


TIDES, DIFFERENTIAL ROTATION, AND ECLIPSING BINARIES

ADAM S. JERMYN

Differential rotation means that a binary can be *synchronized* without having P_{rot}=P_{orb}!

We use Kepler eclipsing binaries to infer tight constraints on radial differential rotation:

P _{orb,min}	P _{orb,max}	β Radial	$eta_{1-\sigma}$ Shear	$eta_{2-\sigma}$
0	50	0.152	0.251 -0.482	0.337 -0.632
0	2	0.000	$0.010 \\ -0.010$	0.019 -0.022
2	6	0.031	$0.091 \\ -0.252$	0.139 -0.346
6	10	0.066	$0.373 \\ -0.330$	0.677 -1.186
10	50	0.264	1.329 -1.911	2.267 -2.778

Very sub-solar

radial shear!