19-3142; Rev 5; 11/09
The single MAX4036/MAX4037 and dual MAX4038/ MAX4039 operational amplifiers operate from a single
+1.4V to +3.6V (without reference) or +1.8V to +3.6V (with reference) supply and consume only 800nA of supply current per amplifier, and 1.1µA for the optional refer- ence. The MAX4036/MAX4038 feature a common-mode input voltage range from 0V to VDD - 0.4V at VDD = 1.4V. The MAX4037/MAX4039 feature a 1.232V voltage refer- ence capable of sourcing 100µA and sinking 20µA.
The MAX4036–MAX4039s’ rail-to-rail outputs drive 5kΩ loads to within 25mV of the rails. Ultra-low supply current, low operating voltage, and rail-to-rail outputs make the MAX4036–MAX4039 ideal for use in single-cell lithium-ion (Li+), or two-cell NiCd/NiMH/alkaline battery-powered applications.
The MAX4036 is available in an SC70 package, the MAX4037 in a SOT23 package, and the MAX4038/ MAX4039 in UCSP™, µMAX®, and TDFN packages.
Battery-Powered/Solar-Powered Systems Portable Medical Instrumentation
Pagers and Cell Phones
Micropower Thermostats and Potentiostats Electrometer Amplifiers
Remote Sensor Amplifiers Active Badges
pH Meters
Pin Configurations and Selector Guide appear at end of data sheet.
µMAX is a registered trademark and UCSP is a trademark of Maxim Integrated Products, Inc.
♦ Ultra-Low 800nA per Amplifier Supply Current
♦ Ultra-Low 1.4V Supply Voltage Operation (1.8V for MAX4037/MAX4039)
♦ Rail-to-Rail Outputs Drive 5kΩ and 5000pF Load
♦ 1.232V ±0.5%, 120ppm/°C (max) Reference (MAX4037/MAX4039)
♦ No External Reference Bypass Capacitor Required
♦ No Phase Reversal for Overdriven Inputs
♦ Low 1.0pA (typ) Input Bias Current
♦ Low 200μV Input Offset Voltage
♦ Unity-Gain Stable
♦ Available in Tiny UCSP, SC70, SOT23, TDFN, and
μMAX Packages
♦ Available in -40°C to +125°C Temperature Range (MAX4036A/MAX4038A)
Ordering Information
PART | TEMP RANGE | PIN- PACKAGE | TOP MARK |
MAX4036EXK-T | -40°C to +85°C | 5 SC70 | AFR |
MAX4036AAXK+T | -40°C to +125°C | 5 SC70 | ASN |
MAX4037EUT-T | -40°C to +85°C | 6 SOT23 | ABRX |
MAX4038ETA-T | -40°C to +85°C | 8 TDFN-EP* | AGO |
MAX4038EUA | -40°C to +85°C | 8 µMAX | — |
MAX4038EBL-T | -40°C to +85°C | 9 UCSP | AEG |
MAX4038AAUA | -40°C to +125°C | 8 µMAX | — |
+Denotes a lead(Pb)-free/RoHS-compliant package.
-Denotes a package containing lead.
*EP = Exposed pad.
Ordering Information continued at end of data sheet.
OUTA VDD MAX4039 INA- OUTB INB- INA+ REF INB+ REF VSS |
3V INA- VDD OUTA INA+ MAX4039 SENSOR REF INB- INB+ OUTB ADC VSS THREE-ELECTRODE POTENTIOSTAT APPLICATION |
Maxim Integrated Products 1
VDD to VSS .............................................................-0.3V to +4.0V INA+, INB+, INA-, INB-, IN+, IN-, OUTA,
OUTB, OUT, REF .........................(VSS - 0.3V) to (VDD + 0.3V)
OUTA, OUTB, OUT, REF Shorted to VSS or VDD .......Continuous Maximum Continuous Power Dissipation (TA = +70°C)
5-Pin SC70 (derate 3.1mW/°C above +70°C) ..............247mW
6-Pin SOT23 (derate 8.7mW/°C above +70°C)............696mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW
8-Pin TDFN (derate 24.4mW/°C above +70°C) .........1951mW
9-Bump UCSP (derate 5.2mW/°C above +70°C).........412mW 10-Pin µMAX (derate 5.6mW/°C above +70°C) ...........444mW 10-Pin TDFN (derate 24.4mW/°C above +70°C) .......1951mW
Operating Temperature Range
MAX403_E_ _...................................................-40°C to +85°C
MAX403_A_ _ ................................................-40°C to +125°C
Junction Temperature .....................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
(VDD = +3V, VSS = VCM = 0V, VOUT_ = VDD/2, RL to VDD/2, CL = 15pF, TA = +25°C, unless otherwise specified.)
PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |
Supply Voltage Range | VDD | MAX4036/MAX4038, guaranteed by PSRR tests | 1.4 | 3.6 | V | ||
MAX4037/MAX4039, guaranteed by PSRR and line regulation tests | 1.8 | 3.6 | |||||
Supply Current | IDD | MAX4036 | VDD = 1.4V | 0.8 | 1.2 | µA | |
VDD = 3.6V | 0.9 | 1.3 | |||||
MAX4037 | VDD = 1.8V | 1.9 | 2.4 | ||||
VDD = 3.6V | 2.0 | 2.5 | |||||
MAX4038 | VDD = 1.4V | 1.7 | 2.3 | ||||
VDD = 3.6V | 1.9 | 2.5 | |||||
MAX4039 | VDD = 1.8V | 2.8 | 4.0 | ||||
VDD = 3.6V | 3.0 | 4.1 | |||||
OPERATIONAL AMPLIFIERS | |||||||
Input Offset Voltage | VOS | ±0.2 | ±2.0 | mV | |||
Input Bias Current | IB | (Note 1) | ±1.0 | ±10 | pA | ||
Input Offset Current | IOS | (Note 1) | ±0.3 | ±20 | pA | ||
Input Common-Mode Voltage Range | VCM | Guaranteed by CMRR test | VDD = 1.4V (MAX4036/MAX4038 only) | VSS | VDD - 0.4 | V | |
VDD = 1.8V | VSS | VDD - 0.3 | |||||
VDD = 3.3V | VSS | VDD - 0.2 | |||||
Common-Mode Rejection Ratio | CMRR | VDD = 1.4V, VSS ≤ VCM ≤ (VDD - 0.4V) (MAX4036/MAX4038 only) | 50 | 70 | dB | ||
VDD = 1.8V, VSS ≤ VCM ≤ (VDD - 0.3V) | 50 | 70 | |||||
VDD = 3.3V, VSS ≤ VCM ≤ (VDD - 0.2V) | 56 | 76 | |||||
Power-Supply Rejection Ratio | PSRR | 1.4V ≤ VDD ≤ 3.6V (MAX4036/MAX4038 only) | 62 | 82 | dB | ||
1.8V ≤ VDD ≤ 3.6V | 62 | 84 |
(VDD = +3V, VSS = VCM = 0V, VOUT_ = VDD/2, RL to VDD/2, CL = 15pF, TA = +25°C, unless otherwise specified.)
PARAMETER | SYMBOL | CONDITIONS | MIN TYP MAX | UNITS |
Large-Signal Voltage Gain | AVOL | RL = 100kΩ, 50mV ≤ VOUT ≤ (VDD - 50mV) | 80 108 | dB |
RL = 5kΩ, 150mV ≤ VOUT ≤ (VDD - 150mV) | 78 105 | |||
Output Voltage Swing High | VDD - VOH | RL = 100kΩ | 2 5 | mV |
RL = 5kΩ | 25 50 | |||
Output Voltage Swing Low | VOL - VSS | RL = 100kΩ | 2 5 | mV |
RL = 5kΩ | 25 50 | |||
Output Short-Circuit Current | ISCO | To VDD or VSS | ±13 | mA |
Gain-Bandwidth Product | GBW | 4 | kHz | |
Phase Margin | M | 90 | Degrees | |
Slew Rate | SR | 4 | V/ms | |
Power-On Time | tON | (Note 3) | 0.25 | ms |
Input Noise-Voltage Density | en | f = 1kHz | 500 | nV/√Hz |
Capacitive-Load Stability | CLOAD | AVCL = 1V/V, no sustained oscillations | 5000 | pF |
REFERENCE (MAX4037/MAX4039) | ||||
Reference Voltage | VREF | 1.226 1.232 1.238 | V | |
Line Regulation | ΔVREF/ ΔVDD | VDD = +1.8V to +3.6V | 0.3 | %/V |
Load Regulation | ΔVREF/ ΔILOAD | 0 ≤ ILOAD ≤ 100µA, sourcing | 0.0015 | %/µA |
-20µA ≤ ILOAD ≤ 0, sinking | 0.0075 | |||
Reference Output Voltage Noise | en | 0.1Hz to 10Hz | 60 | µVP-P |
Output Short-Circuit Current | ISCR | Short to VDD | 0.25 | mA |
Short to VSS | 1.9 | |||
Capacitive-Load Stability Range | CLOAD | (Note 1) | 0 250 | pF |
(VDD = +3V, VSS = VCM = 0V, VOUT_ = VDD/2, RL to VDD/2, CL = 15pF, TA = TMIN to TMAX, unless otherwise specified.) (Note 2)
PARAMETER | SYMBOL | CONDITIONS | MIN TYP MAX | UNITS | |
Supply Voltage Range | VDD | MAX4036/MAX4038, guaranteed by PSRR test | 1.4 3.6 | V | |
MAX4037/MAX4039, guaranteed by PSRR and line regulation tests | 1.8 3.6 | ||||
Supply Current | IDD | MAX4036 | VDD = 1.4V | 1.7 | µA |
VDD = 3.6V | 1.8 | ||||
MAX4036A | VDD = 1.4V | 2.0 | |||
VDD = 3.6V | 2.1 | ||||
MAX4037 | VDD = 1.8V | 3.1 | |||
VDD = 3.6V | 3.2 |
(VDD = +3V, VSS = VCM = 0V, VOUT_ = VDD/2, RL to VDD/2, CL = 15pF, TA = TMIN to TMAX, unless otherwise specified.) (Note 2)
PARAMETER | SYMBOL | CONDITIONS | MIN TYP MAX | UNITS µA | |
Supply Current | IDD | MAX4038 | VDD = 1.4V | 2.9 | |
VDD = 3.6V | 3.2 | ||||
MAX4038A | VDD = 1.4V | 3.4 | |||
VDD = 3.6V | 3.7 | ||||
MAX4039 | VDD = 1.8V | 5.2 | |||
VDD = 3.6V | 5.3 | ||||
OPERATIONAL AMPLIFIERS | |||||
Input Offset Voltage | VOS | ±8 | mV | ||
Input Offset Voltage Temperature Coefficient | TCVOS | ±1 | µV/°C | ||
Input Bias Current | IB | ±100 | pA | ||
Input Offset Current | IOS | ±200 | pA | ||
Input Common-Mode Voltage Range | VCM | Guaranteed by CMRR test | VDD = 1.4V (MAX4036/MAX4038 only) | VSS VDD - 0.4 | V |
VDD = 1.8V | VSS VDD - 0.4 | ||||
VDD = 3.3V | VSS VDD - 0.2 | ||||
Common-Mode Rejection Ratio | CMRR | VDD = 1.4V, VSS ≤ VCM ≤ (VDD - 0.5V) (MAX4036/MAX4038 only) | 44 | dB | |
VDD = 1.8V, VSS ≤ VCM ≤ (VDD - 0.4V) | 50 | ||||
VDD = 3.3V, VSS ≤ VCM ≤ (VDD - 0.3V) | 52 | ||||
Power-Supply Rejection Ratio | PSRR | 1.4V ≤ VDD ≤ 3.6V (MAX4036/MAX4038 only) | 60 | dB | |
1.8V ≤ VDD ≤ 3.6V | 60 | ||||
Large-Signal Voltage Gain | AVOL | RL = 100kΩ, 50mV ≤ VOUT ≤ (VDD - 50mV) | 75 | dB | |
RL = 5kΩ, 150mV ≤ VOUT ≤ (VDD - 150mV) | 73 | ||||
Output Voltage Swing High | VDD - VOH | RL = 100kΩ | 10 | mV | |
RL = 5kΩ | 100 | ||||
Output Voltage Swing Low | VOL - VSS | RL = 100kΩ | 10 | mV | |
RL = 5kΩ | 100 | ||||
REFERENCE (MAX4037/MAX4039) | |||||
Reference Voltage Temperature Coefficient | TCVREF | (Note 1) | MAX4037EUT-T, MAX4039ETB, MAX4039EUB | 25 120 | ppm/°C |
MAX4039EBL-T | 35 200 | ||||
Line Regulation | ΔVREF/ ΔVDD | VDD = 1.8V to 3.6V | 0.6 | %/V | |
Load Regulation | ΔVREF/ ΔILOAD | 0 ≤ ILOAD ≤ 100µA, sourcing | 0.003 | %/µA | |
-20µA ≤ ILOAD ≤ 0, sinking | 0.015 | ||||
Capacitive-Load Stability Range | CLOAD | (Note 1) | 0 250 | pF |
Note 1: Guaranteed by design.
Note 2: All devices are production tested at TA = +25°C. All temperature limits are guaranteed by design.
Note 3: Output settles within 1% of final value.
(VDD = 3V, VSS = VCM = 0V, RL to VDD/2, TA = +25°C, unless otherwise noted.)
1.6
MAX4036 SUPPLY CURRENT
MAX4036 toc01
vs. SUPPLY VOLTAGE AND TEMPERATURE
3.0
MAX4037 SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
3.0
MAX4038 SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
SUPPLY CURRENT (A)
1.2
TA = +85C
TA = +25C
2.5
TA = +85C
TA = +25C
MAX4036 toc02
SUPPLY CURRENT (A)
2.5
TA = +85C
MAX4036 toc03
TA = +25C
SUPPLY CURRENT (A)
2.0
2.0
0.8
0.4
TA = -40C
1.5
1.0
0.5
TA = -40C
1.5
1.0
0.5
TA = -40C
0
1.4
1.8
2.2
2.6
3.0
3.4
0
1.8
2.1
2.4
2.7
3.0
3.3
3.6
0
1.4
1.8
2.2
2.6
3.0
3.4
SUPPLY VOLTAGE (V)
MAX4039 SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX4036 toc04
TA = +85C TA = +25C | ||||||
TA = -40C | ||||||
5
4
1.0
0.8
SUPPLY VOLTAGE (V)
OFFSET VOLTAGE
vs. COMMON-MODE VOLTAGE
MAX4036 toc05
0.30
0.20
SUPPLY VOLTAGE (V)
MAX4036 toc06
OFFSET VOLTAGE vs. TEMPERATURE
SUPPLY CURRENT (A)
OFFSET VOLTAGE (mV)
3 0.6
2 0.4
1 0.2
VDD = 1.4V
VDD = 1.8V VDD = 3.0V
0.10
OFFSET VOLTAGE (mV)
0
-0.10
-0.20
0
1.8
2.1
2.4
2.7
3.0
3.3
0
3.6 0
1 2 3
-0.30
-40
-15 10 35
60 85
40
INPUT BIAS CURRENT (pA)
30
20
10
0
-10
SUPPLY VOLTAGE (V)
INPUT BIAS CURRENT vs. TEMPERATURE
VCM = 3V
VCM = 0V
COMMON-MODE VOLTAGE (V)
INPUT BIAS CURRENT
vs. COMMON-MODE VOLTAGE
MAX4036 toc07
40
INPUT BIAS CURRENT (pA)
30
TA = +85C
20
10
TA = +25C
0
TEMPERATURE (C)
OP AMP POWER-SUPPLY REJECTION RATIO vs. FREQUENCY
AV = 1V/V
MAX4036 toc08
MAX4036 toc09
0
-10
-20
-30
PSRR (dB)
-40
-50
-60
-70
-80
-90
-100
-40
-15 10 35
60 85
0 0.5
1.0
1.5
2.0
2.5
3.0
10 100 1k
10k
TEMPERATURE (C)
COMMON-MODE VOLTAGE (V)
FREQUENCY (Hz)
VDD - VOH (mV)
(VDD = 3V, VSS = VCM = 0V, RL to VDD/2, TA = +25°C, unless otherwise noted.)
OUTPUT VOLTAGE SWING HIGH vs. TEMPERATURE
RL = 5kΩ | ||||
RL = 100kΩ | ||||
30
25
20
15
10
5
0
OUTPUT VOLTAGE SWING LOW vs. TEMPERATURE
MAX4036 toc10
35
30
VOL - VSS (mV)
25 RL = 5kΩ 20
15
10
5
RL = 100kΩ
0
140
MAX4036 toc11
120
AV (dB)
100
80
60
40
AV
MAX4036 toc12
vs. OUTPUT SWING LOW
RL = 5kΩ
RL = 100kΩ
-40
-15 10 35 60 85
-40
-15 10 35 60 85
0 100 200
300
400
500
TEMPERATURE (C)
TEMPERATURE (C)
VOL (mV)
140
120
AV
vs. OUTPUT SWING HIGH
RL = 5kΩ
140
MAX4036 toc13
120
100
AV
vs. TEMPERATURE
MAX4036 toc14
0
-20
CROSSTALK vs. FREQUENCY
MAX4036 toc15
MAX4038/MAX4039 AV = 1V/V
AV (dB)
100
80
RL = 100kΩ
RL = 5kΩ
AVOL (dB)
80
60
RL = 100kΩ
CROSSTALK (dB)
-40
-60
R = 100k
RL = 5kΩ
L Ω
40
60 -80
20
40
0 100 200
300
400
500
0
-40
-15 10 35 60 85
-100
0 0.1 1k
10k 100k
VDD - VOH (mV)
TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY
MAX4036 toc16
100
AV = 1V/V
VIN_ = VDD/2
10
THD+N (%)
1
VOUT = 2.5VP-P RL = 5kΩ TO VSS
100,000
CAPACITIVE LOAD (pF)
10,000
1000
TEMPERATURE (C)
OP AMP STABILITY
vs. CAPACITIVE AND RESISTIVE LOADS
UNSTABLE REGION
FREQUENCY (Hz)
OP AMP SINK CURRENT vs. OUTPUT VOLTAGE
MAX4036 toc17
MAX4036 toc18
14
VID = -100mV
12 VDD = 3.0V
SINK CURRENT (mA)
10
8
6
VDD = 1.8V
4
0.1
0.01
VOUT = 2.5VP-P
RL = 100kΩ TO VSS
100
STABLE REGION
RL TO VSS 2
0
0.01 0.1 1
10 100
10k 100k 1M
0 0.6
1.2
1.8
2.4
3.0
FREQUENCY (kHz)
RESISTIVE LOAD (Ω)
VOUT_ (V)
(VDD = 3V, VSS = VCM = 0V, RL to VDD/2, TA = +25°C, unless otherwise noted.)
OP AMP SOURCE CURRENT vs. OUTPUT VOLTAGE
18
16 VID = +100mV
VDD = 3.0V
SOURCE CURRENT (mA)
14
12
10
8
6 VDD = 1.8V
4
2
3500
MAX4036 toc19
INPUT VOLTAGE NOISE (nV/Hz)
3000
2500
2000
1500
1000
500
MAX4036 toc20
0
INPUT VOLTAGE NOISE DENSITY vs. FREQUENCY
0 0.1 1
10 100 1k
10k
0 0.6
1.2
1.8
2.4
3.0
FREQUENCY (Hz)
VOUT_ (V)
OP AMP
SMALL-SIGNAL TRANSIENT RESPONSE
OP AMP
MAX4036 toc21
MAX4036 toc22
SMALL-SIGNAL TRANSIENT RESPONSE
2.55V
2.45V
2.55V
2.45V
VIN+
AV = 1V/V
CL = 12pF TO VSS RL = 1MΩ TO VSS
VOUT_
2.55V
2.45V
2.55V
2.45V
VIN+
AV = 1V/V
CL = 250pF TO VSS RL = 1MΩ TO VSS
VOUT_
40s/div
OP AMP
LARGE-SIGNAL TRANSIENT RESPONSE
OP AMP
MAX4036 toc23
TURN-ON TRANSIENT RESPONSE
2.5V
1.5V
VIN+
AV = 1V/V
CL = 12pF TO VSS RL = 1MΩ TO VSS
VOUT_
500mV/div
3.0V VDD
AV = 1V/V
CL = 12pF TO GND RL = 1MΩ TO GND VIN+ = VDD / 2
MAX4036 toc24
0V
VOUT_
50mV/div
100s/div 100s/div
(VDD = 3V, VSS = VCM = 0V, RL to VDD/2, TA = +25°C, unless otherwise noted.)
80
70 GAIN 60
50
40
GAIN (dB)
30
20
10 PHASE
GAIN AND PHASE vs. FREQUENCY
MAX4036 toc25
180
135
90
45
0
2
-2
PHASE (DEGREES)
-6
GAIN (dB)
-10
-14
LARGE-SIGNAL GAIN vs. FREQUENCY
MAX4036 toc26
RL = 1MΩ
R = 5k
0
-10
-20
-30
-40
AV = 1000V/V VIN_ = 1mVP-P
-45
-90
-135
-18
-22
-26
-30
L Ω
AV = 1
VOUT_ = 1VP-P CL = 12pF
RL = 100kΩ
1 10 100 1k 10k 100k
100 1k
10k 100k
FREQUENCY (Hz) FREQUENCY (Hz)
1.236
1.234
VREF (V)
1.232
1.230
1.228
REFERENCE VOLTAGE vs. TEMPERATURE
MAX4036 toc27
MAX4037/MAX4039 | ||||
1.234
1.233
VREF (V)
1.232
1.231
REFERENCE VOLTAGE CHANGE vs. TIME
MAX4037
MAX4039
1.02
MAX4036 toc28
NORMALIZED VREF
1.01
1.00
0.99
REFERENCE VOLTAGE CHANGE vs. LOAD CURRENT
MAX4036 toc29
TA = +85C TA = +25C TA = -40C
1.226
-40
-15 10 35 60 85
1.230
0
100
200
300
400
500
600
0.98
-100 0
100
200
300
400
500
TEMPERATURE (C)
REFERENCE VOLTAGE CHANGE vs. SUPPLY VOLTAGE
TIME (HR)
LOAD CURRENT (A)
REFERENCE LINE-TRANSIENT RESPONSE
1.0003
1.0002
NORMALIZED VREF
1.0001
1.0000
0.9999
0.9998
0.9997
0.9996
0.9995
TA = -40C TA = +25C
TA = +85C
3.6V VDD 1.8V
MAX4036 toc30
MAX4036 toc31
0V
VREF AC-COUPLED
50mV/div
1.8
2.1 2.4 2.7
VDD (V)
3.0
3.3
3.6
1ms/div
(VDD = 3V, VSS = VCM = 0V, RL to VDD/2, TA = +25°C, unless otherwise noted.)
REFERENCE LOAD-TRANSIENT RESPONSE (SINKING CURRENT)
MAX4036 toc32
REFERENCE LOAD-TRANSIENT RESPONSE (SINKING CURRENT)
MAX4036 toc33
0
IREF
2A
0
IREF 20A
VREF
500mV/div
VREF
500mV/div
0 0
2.5ms/div 2.5ms/div
REFERENCE LOAD-TRANSIENT RESPONSE (SOURCING CURRENT)
MAX4036 toc34
REFERENCE LOAD-TRANSIENT RESPONSE (SOURCING CURRENT)
MAX4036 toc35
10A
IREF 0
100A
IREF 0
VREF
500mV/div
0
1ms/div
VREF
500mV/div
0
1ms/div
REFERENCE TURN-ON TRANSIENT RESPONSE
MAX4036 toc36
0.1Hz TO 10Hz REFERENCE NOISE
MAX4036 toc37
3V
VDD
0V
VREF 0V
1ms/div
1s/div 20V/div
PIN | NAME | FUNCTION | |||||
MAX4036/ MAX4036A | MAX4037 | MAX4038/ MAX4038A | MAX4039 | ||||
µMAX*/TDFN | UCSP | µMAX/TDF | UCSP | ||||
1 | 3 | — | — | — | — | IN+ | Noninverting Amplifier Input |
2 | 2 | 4 | A2 | 5 | A2 | VSS | Negative Power-Supply Voltage |
3 | 4 | — | — | — | — | IN- | Inverting Amplifier Input |
4 | 1 | — | — | — | — | OUT | Amplifier Output |
5 | 6 | 8 | C2 | 10 | C2 | VDD | Positive Power-Supply Voltage |
— | 5 | — | — | 6 | B2 | REF | Reference Voltage Output |
— | — | 1 | C1 | 1 | C1 | OUTA | Amplifier Output (Channel A) |
— | — | 2 | B1 | 2 | B1 | INA- | Inverting Amplifier Input (Channel A) |
— | — | 3 | A1 | 3 | A1 | INA+ | Noninverting Amplifier Input (Channel A) |
— | — | 5 | A3 | 7 | A3 | INB+ | Noninverting Amplifier Input (Channel B) |
— | — | 6 | B3 | 8 | B3 | INB- | Inverting Amplifier Input (Channel B) |
— | — | 7 | C3 | 9 | C3 | OUTB | Amplifier Output (Channel B) |
— | — | — | B2 | 4 | — | N.C. | No Connection. Not internally connected. |
— | — | — | — | — | — | EP (TDFN only) | Exposed Paddle. Solder EP to VSS or leave unconnected (TDFN packages only). |
*Both MAX4038/MAX4038A available in µMAX package only.
The MAX4036–MAX4039 consume an ultra-low supply current and have rail-to-rail output stages specifically designed for low-voltage operation. The input common- mode voltage range extends from VDD - 0.4V to VSS, although full rail-to-rail input range is possible with degraded performance when operating from a supply voltage above 3.0V. The input offset voltage is typically 200µV. Low-operating supply voltage, low supply current, and rail-to-rail outputs make the MAX4036–MAX4039 an excellent choice for precision or general-purpose low- voltage, battery-powered systems.
Rail-to-Rail Outputs The MAX4036–MAX4039 output stages can drive a 5kΩ load and still swing to within 40mV of the rails. Figure 1 shows the output voltage swing of the MAX4036– MAX4039 configured as a unity-gain buffer, powered from a single 2.4V supply. The output for this setup typi- cally swings from 5mV to VDD - 5mV with a 100kΩ load.
AV = 1V/V VIN_+ 1.5V VOUT+ 1.5V 2ms/div 1V/div |
Figure 1. Rail-to-Rail Input/Output Voltage Range
Power-Supply Considerations The MAX4036–MAX4039 operate from a single 1.4V (MAX4036/MAX4038) or 1.8V (MAX4037/MAX4039) to
3.6V supply. A high amplifier power-supply rejection ratio of 82dB and the excellent reference line regulation allow the devices to be powered directly from a decay- ing battery voltage, simplifying design and extending battery life. The MAX4036–MAX4039 are ideally suited for low-voltage battery-powered systems. The Typical Operating Characteristics show the changes in supply current and reference output as a function of supply voltage.
Power-Up Settling Time The MAX4036–MAX4039 typically require 0.25ms to power-up. During this startup time, the output is inde- terminate. The application circuit should allow for this initial delay. See the Typical Operating Characteristics for amplifier and reference settling time curves.
Driving Capacitive Loads: Op Amps The MAX4036–MAX4039 amplifier(s) require no output capacitor for stability, and are unity-gain stable for loads up to 5000pF. Applications that require greater capacitive-drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Note that this solution reduces the gain and output voltage swing because RISO forms a voltage- divider with the load resistor.
Crossover Distortion The MAX4036–MAX4039 output stages are capable of sourcing and sinking currents with orders of magnitude greater than the stages’ quiescent current, which is less than 1µA. This ability to drive heavy loads with such a small quiescent current introduces crossover
RISO MAX4038 RL CL AV = RL = 1 RL + RISO |
Figure 2. Using a Resistor to Isolate a Capacitive Load from the Op Amp
INPUT VTHR VHB VTHF VOH OUTPUT VOL |
Figure 3. Hysteresis
distortion as the output stage passes between sinking and sourcing. In the crossover regions, the output impedance of the MAX4036–MAX4039 increases sub- stantially, thereby changing the load-driving character- istics. The distortion can be greatly reduced by increasing the load resistance. For applications where low load resistance is required, bias the load such that the output current is always in one direction, to avoid crossover distortion.
Reference Bypassing The MAX4037/MAX4039 reference requires no external capacitors.
Using the MAX4036–MAX4039 as a
Comparator Although optimized for use as an operational amplifier, the MAX4036–MAX4039 can be used as a rail-to-rail I/O comparator (Figures 3, 4). External hysteresis can be used to minimize the risk of output oscillation. The positive feedback circuit, shown in Figure 4, causes the input threshold to change when the output voltage changes state.
Battery Monitoring Using the MAX4037/MAX4039 and Hysteresis
The internal reference and low operating voltage of the MAX4037/MAX4039 make the devices ideal for battery- monitoring applications. Hysteresis can be set using resistors as shown in Figure 4, and the following design procedure:
Choose R3. The input bias current of IN_+ is under 100pA over temperature, so a current through R3 around 100nA maintains accuracy. The current through R3 at the trip point is VREF / R3, or 100nA for R3 = 12MΩ. 10MΩ is a good practical value.
Choose the hysteresis voltage (VHB), the voltage between the upper and lower thresholds. In this example, choose VHB = 50mV (see Figure 3).
Calculate R1:
R1
R3
VHB VDD
10MΩ
210kΩ
0.5V
2.4V
Choose the threshold voltage for VIN rising (VTHR). In this example, choose VTHR = 2.0V.
Calculate R2:
R2 1
⎡⎛
⎢⎜ V
VTHR
⎞
R1⎟
1 1 ⎤
R1 R3 ⎥
⎢⎣⎝
⎡⎛
⎢⎜
REF ⎠
1
2.0V ⎞
⎟
⎥⎦
1 1 ⎤
⎥
⎣⎝ 1.2V
325kΩ
210kΩ⎠
210kΩ
10MΩ ⎦
Figure 4. Battery Monitoring
R3 VDD R1 VDD VBATT IN+ OUT V R2 BGOOD IN- REF VSS VREF MAX4037 VSS |
Verify the threshold voltages with these formulas: VIN rising:
V V
R1 ⎛ 1 1 1 ⎞
⎜
⎟
PART | NO. OF AMPLIFIERS | REFERENCE |
MAX4036 | 1 | — |
MAX4037 | 1 | |
MAX4038 | 2 | — |
MAX4039 | 2 | |
THR REF
VIN falling:
⎝ R1 R2 R3 ⎠
V V
⎛ R1
VDD ⎞
THF THR ⎜
⎝
R3 ⎠ Ordering Information (continued)
⎟
PART TEMP RANGE PIN- TOP PACKAGE MARK |
MAX4039EBL-T -40°C to +85°C 9 UCSP AEH |
MAX4039ETB-T -40°C to +85°C 10 TDFN-EP* AAN |
MAX4039EUB -40°C to +85°C 10 µMAX — |
In this application, the MAX4036–MAX4039 supply cur- rent will vary, depending on the output state of the comparator.
Power Supplies and Layout The MAX4036–MAX4039 operate from a single 1.4V (MAX4036/MAX4038) or 1.8V (MAX4037/MAX4039) to
3.6V power supply. Bypass VDD with a 0.1µF capacitor to ground to minimize noise.
Good layout techniques optimize performance by
-Denotes a package containing lead.
*EP = Exposed pad.
Chip Information
decreasing the amount of stray capacitance to the op amp’s inputs and outputs. To decrease stray capaci-
tance, minimize trace lengths by placing external com- ponents close to the device.
The exposed paddle (EP) on the TDFN packages of the MAX4038 and MAX4039 is internally connected to the device substrate, VSS. Connect the exposed paddle to VSS or leave EP unconnected. Running traces below the exposed paddle is not recommended.
MAX4036 TRANSISTOR COUNT: 49 MAX4037 TRANSISTOR COUNT: 119 MAX4038 TRANSISTOR COUNT: 146 MAX4039 TRANSISTOR COUNT: 146 PROCESS: BiCMOS
1
1
TOP VIEW
IN+
5
MAX4036 MAX4036A
VDD
OUT
5
2
6
MAX4037
VDD
2
VSS
VSS
REF
3
IN-
OUT
IN+
IN-
4
3
4
SC70 SOT23
6
3
OUTA 1
8 VDD
OUTA
8
1
MAX4038
VDD
INA- 2
INA+ 3
VSS 4
5
4
7
2
MAX4038 MAX4038A
7 OUTB
6 INB-
5 INB+
INA- INA+ VSS
OUTB INB- INB+
MAX
3mm x 3mm x 0.8mm TDFN
TDFN EXPOSED PAD CONNECTED TO VSS.
OUTA 1
INA- 2
INA+ 3
N.C. 4
VSS 5
MAX4039
10 VDD
9 OUTB
8 INB-
7 INB+
6 REF
OUTA INA- INA+ N.C. VSS
VDD OUTB
1 10 2 9 3 MAX4039 8 4 7 | |
5 | 6 |
INB- INB+ REF
MAX
3mm x 3mm x 0.8mm TDFN
INB+
TDFN EXPOSED PAD CONNECTED TO VSS.
(BUMP SIDE DOWN)
A
B
MAX4038
INA+
VSS
INA-
N.C.
(BUMP SIDE DOWN)
A
B
MAX4039
INA+
VSS
INB+
INA-
REF
INB-
OUTB
VDD
OUTA
OUTB
VDD
OUTA
INB-
C C
1 2 3
UCSP
1 2 3
UCSP
SC70, 5L.EPS
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE OUTLINE, 5L SC70 | ||||
21-0076 | E | 1 1 |
6LSOT.EPS
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE OUTLINE, SOT 6L BODY | ||||
21-0058 | I | 1 2 |
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE OUTLINE, SOT 6L BODY | ||||
21-0058 | I | 2 2 |
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
| |||
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
COMMON DIMENSIONS | ||
SYMBOL | MIN. | MAX. |
A | 0.70 | 0.80 |
D | 2.90 | 3.10 |
E | 2.90 | 3.10 |
A1 | 0.00 | 0.05 |
L | 0.20 | 0.40 |
k | 0.25 MIN. | |
A2 | 0.20 REF. |
PACKAGE VARIATIONS | |||||||
PKG. CODE | N | D2 | E2 | e | JEDEC SPEC | b | [(N/2)-1] x e |
T633-2 | 6 | 1.50±0.10 | 2.30±0.10 | 0.95 BSC | MO229 / WEEA | 0.40±0.05 | 1.90 REF |
T833-2 | 8 | 1.50±0.10 | 2.30±0.10 | 0.65 BSC | MO229 / WEEC | 0.30±0.05 | 1.95 REF |
T833-3 | 8 | 1.50±0.10 | 2.30±0.10 | 0.65 BSC | MO229 / WEEC | 0.30±0.05 | 1.95 REF |
T1033-1 | 10 | 1.50±0.10 | 2.30±0.10 | 0.50 BSC | MO229 / WEED-3 | 0.25±0.05 | 2.00 REF |
T1033MK-1 | 10 | 1.50±0.10 | 2.30±0.10 | 0.50 BSC | MO229 / WEED-3 | 0.25±0.05 | 2.00 REF |
T1033-2 | 10 | 1.50±0.10 | 2.30±0.10 | 0.50 BSC | MO229 / WEED-3 | 0.25±0.05 | 2.00 REF |
T1433-1 | 14 | 1.70±0.10 | 2.30±0.10 | 0.40 BSC | - - - - | 0.20±0.05 | 2.40 REF |
T1433-2 | 14 | 1.70±0.10 | 2.30±0.10 | 0.40 BSC | - - - - | 0.20±0.05 | 2.40 REF |
T1433-3F | 14 | 1.70±0.10 | 2.30±0.10 | 0.40 BSC | - - - - | 0.20±0.05 | 2.40 REF |
10LUMAX.EPS
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
| |||
9LUCSP, 3x3.EPS
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE OUTLINE, 3x3 UCSP | ||||
21-0093 | L | 1 1 |
REVISION NUMBER | REVISION DATE | DESCRIPTION | PAGES CHANGED |
5 | 11/09 | Updated TOC 20 | 7 |
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
MAX4037EUT+T MAX4038ETA+T MAX4036EXK+T MAX4038EBL+T MAX4038EUA+ MAX4038EUA+T MAX4039EBL+T MAX4039ETB+T MAX4039EUB+ MAX4039EUB+T MAX4036AAXK+T