k
OFFSET COMPENSATION GUARANTEED FOR TS271BCX (ISET > 25A), TS271ACX (ISET > 90A)
10k
0.1A
1A
10A
100A
Iset
5/17
Table 3. for ISET = 1.5µA - VCC+ = +10V, VCC-= 0V, Tamb = +25°C (unless otherwise specified)
Symbol | Parameter | TS271C/AC/BC | TS271I/AI/BI TS271M/AM/BM | Unit | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | ||||
Vio | Input Offset Voltage VO = 1.4V, Vic = 0V Tmin Tamb Tmax | TS271C/I/M TS271AC/AI/AM TS271BC/BI/BM TS271C/I/M TS271AC/AI/AM TS271BC/BI/BM | 1.1 0.9 0.25 | 10 5 2 12 6.5 3 | 1.1 0.9 0.25 | 10 5 2 12 6.5 3.5 | mV | ||
DVio | Input Offset Voltage Drift | 2 | 2 | µV/°C | |||||
Iio | Input Offset Current note 1 Vic = 5V, VO = 5V Tmin Tamb Tmax | 1 | 100 | 1 | 200 | pA | |||
Iib | Input Bias Current - see note 1 Vic = 5V, VO = 5V Tmin Tamb Tmax | 1 | 150 | 1 | 300 | pA | |||
VOH | High Level Output Voltage Vid = 100mV, RL = 1M Tmin Tamb Tmax | 8.8 8.7 | 9 | 8.8 8.6 | 9 | V | |||
VOL | Low Level Output Voltage Vid = -100mV | 50 | 50 | mV | |||||
Avd | Large Signal Voltage Gain ViC = 5V, RL = 1M Vo = 1V to 6V Tmin Tamb Tmax | 30 20 | 100 | 30 20 | 100 | V/mV | |||
GBP | Gain Bandwidth Product Av = 40dB, RL = 1M CL = 100pF, fin = 100kHz | 0.1 | 0.1 | MHz | |||||
CMR | Common Mode Rejection Ratio ViC = 1V to 7.4V, Vo = 1.4V | 60 | 80 | 60 | 80 | dB | |||
SVR | Supply Voltage Rejection Ratio VCC+ = 5V to 10V, Vo = 1.4V | 60 | 80 | 60 | 80 | dB | |||
ICC | Supply Current (per amplifier) Av = 1, no load, Vo = 5V Tmin Tamb Tmax | 10 | 15 17 | 10 | 15 18 | µA | |||
Io | Output Short Circuit Current Vo = 0V, Vid = 100mV | 60 | 60 | mA | |||||
Isink | Output Sink Current Vo = VCC, Vid = -100mV | 45 | 45 | mA | |||||
SR | Slew Rate at Unity Gain RL = 1M, CL = 100pF, Vi = 3 to 7V | 0.04 | 0.04 | V/s | |||||
m | Phase Margin at Unity Gain Av = 40dB, RL = 1M | CL = 10pF CL = 100pF | 35 10 | 35 10 | Degrees | ||||
KOV | Overshoot Factor Av = 40dB, RL = 1M | CL = 10pF CL = 100pF | 40 70 | 40 70 | % | ||||
en | Equivalent Input Noise Voltage f = 1kHz, Rs = 100 | 30 | 30 | nV ----------- Hz |
1) Maximum values including unavoidable inaccuracies of the industrial test.
6/17
Figure 7. Supply current versus supply voltage
Figure 10. High level output voltage versus high level output current
20
Tamb = 25°C
Vid = 100mV
16
SUPPLY CURRENT, ICC ( A)
OUTPUT VOLTAGE, VOH (V)
Tamb = 25°C AV = 1 VO = VCC / 2 | ||||||||
20
VCC = 16V
12
8
15
VCC = 10V
10
4
0
-50 -40 -30
5
-20 -10
0
0 4 8 12 16
SUPPLY VOLTAGE, VCC (V)
INPUT BIAS CURRENT, IIB (pA)
Figure 8. Input bias current versus free air temperature
100
10
VCC = 10V
V i = 5V
1
25
50
75
100
125
TEMPERATURE, Tamb ( °C)
1
VCC = 16 V
2
OUTPUT VOLTAGE, VOH (V)
O U T P U T V O LT AG E, V OL (V )
Figure 9. High level output voltage versus high level output current
OUTPUT CURRENT, IOH (mA)
0.4
0.2
V CC = 5 V
0.6
VCC = 3 V
0.8
1.0
O U T P U T V O LT AG E, VOL(V)
Figure 11. Low level output voltage versus low level output current
0
1
2
3
O U T P U T CURR E N T , I OL (m A )
T amb = 25 ° C V ic = 0.5V
V id = -100m V
Figure 12. Low level output voltage versus low level output current
5
Tamb = 25°C
4 Vid = 100mV
3 VCC= 5V
2
VCC = 3V
1
3
V CC = 10 V
OUTPUT CURRENT, I OH (mA)
0
-2
-4
-6
-8
0
-10
O U T P UT CU RRE NT , I OL (m A )
20
16
12
8
4
V id = -100m V
0
V i = 0 .5 V
Tamb = 25°C
7/17
135
CC
V + = 10 V
10
Phase Margin
Tam b = 25°C
90
20
45
PH AS E
30
GA IN (d B )
P H A S E (D egrees)
Figure 13. Open loop frequency response and phase shift
50
40
GA IN
0
-10
10 2
10 3 10 4 10 5
6
10
F R E Q UE NC Y , f (Hz)
120
Tam b = 25°C RL = 1M
100 CL = 100p F
AV = 1
80
0.03
0.02
Product
A VC L = 100 Bandwidth
180
Gain
C L = 100pF
0
R L = 1M
GA IN B A N D W . P R OD ., GB P (M H z)
Figure 14. Gain bandwidth product versus supply voltage
SU PP LY V O LT AG E, VCC (V )
16
12
8
4
0
40
60
PH ASE M A R G IN , m (D egrees)
Figure 15. Phase margin versus supply voltage
Figure 16. Phase margin versus capacitive load
C APA C IT A N C E, C L (p F )
Tam b = 25°C
RL = 1M
CL = 100p F
SR
0.05
0.04
80 100
40 60
20
0
10
20
RL = 1M
AV = 1
VCC = 10 V
30
Tam b = 25°C
40
SLE W R A T E S SR (V / s)
PH AS E M AR G IN , m (D egrees)
,
Figure 17. Slew rate versus supply voltage
0.07
0.06
SR
0.01
4 6 8 10 12 14 16
SU PPLY V O LT A G E , VCC (V )
10
8
6
4
2
Tam b = 25°C RL = 1M
CL = 100p F AV = 1
SU PP LY V O LT AG E, V CC (V)
16
12
8
4
0
8/17
Table 4. for ISET = 25µA - VCC+ = +10V, VCC-= 0V, Tamb = +25°C (unless otherwise specified)
Symbol | Parameter | TS271C/AC/BC | TS271I/AI/BI TS271M/AM/BM | Unit | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | ||||
Vio | Input Offset Voltage VO = 1.4V, Vic = 0V Tmin Tamb Tmax | TS271C/I/M TS271AC/AI/AM TS271BC/BI/BM TS271B/C/I/M TS271AC/AI/AM TS271BC/BI/BM | 1.1 0.9 0.25 | 10 5 2 12 6.5 3 | 1.1 0.9 0.25 | 10 5 2 12 6.5 3.5 | mV | ||
DVio | Input Offset Voltage Drift | 2 | 2 | µV/°C | |||||
Iio | Input Offset Current note 1 Vic = 5V, VO = 5V Tmin Tamb Tmax | 1 | 100 | 1 | 200 | pA | |||
Iib | Input Bias Current - see note 1 Vic = 5V, VO = 5V Tmin Tamb Tmax | 1 | 150 | 1 | 300 | pA | |||
VOH | High Level Output Voltage Vid = 100mV, RL = 100k Tmin Tamb Tmax | 8.7 8.6 | 8.9 | 8.7 8.5 | 8.9 | V | |||
VOL | Low Level Output Voltage Vid = -100mV | 50 | 50 | mV | |||||
Avd | Large Signal Voltage Gain ViC = 5V, RL = 100k Vo = 1V to 6V Tmin Tamb Tmax | 30 20 | 50 | 30 10 | 50 | V/mV | |||
GBP | Gain Bandwidth Product Av = 40dB, RL = 100k CL = 100pF, fin = 100kHz | 0.7 | 0.7 | MHz | |||||
CMR | Common Mode Rejection Ratio ViC = 1V to 7.4V, Vo = 1.4V | 60 | 80 | 60 | 80 | dB | |||
SVR | Supply Voltage Rejection Ratio VCC+ = 5V to 10V, Vo = 1.4V | 60 | 80 | 60 | 80 | dB | |||
ICC | Supply Current (per amplifier) Av = 1, no load, Vo = 5V Tmin Tamb Tmax | 150 | 200 250 | 150 | 200 300 | µA | |||
Io | Output Short Circuit Current Vo = 0V, Vid = 100mV | 60 | 60 | mA | |||||
Isink | Output Sink Current Vo = VCC, Vid = -100mV | 45 | 45 | mA | |||||
SR | Slew Rate at Unity Gain RL = 100k, CL = 100pF, Vi = 3 to 7V | 0.6 | 0.6 | V/s | |||||
m | Phase Margin at Unity Gain Av = 40dB, RL = 100k | CL = 10pF CL = 100pF | 50 30 | 50 30 | Degrees | ||||
KOV | Overshoot Factor Av = 40dB, RL = 100k | CL = 10pF CL = 100pF | 30 50 | 30 50 | % | ||||
en | Equivalent Input Noise Voltage f = 1kHz, Rs = 100 | 38 | 38 | nV ----------- Hz |
1) Maximum values including unavoidable inaccuracies of the industrial test.
9/17
100
200
150
SUPPLY CURRENT, ICC ( A)
Figure 18. Supply current versus supply voltage
0
4
8
12
16
SUPPLY VOLTAGE, VCC (V)
Tamb = 25°C AV = 1
VO = VCC / 2
50
INPUT BIAS CURRENT, IIB (pA)
Figure 19. Input bias current versus free air temperature
100
10
VCC = 10V
V i = 5V
1
25
50
75
100
125
TEMPERATURE, Tamb ( °C)
1
VCC = 16 V
2
OUTPUT VOLTAGE, VOH (V)
O U T P U T V O LT AG E, V OL (V )
Figure 20. High level output voltage versus high level output current
Figure 21. High level output voltage versus high level output current
20
16
Tamb = 25°C
Vid = 100mV
VCC = 16V
OUTPUT CURRENT, IOH (mA)
0.4
0.2
V CC = 5 V
0.6
VCC = 3 V
0.8
1.0
0
-20 -10
4
0
-50 -40 -30
VCC = 10V
12
8
OUTPUT VOLTAGE, VOH (V)
O U T P U T V O LT AG E, VOL(V)
Figure 22. Low level output voltage versus low level output current
0
1
2
3
O U T P U T CURR E N T , I OL (m A )
T amb = 25 ° C V ic = 0.5V
V id = -100m V
Figure 23. Low level output voltage versus low level output current
5
Tamb = 25°C
4 Vid = 100mV
3 VCC= 5V
2
VCC = 3V
1
3
V CC = 10 V
OUTPUT CURRENT, I OH (mA)
0
-2
-4
-6
-8
0
-10
O U T P UT CU RRE NT , I OL (m A )
20
16
12
8
4
V id = -100m V
0
V i = 0 .5 V
Tamb = 25°C
10/17
135
CC
V + = 10 V
Tam b = 25°C
90
Phase Margin
20
45
PH AS E
30
0
GA IN
50
40
GA IN (d B )
P H A S E (D egrees)
Figure 24. Open loop frequency response and phase shift
6 7
10 10
F R E Q UE NC Y , f (Hz)
0.4
0.2
0.6
180
Gain Bandwidth Product
10 5
-10
10 2 10 3 10 4
= 100
VC L
L
A
0
R L = 100k C = 100pF
10
GA IN B A N D W . P R OD ., GB P (M H z)
Figure 25. Gain bandwidth product versus supply voltage
0.9
Tam b = 25°C
0.8 RL = 100k
CL = 100p F
0.7 AV = 1
0.6
0.5
0.4
0 4 8
12
16
SU PP LY V O LT AG E, VCC (V )
PH ASE M A R G IN , m (D egrees)
Figure 26. Phase margin versus supply voltage
Figure 27. Phase margin versus capacitive load
C APA C IT A N C E, C L (p F )
Tam b = 25°C RL = 100k
CL = 100p F
SR
40 60 80 100
20
0
30
20
Tam b = 25°C RL = 100k AV = 1
VCC = 10 V
50
40
SLE W R A T ES, SR (V / s)
PH AS E M AR G IN , m (D egrees)
Figure 28. Slew rate versus supply voltage
1.0
0.8
SR
0
4
6
8
10 12 14 16
SU PPLY V O LT A G E , VCC (V )
50
40
30
20
10
Tam b = 25°C RL = 100k CL = 100p F AV = 1
SU PP LY V O LT AG E, V CC (V)
16
12
8
4
0
11/17
Table 5. for ISET = 130µA - VCC+ = +10V, VCC-= 0V, Tamb = +25°C (unless otherwise specified)
Symbol | Parameter | TS271C/AC/BC | TS271I/AI/BI TS271M/AM/BM | Unit | |||||
Min. | Typ. | Max. | Min. | Typ. | Max. | ||||
Vio | Input Offset Voltage VO = 1.4V, Vic = 0V Tmin Tamb Tmax | TS271C/I/M TS271AC/AI/AM TS271BC/BI/BM TS271B/C/I/M TS271AC/AI/AM TS271BC/BI/BM | 1.1 0.9 0.25 | 10 5 2 12 6.5 3 | 1.1 0.9 0.25 | 10 5 2 12 6.5 3.5 | mV | ||
DVio | Input Offset Voltage Drift | 2 | 2 | µV/°C | |||||
Iio | Input Offset Current note 1 Vic = 5V, VO = 5V Tmin Tamb Tmax | 1 | 100 | 1 | 200 | pA | |||
Iib | Input Bias Current - see note 1 Vic = 5V, VO = 5V Tmin Tamb Tmax | 1 | 150 | 1 | 300 | pA | |||
VOH | High Level Output Voltage Vid = 100mV, RL = 10k Tmin Tamb Tmax | 8.2 8.1 | 8.4 | 8.2 8 | 8.4 | V | |||
VOL | Low Level Output Voltage Vid = -100mV | 50 | 50 | mV | |||||
Avd | Large Signal Voltage Gain ViC = 5V, RL = 10k Vo = 1V to 6V Tmin Tamb Tmax | 10 7 | 15 | 10 6 | 15 | V/mV | |||
GBP | Gain Bandwidth Product Av = 40dB, RL = 10k CL = 100pF, fin = 100kHz | 2.3 | 2.3 | MHz | |||||
CMR | Common Mode Rejection Ratio ViC = 1V to 7.4V, Vo = 1.4V | 60 | 80 | 60 | 80 | dB | |||
SVR | Supply Voltage Rejection Ratio VCC+ = 5V to 10V, Vo = 1.4V | 60 | 70 | 60 | 70 | dB | |||
ICC | Supply Current (per amplifier) Av = 1, no load, Vo = 5V Tmin Tamb Tmax | 800 | 1300 1400 | 800 | 1300 1500 | µA | |||
Io | Output Short Circuit Current Vo = 0V, Vid = 100mV | 60 | 60 | mA | |||||
Isink | Output Sink Current Vo = VCC, Vid = -100mV | 45 | 45 | mA | |||||
SR | Slew Rate at Unity Gain RL = 10k, CL = 100pF, Vi = 3 to 7V | 4.5 | 4.5 | V/s | |||||
m | Phase Margin at Unity Gain Av = 40dB, RL = 10k | CL = 10pF CL = 100pF | 65 30 | 65 30 | Degrees | ||||
KOV | Overshoot Factor Av = 40dB, RL = 10k | CL = 10pF CL = 100pF | 30 50 | 30 50 | % | ||||
en | Equivalent Input Noise Voltage f = 1kHz, Rs = 100 | 30 | 30 | nV ----------- Hz |
1) Maximum values including unavoidable inaccuracies of the industrial test.
12/17
Figure 29. Supply current (each amplifier) versus supply voltage
Figure 32. High level output voltage versus high level output current
20
Tamb = 25°C
Vid = 100mV
16
SUPPLY CURRENT, ICC (mA)
OUTPUT VOLTAGE, VOH
(V)
Tamb = 25°C AV = 1 VO = VCC / 2 | ||||||||
1.0
VCC = 16V
12
8
0.8
VCC = 10V
0.6
4
0
-50 -40 -30
0.4
0.2
0
4 8 12 16
SUPPLY VOLTAGE, VCC (V)
-20 -10
0
OUTPUT CURRENT, IOH (mA)
Figure 33. Low level output voltage versus low level output current
Figure 30. Input bias current versus free air
10
VCC = 10V
V i = 5V
100
0.4
0.2
V CC = 5 V
0.6
VCC = 3 V
0.8
1.0
INPUT BIAS CURRENT, IIB (pA)
O U T P U T V O LT AG E, VOL(V)
temperature
TEMPERATURE, Tamb ( °C)
Tamb = 25°C
1
VCC = 16 V
2
125
100
75
50
25
1
O U T P U T CURR E N T , I OL (m A )
3
2
1
0
T amb = 25 ° C V ic = 0.5V
V id = -100m V
OUTPUT VOLTAGE, VOH (V)
O U T P U T V O LT AG E, V OL (V )
Figure 31. High level output voltage versus high level output current
Figure 34. Low level output voltage versus low level output current
5
Tamb = 25°C
4 Vid = 100mV
3 VCC= 5V
2
VCC = 3V
1
3
V CC = 10 V
OUTPUT CURRENT, I OH (mA)
0
-2
-4
-6
-8
0
-10
O U T P UT CU RRE NT , I OL (m A )
20
16
12
8
4
V id = -100m V
0
V i = 0 .5 V
13/17
R L = 10k
C = 100pF
135
CC
10
V + = 10 V
= 25°C
am b
T
Phase
Margin 90
20
45
PH AS E
30
GA IN (d B )
P H A S E (D egrees)
Figure 35. Open loop frequency response and phase shift
50
40
GA IN
0
F R E Q UE NC Y , f (Hz)
5
Tam b = 25°C
4 RL = 10k CL = 100p F
3 AV = 1
2
1
Gain Bandwidth Product
10 3 10 4 10 5 10 6 10 7
-10
10 2
= 100
VC L
180
L
A
0
GA IN B A N D W . P R OD ., GB P (M H z)
Figure 36. Gain bandwidth product versus supply voltage
SU PP LY V O LT AG E, VCC (V )
16
12
8
4
0
PH ASE M A R G IN , m (D egrees)
Figure 37. Phase margin versus supply voltage
Figure 38. Phase margin versus capacitive load
0
20
40 60
80 100
C APA C IT A N C E, C L (p F )
Tam b = 25°C RL = 10k
CL = 100p F
3
2
1
SR
4
SR
30
50
40
Tam b = 25°C RL = 10k AV = 1
VCC = 10 V
60
70
SLE W R A T ES, SR (V / s)
PH AS E M AR G IN , m (D egrees)
Figure 39. Slew rate versus supply voltage
5
0
4
6
8
10 12 14 16
SU PPLY V O LT A G E , VCC (V )
50
40
30
20
10
Tam b = 25°C RL = 10k CL = 100p F AV = 1
SU PP LY V O LT AG E, V CC (V)
16
12
8
4
0
14/17
Plastic DIP-8 MECHANICAL DATA
DIM. | mm. | inch | ||||
MIN. | TYP | MAX. | MIN. | TYP. | MAX. | |
A | 3.3 | 0.130 | ||||
a1 | 0.7 | 0.028 | ||||
B | 1.39 | 1.65 | 0.055 | 0.065 | ||
B1 | 0.91 | 1.04 | 0.036 | 0.041 | ||
b | 0.5 | 0.020 | ||||
b1 | 0.38 | 0.5 | 0.015 | 0.020 | ||
D | 9.8 | 0.386 | ||||
E | 8.8 | 0.346 | ||||
e | 2.54 | 0.100 | ||||
e3 | 7.62 | 0.300 | ||||
e4 | 7.62 | 0.300 | ||||
F | 7.1 | 0.280 | ||||
I | 4.8 | 0.189 | ||||
L | 3.3 | 0.130 | ||||
Z | 0.44 | 1.6 | 0.017 | 0.063 |
P001F
15/17
SO-8 MECHANICAL DATA
DIM. | mm. | inch | ||||
MIN. | TYP | MAX. | MIN. | TYP. | MAX. | |
A | 1.35 | 1.75 | 0.053 | 0.069 | ||
A1 | 0.10 | 0.25 | 0.04 | 0.010 | ||
A2 | 1.10 | 1.65 | 0.043 | 0.065 | ||
B | 0.33 | 0.51 | 0.013 | 0.020 | ||
C | 0.19 | 0.25 | 0.007 | 0.010 | ||
D | 4.80 | 5.00 | 0.189 | 0.197 | ||
E | 3.80 | 4.00 | 0.150 | 0.157 | ||
e | 1.27 | 0.050 | ||||
H | 5.80 | 6.20 | 0.228 | 0.244 | ||
h | 0.25 | 0.50 | 0.010 | 0.020 | ||
L | 0.40 | 1.27 | 0.016 | 0.050 | ||
k | 8˚ (max.) | |||||
ddd | 0.1 | 0.04 |
0016023/C
16/17
Date | Revision | Description of Changes |
01 Nov. 2001 | 1 | First Release |
01 March 2005 | 2 |
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
17/17
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
TS271ACD TS271ACN TS271AID TS271AIN TS271CN TS271IN TS271CD TS271ID TS271IDT TS271CDT TS271ACDT TS271AIDT TS271BID TS271BIDT TS271BMD