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When a quantum system initialized in a product state is subjected to either coherent or incoher-
ent dynamics, the entropy of any of its connected partitions generically increases as a function of
time, signalling the inevitable spreading of (quantum) information throughout the system. Here,
we show that, in the presence of continuous symmetries and under ubiquitous experimental condi-
tions, symmetry-resolved information spreading is inhibited due to the competition of coherent and
incoherent dynamics: in given quantum number sectors, entropy decreases as a function of time,
signalling dynamical purification. Such dynamical purification bridges between two distinct short
and intermediate time regimes, characterized by a log-volume and log-area entropy law, respectively.
It is generic to symmetric quantum evolution, and as such occurs for different partition geometry
and topology, and classes of (local) Liouville dynamics. We then develop a protocol to measure
symmetry-resolved entropies and negativities in synthetic quantum systems based on the random
unitary toolbox, and demonstrate the generality of dynamical purification using experimental data
from trapped ion experiments [Brydges et al., Science 364, 260 (2019)]. Our work shows that sym-
metry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum

systems, and, in particular, in noisy-intermediate scale quantum devices.

I. INTRODUCTION

Symmetry and entanglement represent two corner-
stones of our present understanding of many-body
quantum systems. The former governs, e.g., the
nature of phases of matter' 3, while the latter char-
acterizes different classes of quantum dynamics in and
out-of-equilibrium* . Perhaps surprisingly, the inter-
twined role of these two pillars - falling under the um-
brella of symmetry-resolved (SR) quantum information -
has been relatively unexplored until comparatively re-
cently” '2.  Such connections are of immediate exper-
imental interest in the context of quantum simulation
and quantum computing. Aiming at the ultimate goal
of engineering perfectly isolated quantum systems, ex-
periments in synthetic quantum matter and quantum
devices realize system dynamics where coupling to an ex-
ternal bath, whatever weak, is ubiquitous - two paradig-
matic examples being quantum simulators'®'* and noisy
intermediate-scale quantum (NISQ) devices!®. In these
settings, the microscopic dynamics is local, and is of-
ten captured by a master equation with global Abelian
symmetries, related to observables such as magnetiza-
tion or particle number. Against this background, it is
an open question whether SR quantum information can
reveal novel, generic classes of quantum dynamics that
emerge as a genuine effect of the competition between
unitary and incoherent dynamics that is epitomized by
quantum simulators and NISQ devices.

In this work, we develop a theory and an experimental
probe protocol for SR quantum information dynamics in
synthetic quantum matter and quantum devices. We are
interested in the prototypical scenario depicted in Fig. 1
a-b: an initial product state of a lattice model is subjec-
ted to the evolution of a U(1) invariant dynamics, where
coherent couplings (J) are stronger than incoherent ones
(7). Such scenarios are ubiquitous in current experiment
settings. They are realized in analogue quantum sim-
ulators as diverse as trapped ions'®, cold atoms in op-
tical lattices'”, arrays of Rydberg atoms'®, and circuit
quantum-electrodynamics settings'®. Similarly, the in-
terplay between coherent U(1) dynamics and dissipation
is of direct relevance to certain nascent quantum com-
puters — those that implement two-qubit SWAP or phase
gates with a conserved number of qubit excitations. Con-
crete examples include architectures based on supercon-
ducting qubits?® and trapped ions?!.

Under these rather ubiquitous conditions, we show
that a specific set of SR reduced density matrices (RDMs)
undergo dynamical purification as a function of time.
This phenomenon is strikingly different from purification
to an uncorrelated steady state, because it does not come
at the expense of quantum information: entanglement re-
mains finite and sizeable over the entire purification dy-
namics, both in its generic and symmetry-resolved for-
mulation??. Furthermore, the scenario we are interested
in is fundamentally different from (dissipative) state pre-
paration protocols?® 2° (see below), as we do not rely on
reservoir engineering.
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Figure 1. Evolution of symmetry-resolved entropies in NISQ devices. Panel a,b): sketch of the models discussed in the main
text. a): free fermions on a square lattice, with tunneling matrix element J and one-body loss rate v. b): spin-1/2 chains
with long-range XX exchange interactions, and single site spin relaxation rate . In both cases, the grey areas represent the
geometries of the A bipartition of linear length ¢ considered below. Panel c): time evolution of the symmetry resolved purity
in the sector ¢ = +1, Pa(£1) = T1r[p124’i1]7 in NISQ devices undergoing three distinct regimes (indicated by different colors,
see text). The purity initially increases as a function of time, signalling dynamical purification (gray dot). Panel d,e): time
evolution of the symmetry-resolved purity normalized by the partition volume, correspondent to a quantum quench from a
charge-density-wave state, and with the dynamics described in panel a,b), respectively. At short times, decoherences induces a
universal scaling behavior, that corresponds to a log-volume entropy scaling, and a purity scaling with inverse of the partition
volume. Panel f): symmetry-resolved purity for a long-range XX spin chain of L = 10 sites, with £ = 4. The lines represent
theoretical simulations, with (solid) and without (dashed) decoherence. Dynamical purification is only present in the first case.
Circles represent experimentally reconstructed data from for the symmetry-resolved purity in the trapped ion experiment of
Ref. 26. Dynamical purification is experimentally observed for ¢ = —1, and similarly evident for ¢ = 1 (albeit with larger error
bars) in agreement with both theory and numerics. We refer to upcoming work®” for a thorough statistical analysis.

Entanglement-preserving dynamical purification ori- an intermediate time, log-area one, where coherent dy-

ginates from the competition between coherent and in-
coherent dynamics. Indeed, in the presence of only one
of the two, no purification occurs. The effect of such com-
petition is inaccessible in the absence of symmetry res-
olution, as both coherent and incoherent dynamics gen-
erically lead to entropy growth after a quench. From a
more practical viewpoint, dynamical purification can be
seen as a direct — and universal — signature of a domin-
ant coherent dynamics in both quantum simulators and
NISQ devices, thus providing a simple proxy to evaluate
their functioning.

The competition between coherent and incoherent pro-
cesses reflects into the existence of two distinct dynam-
ical regimes in terms of SR entropy scaling as a func-
tion of the partition properties: a short-time, log-volume
regime, where dissipation is the dominant effect, and

namics partly overcomes dissipation and enhances purity
in given quantum number sectors. While distinguish-
ing log-volume versus log-area scaling is only meaningful
in one spatial dimension, the corresponding change of
dynamical behavior has dramatic consequences on the
experimentally relevant symmetry-resolved purity: the
latter quantity scales with inverse volume and inverse
area (Fig. lc-e), respectively. Hence it provides an ideal
proxy to diagnose scaling regimes during dynamical puri-
fication. For longer time scales, thermodynamics comes
back into the game and all SR~entropies show the stand-
ard extensive behavior in subsystem size'?.

The interplay between the two regimes can be be illus-
trated in context of a simplified Markovian master equa-
tion for the SR-RDM: within that framework, the pres-
ence of the coherent dynamics interferes with the action



of dissipation and thus leads to a transient regime where
entropy is soaked out of the SR-RDM itself. We corrob-
orate our theoretical framework with numerical simula-
tions on a variety of experimentally relevant scenarios.
In particular, we showcase the generality of dynamical
purification by studying both one- and two-dimensional
systems (some of them depicted in Fig. la-b) with parti-
tions of different topologies, including both fermionic and
bosonic degrees of freedom, and using different types of
(weakly-entangled) initial states.

In order to connect our results to experiments, we de-
velop a protocol to access SR-RDMs building on the ran-
dom measurement toolbox?®3*. We show how experi-
mentally demonstrated tools allow for accessing SR mo-
ments of RDMs and SR Rényi entropies by means of post-
selecting data. This procedure is very efficient and allows
to reach system sizes that are considerably beyond what
can be achieved via full-state tomography, when applic-
able (See Ref. 35 for a recent demonstration). We apply
our protocol to the trapped ion experiment reported in
Ref. 26, reconstructing both SR entropies and momenta
of the SR-reduced density matrix. The experiment re-
veals a sharp dynamical purification (Fig. 1f) which con-
firms our theoretical findings. This observation demon-
strates the general applicability of our theoretical frame-
work, and concretely illustrates the potential of utilizing
symmetry as an enhanced probing tool in state-of-the-art
settings.

The paper is organized as follows. In Sec. II, we set
notations and review symmetry resolved entropies and
negativities. In Sec. ITI, we specify the time evolution we
are interested in, and develop a theory for the time evol-
ution of both entropies and negativities in NISQ devices.
We illustrate how entropies show distinct scaling beha-
vior at short (log-volume) and intermediate (log-area)
times, so that SR-purities actually increase as a func-
tion of time (dynamical purification). We then argue
that, along this purification, entanglement is typically
preserved, so that purification does not take place at the
expenses of quantum correlations. In Sec. IV, we present
numerical results for both spin chains and fermionic sys-
tems supporting our theoretical findings. In Sec. V, we
discuss the protocol for the experimental measurement
of SR entropies, and present a first application in the
context of the trapped ion experiment, that supports the
observation of dynamical purification. Finally, we draw
our conclusions.

II. SYMMETRY-RESOLVED QUANTUM
INFORMATION

In this section, we review definitions and properties
of symmetry-resolved density matrices and partial trans-
poses. Following those, we introduce symmetry-resolved
entropies and negativities, in order to set notation, and
briefly discuss applications of such concepts in closed
quantum systems.

A. Symmetry-resolved Renyi entropies

We are interested in bipartite systems, with a partition
AUB. In the case of a many-body pure state, the bipart-
ite entanglement between A and B is fully encoded in the
reduced density matrix pa(pp) of the given subsystem
A(B), and is characterized via n-order Rényi entropies,
defined as

1

1—n

S¢ =

log Tr{p }. (1)

For n — 1, these reduce to the renowned von Neumann
entanglement entropy

S(pa) = lim S = —Tra(palogpa).  (2)

The von Neumann entropy of the reduced density oper-
ator is a rigorous entanglement measure for pure states,
and the corresponding Rényi entropies with n > 1
provide rigorous lower bounds. Both Rényi and von Neu-
mann entropies have found widespread applications in
the realm of many-body physics, from the characteriz-
ation of topological matter, to dynamics out of equilib-
rium, to the understanding of tensor network methods -
see, e.g., Ref. 6 for a review.

For a quantum system whose Hamiltonian dynamics
preserves an additive conserved charge, it is possible to
identify and compute the contributions to the entangle-
ment related to each symmetry sector”®'%!1 Here, we
focus on global symmetries.

Let @ denote such a conserved charge (Q = Qa ®
1p+14®Qg). Then, the reduced density matrix p4 is
necessarily block diagonal and each block corresponds to
an eigenvalue ¢ of Q4. One can thus introduce I, the
projector into the eigenspace related to eigenvalue ¢, and
the associated density matrix p4(q)

pa@) = PR Toa@l =1 @)
so that
pa = Sq p(q) palq) (4)

with p(q) = Tr{pall,} the probability of being in charge
sector q. We introduce the SR-purity

Palq) = Tr{pa(q)?}. (5)

It quantifies how mixed the state appears in a given sym-
metry sector. The symmetry resolved Rényi entropies
(SRREs) are a straightforward extension of this concept:

1

—n

$§7(q) = 1 log Tr{pa(e)"} - (6)

Computing Tr{pa(q)"} (in cases when a direct applic-
ation of projectors in not feasible) requires the knowledge
of the spectral resolution in Q4 of p4. As pointed out in



Refs. 10 and 11, for some of the computations below, it
will be more convenient to study the charged moments
Zn(a),

Zo(a) = Tr{pe®@1}, (7)

since those do not directly require spectral resolution to
start with. The charged moments have been calculated
in several cases'12:36749 " Starting from the computation
of Z, (), it is possible to obtain Tr{p4II,} by means of
a Fourier transform:

" da

o Zn(a)e 1o, (8)

T} = [

—T

We will exploit this last route in the fermionic simulations
in Sec. IV.

Recent studies have discussed the basic proper-
ties of these symmetry-resolved contributions both in-
10,11,36-47,50 and out-of-equilibrium'?*®, and in presence
of disorder*”. In basically all considered cases, it has been
shown that SRREs of large subsystems exhibits entangle-
ment equipartition (namely all SRREs are equal) for the
most relevant and populated symmetry sectors. The non
equilibrium dynamics of SRREs has been considered only
for isolated systems, both after a local*® and a global'?
quantum quench, and has revealed the presence of a uni-
versal time delay for the activation of a given sector'Z.
The investigation of SRREs is far from complete and the
characterization of its behaviour in the presence of dis-
sipation still remains an open question.

B. Symmetry-resolved entanglement negativity

In the case the system S is in a mixed state, the entrop-
ies of the RDM are no longer proper measures of bipartite
entanglement, as they are also sensitive to classical cor-
relations, although they still provide useful information.
A more appropriate and commonly used quantity to wit-
ness entanglement in these cases is the negativity®!.

Considering S = AUB, according to Peres’ criterion®?,
also called positive partial transpose (PPT) criterion, a
necessary condition for separablity is that the eigenvalues
\; of its partial transpose p4 (with respect to subsystem
A) are exclusively nonnegative (A; > 0). The entangle-
ment negativity

N = Zmax{o, “N} =3 (Te{p™ [} -1) (9

quantifies the degree to which p’4 fails to be positive
semidefinite. So, a non-zero negativity implies the pres-
ence of entanglement between A and B. In recent years,
the negativity has been extensively studied in a large
variety of physical situation, including critical®®>" and
disordered systems®®°?, topological phases® %4, and out
of equilibrium®-"'. It has been argued that for fermi-
onic systems the partial time-reversal transpose is a more

appropriate object to characterise the entanglement in
mixed states” 7, although we will not employ such a
concept here.

In analogy to entanglement entropy, one can consider
the negativity for a system possessing some additive con-
served charge Q = Q4®@1p+14R®Q . Interestingly, pTA
admits a block diagonal form in the quantum numbers of
the charge imbalance Q = Q4 —QEA between A and B,

Let II; denote the projector onto the eigenspace of Q as-
sociated with eigenvalue g. We define the normalized SR

partially transposed density matrix®%-5!
H~pTAH~
Ta(g)= —dF 24 muf Tas)l — 1 1
P (q) Tr{pTaIl,}’ r{p (Q)} ) (10)
such that
p™ =@ 5(@) p" (@) (11)

with () = Tr{p™* 1} > 0 the probability of being in
charge imbalance sector §. We can thus define the SR
negativity as

Tr{|pTA;(j)|} -1 (12)

with V' = 37, p(¢)N'(¢). To compute the SR-negativity,
one needs the spectral resolution of p™4 as in the previous
case. Beyond the case of exact simulations, this challen-
ging calculation is performed in two steps. We first focus
on the moments Tr{(p™4(g))"}, from which the negativ-
ity is obtained from a replica trick®*. Then we consider
the charged moments”®°

R, (o) = Tr{ (pTA)n elaQa } (13)

and performing a Fourier transform we get the desired
Tr{(p™(g))"}. This way of performing the calculation
is very powerful when combined with 1 + 1D CFTs**89,
which also provided exact results for the time evolution
of the SR-negativity after a local quantum quench?*®.

N(q) =

III. TIME-EVOLUTION OF SYMMETRY
RESOLVED ENTROPIES AND NEGATIVITIES

In this section, we present a theoretical description
of symmetry-resolved quantum information in NISQ
devices. We are specifically interested in the short- to
intermediate timescales, that is, before dissipation takes
over the system dynamics overwhelming coherent effects.

We shall first discuss the generic setting and sub-
sequently focus on a specific example that presents the
generic features we are interested in: the existence of dis-
tinct regimes of entropy scaling, dynamical purification,
and its interplay with entanglement. While, for the sake
of clarity, most of the technical discussion will be based
on illustrative examples, we point out that our conclu-
sions are only relying on very generic conditions, that we
now specify in the next subsection, IIT A.



A. Short-time dynamics: emergent purification

The system dynamics we are interested in features the
following characteristics:

e a D-dimensional system, and a ’convex’ partition A
herein with smooth boundaries®?, volume V4 and
area 0Vy;

e an initial state |1)p) which is a product state in real
space;

e the full system dynamics shall be described by a
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equation. In particular, we will be inter-
ested in Markovian time-evolution;

e the system Hamiltonian shall have a global sym-
metry G. For the sake of simplicity, we will con-
sider U(1) below™; most results are immediately
extended to Zy symmetries, and might also be ap-
plicable to the symmetry resolution of continuous
non-Abelian groups when sectors are labelled by
Abelian subgroups. We assume local (i.e., nearest-
neighbor, one- and two-body) couplings, that are
homogeneous in space. We define as J the en-
ergy scale associated to these terms. Below, we
will discuss how sufficiently long-range interactions
can also be included;

e dissipation shall instead be described by local
(single-site) jump operators. For the sake of sim-
plicity, it is assumed that all sites are affected by
the same dissipative processes. Dissipation shall vi-
olate the symmetry G. We define as v the energy
scale associated to these terms, that is, the bare in-
verse decay rate. Other sources of dissipation can
in principle be introduced: as it will be clear below,
we expect that their effects are not particularly in-
teresting for the sake of our treatment.

Such assumptions are ubiquitous in the context of syn-
thetic quantum systems, such as cold atoms in optical
lattices or tweezers, trapped ions, and arrays of super-
conducting qubits. Engineering initial states in product
state form (up to initialization errors) is of widespread
practice, as this can be typically carried out by manip-
ulating quantum states locally. The system dynamics is
often local and associated to continuous symmetries, such
as particle number or magnetization conservation. Dis-
sipation is generically violating conservation laws asso-
ciated to the latter quantities: examples include particle
loss in cold atom Hubbard models, and fully depolarizing
noise and spin relaxation in trapped ions and supercon-
ducting circuit architectures.

Most of the present experimental settings are able to
access parameter regimes where dissipation is weaker
than the coherent dynamics, with the ratio v/J ranging
from 1073 to 10~!. We will focus explicitly on this para-
meter regime, and consider dissipation as a perturbation
on the top of the coherent dynamics.

Under these assumptions, one can identify three times-
cales: two intrinsic, and one typical of the subsystem
one is interested in. The first one t; = 1/J is as-
sociated to coherent local dynamics. The second one
to = 1/ is instead related to a timescale after which (on
average) all sites within the partition have undergone a
quantum jump. The last one, typical of the subsystem
A, t1 = 1/(Va7) is related to the timescale required to
observe a single quantum jump within A.

Let us mention here, that in contrast to the notion of
dissipative state preparation®® 2°, we study here a given
evolution of a physical system. That is, we are not en-
gineering the coupling to the bath to drive the system
into a desired state, but rather, discuss the dynamics
corresponding to naturally present quantum noise. In
addition, whereas dissipative state preparation can be
utilized to obtain as a unique stationary state a highly
entangled many-body state, or states whose subsystems
can be very pure, the situation we consider here is not
related to long-time dynamics. We will indeed show that
dynamical purification occurs at intermediate times.

For times t > to, pa will be completely mixed, also
in its symmetry-resolved sectors. For regimes where
v > J, the system dynamics is dominated by incoher-
ent processes. A promising regime to observe competi-
tion between coherent and incoherent dynamics is thus
Vay > J > 7, and is the one we will consider below. We
remark that this is a rather generic situation for quantum
simulators of many-body systems, where one tries to real-
ize dynamics that are as coherent as possible (J > 7)
for large number of degrees of freedom (V4 > 1). In
Sec. IV, we will discuss in more details in which experi-
mental platforms such conditions are met.

We emphasize there that the presence of three dynam-
ical regimes (that, as we will show below, are captured by
different entropy scaling) stems from purely geometrical
considerations: while coherent dynamics is acting solely
at the boundary, incoherent processes are instead present
over the entire volume of the partition one is interested in.
As such, the short-time evolution of symmetry-resolved
density matrices will be dictated by this competition, and
is expected to be largely insensitive to other characterist-
ics, including the partition geometry and topology, and
(to a weaker extent) the initial state. The theoretical ap-
paratus discussed in the next section can be adapted to
incorporate such generic features. We nevertheless opted
to focus on a simple, yet paradigmatic example, and defer
the demonstration of generality of SR dynamical purific-
ation to the numerical experiments discussed in Sec. IV.

1.  Explicit example: hard-core Bose-Hubbard model in 2D

For the sake of clarity and to make connections to the
numerical experiments below direct, we start by focus-
ing on a specific instance, and return to the general case
at the end of the subsection. We consider a model of
hard-core bosons hopping on an infinite 2D square lat-



tice, described by the Hamiltonian

= > (blb; +hec.). (14)

<i,j>

Here, b; (b;) is the bosonic annihilation (creation) oper-

ator at site j such that n; = b;bj gives the number oper-
ator for that site. The Hamiltonian dynamics conserves
the total number of bosons, and is thus U(1) invariant.
The system time-evolution is described by a master equa-
tion:

1

5‘tp = 3

[H,p)+> v [bjpb} +blpb; — %{bjbﬁ +ny,p}
J

(15)
where the second term describes single particle loss and
gain processes with decay rate . The full dynamics is
schematically depicted in Fig. 2a. While we will keep
generality in the theory part with respect to the possible
dissipation mechanisms, in the numerical examples be-
low, we will only consider loss terms, as those are more
readily accessible experimentally.

We investigate the dynamics starting from a charge-
density wave (CDW), with alternating filled (blue) and
empty (grey) sites (see Fig.2b). Within this state, we
consider the reduced density matrix p4 corresponding
to a rectangular partition A of size L, x L,. Let Q =
ZjeA n; — %L$Ly the number of bosons in the partition
A above half-filling. Note that, while the full time evolu-
tion breaks U(1) invariance, the reduced density matrix
pa preserves its block-diagonal form: this is more con-
veniently seen when interpreting Eq. (15) as a collection
of quantum trajectories, each corresponding to the solu-
tion of a stochastic Schrodinger equation. Within each
trajectory, the total number of particles at each time ¢ is
well defined: a single quantum jump only changes that
value by an integer value. Following the previous subsec-
tion, we denote such symmetry-resolved reduced density
matrices as pa(q), and express our quantities in i = 1
units.

We are interested in short time evolution, where dissip-
ation and coherent dynamics strongly compete. Specific-
ally, we focus on timescales accessible within perturba-
tion theory, that is, J?t?,ty <« 1. Therefore, we can
solve Eq. (15) in second order in ¢ to obtain the time-
evolved density matrix p(t) as a function of the initial
state p(0)®*. We focus on the ¢ = —1 sector of the RDM,
that is, the one where the number of bosons in the parti-
tion is decreased by 1 with respect to half-filling. At short
times, this is the most populated sector that does con-
tribute to the initial state. We will comment on the other
sectors below. Within this framework, we assume that
only the diagonal elements of the reduced density matrix
are affected by the time evolution. This assumption can
be proven for initial states that are product states in real
space.

We now divide p4(—1) into three blocks, schematically
depicted in Fig. 2:

1. Eg(—1): states that are connected to the CDW by a
single hopping process: these states differ from the
CDW by a single occupied site at the boundary.
We denote the (L + L,) diagonal eigenvalues of
these states as )\,];30;

2. E1(—1): states that are connected to the CDW by
a single pump process in the bulk; these states dif-
fer from the CDW by a single empty site in the
bulk. We denote the (L, — 2)(L, — 2)/2 diagonal

eigenvalues of these states as )\E oK

3. E(—1): states that are not connected to the CDW
by a single tunneling or pump process. We de-
note the diagonal eigenvalues of these states as
)\f"‘. For two-body interacting Hamiltonians, these
states will be accessed only in third order perturb-
ation theory.

At second order in perturbation theory (the lowest order
relevant to the present case), one has the following scaling
of the eigenvalues of ps(—1):

AL = (P2 +yt) JA(t), A = t/A(t) (16)
with A2 = 0, and
A(t) = yt(LyLy — 4) /2 + J*t* (L, + L,)  (17)

We can now compute the time-evolution of the symmetry
resolved entanglement entropies. At short times ¢t < ¢y,
only dissipation is relevant. In particular, the rank of the
reduced density matrix will be (L,L,), and the corres-
ponding Renyi-2 entropy results:
Sf)(q = —1) oclog[L, L] for t < t1, Ly, Ly > 1
(18)
and is time-independent. The corresponding purity is:

Pa(—1) o< 1/[LyL,). (19)

It is worth noting that such "log-volume’ regime is valid at
arbitrarily small times, the simple reason being that the
initial state has no component in the ¢ = —1 subspace.

At intermediate times t; < t < tj, tunneling affects
the system dynamics. While unitary time evolution gen-
erically leads to further information scrambling and en-
tropy production, here, the opposite takes place: the
symmetry-resolved density matrix purifies as a function
of time, i.e., the purity increases and the entropy de-
creases. The reason for this phenomenon stems from the
natural competition between volumetric and perimetral
contributions to the system dynamics: while dissipation
has an effect that scales with the volume of the parti-
tion, and thus populates a number of eigenvalues that
are proportional to the volume itself, short-time coherent
dynamics is related to boundary effects, and thus favors
a much smaller number of states within the Hilbert space
of the partition.
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Figure 2. Schematics of the short-time dynamics in lattice models considered here; we show here the sector with ¢ = —1. Panel

a: the system is defined on a square lattice. The initial state is a charge-density wave |¥). At short time, the evolution involves
states belonging to the Ep and E; subspaces only (see examples, where sites circled in red are the ones changed with respect
to |¥)). The influence of the rest of the Hilbert space E2 on the system dynamics is neglected, as accessing these states will
require at least 3 proceeses starting from |¥). Panel b): same as in panel a, but for the 1D case. Note that, in the following
sections, several partition topologies will be discussed. Panel c): structure of the time evolved reduced-density matrix. At
short times, it is further block-diagonal in both Fy and E, where the E» sector is traced away.

In order to elucidate this effect, we observe that our
RDM is already normalized, and compute

2

Pa(—1) = ﬁ[@x + L) (J*t+7)? +

+ (Lo = 2)(Ly — 2]

that, in the large volume limit, follows a ‘log-area’ scal-
ing:

Pa(—=1) ~1/(Ly + L) for

This implies that the transition between the two regimes
is characterized by an emergent purification, that transits
the system from a purity that is inversely proportional
to the volume of the partition, to one that is inversely
proportional to its surface. Note that the explicit time
evolution can be computed from the previous equation,
and in principle, the position of the 'maximum’ of the
purification can be extracted. While the corresponding
formulas reveal no more physical insight, they signal the
fact that the purification time decreases as the partition
size increases. Due to the condition t; < tg, it is not
possible to analytically compute the V4 — oo limit; we
nevertheless expect dynamical purification to systemat-
ically decrease with the partition size, as a consequence
of the area versus volume competition.

The calculation above can be straightforwardly gen-
eralized to any dimension, modulo the conditions men-
tioned at the beginning of the section, under the assump-

ty>t>1

tion that dynamics is acting non-trivially at the boundary
(e.g., a state with a layer of empty sites at the boundary
will not experience any meaningful coherent evolution at
short times in the ¢ = —1 sector). The corresponding
scaling behavior decomposes into three regimes:

1/V4 t1 >t > 0 (short time),
Pa(—1) x  1/(0Va) tj >t >t (int. time), (20)
1/2va t > t; (long time).

This equation succinctly describes the dynamical scaling
regimes depicted in Fig. 1. Starting from an unsurprising
short time behavior (top case), the system purifies at
intermediate time scales (center case) before eventually
getting fully mixed (bottom case) due to both coherent
and incoherent system dynamics.

While we have focused on the most populated sector of
the RDM not present in the initial state, we expect dy-
namical purification to occur also in other sectors - with,
however, a weaker effect due to higher order perturbative
processes. The presence of long-range interactions that
decay fast enough (at most as power law) shall not change
this picture at the qualitative level: however, it will lead
to a renormalization of the timescale t;. Importantly,
long-range interactions will not modify the structure of
the Hilbert subspaces discussed above.

While we have focused on purities, additional inform-
ation can in principle be obtained from the population of



the different sectors (denoted with A(t) above) as well.
One example is equilibration at long-times: this is bey-
ond the perturbative treatment we have developed, and
will be discussed in the next sections in both simulations
and experiments.

The treatment above is specific to an initial state: how-
ever, the competition between volumetric and perimetral
contributions is in fact generic to a much broader set of
experimentally relevant configurations. For the case of
pure states, dynamical purification shall occur as long as
the initial state is separable or weakly entangled, as we
show in one of the fermionic examples below. For highly
entangled initial states, the theory above is not immedi-
ately applicable. Below, we will discuss a 1D numerical
example, where the initial state has log(¢) entanglement:
in that case, we observe no purification.

Most importantly, dynamical purification is present
also for initial states that are globally mixed. In those
cases, this is simply due to the fact that the coherent
dynamics selects a subset of states in pa(—1) that are
populated due to coupling to A. The extent of the dy-
namical purification depends on the details of the action
of the Hamiltonian on the initial state: we will investig-
ate a specific scenario below while discussing trapped ion
experiments.

Finally, we would like to comment on which type of
noise leads to dynamical purification. The noise we have
considered here has two characteristics: (i) it is described
by a Markovian master equation, and (2) it is quantum
noise and described by jump operators are not Hermitian.
While these conditions are typically very well satisfied
when describing the dynamics of cold atoms in optical
lattices using a master equation, we find useful to provide
a short discussion of these two elements in view of pos-
sible applications to other settings.

The first assumption above is delicate. Since we are
interested in intermediate time dynamics, it is reason-
able to expect that our findings will not be affected by a
bath featuring short-lived memory effects, as long as the
weak system-bath approximation (that we nevertheless
consider, since v < J) holds. However, more complic-
ated bath structures including strong memory effects -
such as a low-temperature Ohmic bath - cannot be im-
mediately connected to the physical picture we present
here. We leave this interesting question - that does not
pertain the experimental systems we are interested in -
to future work.

The second assumption above is crucial: hermitian
jump operators (such as those, for instance, describing
classical noise) would not lead to any dynamical purific-
ation. This can be easily seen by considering the action of
dephasing on the various sectors of the SR RDM: for the
type of initial states we consider, the latter will not af-
fect populations. This implies that entropy will be dom-
inated by coherent dynamics, thus increasing with time.
The relevance of the first assumption can potentially be
exploited as a diagnostic in the context of quantum noise
tomography; interestingly enough, such a probe would be

very sensitive, as the effects we describe can be present
for very small values of v, and can be tuned by changing
the volume of the partition.

B. Negativity over dynamical purification

While the system purifies at short time, due to its
coupling to the environment, it is not clear a prior:
whether this is associated to a loss of shared entangle-
ment between the partition and its complement. For
instance, dynamical purification (with or without sym-
metry resolution) can also occur at long times in systems
under the presence of dissipation only: a typical example
is relaxation to a vacuum state, that is driven by a single
jump operator, and leads to a trivial state, with no left-
over correlations between A and B, and within A. Be-
low, we show explicitly how symmetry-resolved dynam-
ical purification is drastically distinct from this mechan-
ism: in particular, we show how not only entanglement
between A and B is generated as a function of time, but
also that, in any given symmetry sectors (now labeled
by quantum number differences), entanglement remains
finite and sizeable (negativity of order 1) over the entire
purification process. This is a key element that charac-
terizes this symmetry-resolved phenomena, and we will
show below how this is also captured within perturbation
theory.

We study the entanglement dynamics for two connec-
ted partitions A and B of a spin (or hard-core boson)
system, as governed by Eq. (15), in a regime where the
partition A undergoes dynamical purification. For the
sake of simplicity, we will deal explicitly with the 1D case
analog to the setup described above (see Fig. 2b), and
restrict the decoherence channels to particle loss, as this
will allow us to keep our notations compact. Our findings
are however general, as illustrated in the next section for
various geometries and partition configurations.

Before discussing entanglement scaling, we find it use-
ful to point out that the effective dynamics describing the
evolution of p4 can be interpreted as the time evolution
of a density matrix of a system coupled to a bath. This
provides an additional viewpoint on the phenomenon we
are interested in, that could be of help to translate it to
other contexts (for instance, in case the two partitions are
made of two different types of degrees of freedom, e.g.,
describing light-matter interactions). A detailed discus-
sion of this fact is provided in the appendix, together
with a proof of the fact that such effective dynamics is
Markovian.

In contrast to the situation of dynamical purification,
the key features of short-time entanglement dynamics of
the partial transpose RDM can already be captured by
solving Eq. (15) in first-order perturbation theory, i.e.
by studying the dynamics of p(t) in first order in t <



1/(yN),1/J (< 1/7). We rewrite this as
(t) = p(0) — il p(O)]t
+ 9t > (bsp(0)] — Sb1bip0 — Spoblh;) . (21)
J

Consider for concreteness that the even sites 2m, m =
1,...,N/2 are occupied and, N4 = Np is even, the dens-
ity matrix in first-order perturbation theory can be re-
expressed as

p(0) = (1= 555 ) 0(0) 4 =Bl b p0) + )

N/2
+ 9t bamp(0)b],,, + .. (22)
m=1
which corresponds to a diagonal part parametrized by
the decoherence rate v, and a pair of off-diagonal ele-
ments associated with the hopping J. Note that there
is no diagonal contribution due to the hopping, as this
only appears in next-to-leading order as discussed above.
Taking the partial transpose of Eq.(22) leads to

Nt .
7410 = (1= 550) l0) + Tt 1p OBk, + )
N/2
+ Y bamp(0)D),,., (23)
m=1

which has a 3-block structure associated with the
quantum number ¢ = g4 — ¢

- Nt
P (G=0,t) = <1 e ) p(0)
NA/2
PTG =—1t) =7t D bamp(0)bh,, +

m=1

+ Jt(—ibly, 1 p(0)DY , + h.c)

N

a=10)=7 Y

m:NA/2+1

p bomp(0)bS,,.

The sector § = 0 corresponds to the initial state com-
ponent, has a weight tr(pggo(t)) of order 1, and features
no entanglement. The sector § = —1, corresponding to
the situation where the A partition loses one excitation
w.r.t. partition B, has the richest structure, representing
the interplay between particle loss from A and coherence
dynamics (hopping from A to B). Finally, the last sector
¢ = 1 represent decoherence events occurring in the B
partition. In each sector, we can calculate the spectrum

AMG=0,t) = (1 - W) (24)

2
A=l SR =D (G = 1 ) = oyt (25)
o t
Am="F ) (G = —1,8) = (v + VAR A2

~ (% + )t (26)
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Figure 3. Dynamical purification and symmetry-resolved en-
tanglement for one-dimensional XX spin models. We choose
a system with N = 8, initialized in a Néel state |TJ,>®N/2 and
evolved with Hxx subject to particle loss with rate v (see
main text). We take A = [1,2,3,4] and B = [5,6,7,8]. In
panels (a,c), the SR-purity of subsystem A is shown. Black
dashed lines are predictions from early-time perturbation the-
ory. In panels (b,d), the normalized SR negativity N (q) is
shown for various imbalance sectors ¢ (b) and decoherence
rates v (d). The inset shows the early time value N'(—1)|,_+
as function of v/J. Gray lines are results from perturbation
theory, Egs. (B3) and (28), respectively.

where, in the last part of the third line, we have neglected
the term v? < J2. ~

The existence of a negative eigenvalue A(m=N4/ 2)((j =
—1) = —Jt+~t/2 = —Jt < 0 demonstrates that the state
is entangled, and remains so over dynamical purification.
After normalization, we obtain the SR negativity

B 2Jt 2J
N(G=-1)= Navl ~ Nay (28)

that features a characteristic 1/~ scaling (that is remin-
iscent of the fact that this is a perturbative effect).

IV. NUMERICAL RESULTS
A. Spin chains

In this section, we provide numerical evidence for
symmetry-resolved purification in one-dimensional spin
chains. Specifically, we consider quench dynamics in the
XX-model with Hamiltonian

N-1
Hxx =J Y ofo;, +he (29)

=1

subject to spin excitation loss with rate v, modeled via
the jump operators \/yo; for i = 1,..., N. We initial-
ize the system with NV = 8 sites, divided into subsys-
tems A =[1,2,3,4] and B = [5,6,7,8], in the Néel state



|To) = |T¢)®N/2 with total magnization S, = Zfil of =
0. While the total magnetization is conserved by the
Hamiltonian part of the dynamics Hy x, the incoherent
spin excitation loss leads to a population of various sec-
tors.

In Fig. 3 a), we display the symmetry resolved purity
of the subsystem A with N4 = 4 sites for various sectors
q. Clearly, the sector ¢ = —1 exhibits dynamical purific-
ation at times Jt ~ 1 which is absent in the sector ¢ = 0
and also for the purity tr [pi] of the total density matrix
pa. Note that the second peak in panel (a) (at around
Jt = 4) is a boundary effect due to the partition size. As
predicted by perturbation theory [Eq. (20)], purification
is pronounced most strongly for weak decoherence [see
Fig. 3c)]. While the initial values Pa(1)|,_o+ = 2/Na
is independent of ~, the peak of the purity is approach-
ing the value of the purity for unitary dynamics. On the
contrary, for v 2 J, the dynamics is dominated by deco-
herence, and purification is absent. In Fig. 3 (b,d), we
show the SR negativity N'(§). We observe that SR entan-
glement between A and B is dominated by the magnet-
ization imbalance sector § = —1 sector. The magnitude
of the negativity of sector ¢ is much larger than the total
system negativity. In addition, as shown in the inset, the
early time value at Jt = 07 is decreasing as ~ 1/ with
increasing decoherence rate -y, as predicted by perturba-
tion theory [Eq.(28)].

Ezperimental setups. - The dynamics discussed in
this subsection is relevant for a variety of setups. In
the next section, we will discuss and demonstrate im-
plementation with trapped ions in Paul traps. Another
natural setting is Rydberg atoms in optical tweezers or
optical lattices. Within those, the dipolar version of the
XX Hamiltonian in Eq. (29) is naturally realized when
considering direct dipole-dipole interactions within the
Rydberg manifold (for a many-body demonstration, see
Ref. 85). Spin excitation losses occur naturally, and can
be further enhanced via incoherently coupling the two
Rydberg states. A very similar scenario (dipolar coup-
lings) is also realized with superconducting qubits in 3D
cavities, and with polar molecules or magnetic atoms in
optical lattices.

B. Fermionic systems in 1D and 2D

We now provide numerical evidences of the physics de-
scribed in the previous sections also using free fermionic
techniques 8%%7. The latter allow us to consider larger
system sizes and two-dimensional geometries. Most im-
portantly, it allows us to check systematically specific fea-
tures of our predictions, such as the dependence on the
partition size, dimensionality, and topology of the parti-
tion (e.g.: in 1D, we will consider explicitly disconnected
partitions).

We start from a charge-density-wave (half-filling), and
let it evolve according to a GKSL master equation master
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with jump operator I; = vc¢; and Hamiltonian:
1
H= —JZ cle; — Q[J,Z (c;-cj — 2> . (30)
(4,5) J

The first sum runs over nearest neighbours, cZT7 ¢; denote
fermionic creation/annihilation operators, J is the hop-
ping constant (that we set to unity below, J = 1) and
u is the chemical potential (1 = 0 unless stated other-
wise). In free fermionic theories, at each time t one can
compute the charged-moments Z,(a) (Eq. (7)) via the
two-point fermionic correlation matrix C;; = (c/c;) and
its evolution according to Ref. 88. We consider both 1D
chains and 2D square lattices and check numerically the
analytical predictions in the previous sections. In 1D,
the tight-binding model is mapped to the XX Hamilto-
nian (29) by a Jordan-Wigner transformation: the GKSL
master equation we will consider are similar to one of the
examples discussed in Ref. 89.

In Fig. 4, we show some representative numerical res-
ults. In panels a)-b) we consider Pa(q), cf. Eq. (5),
in 1D. The system is divided into three parts as S =
AUBU A with |A| =£/2 and ¢ = L/2, a representation
of the system is in Fig 4a). The choice of the topology
of the partition allows us to illustrate the generality of
dynamical purification, that is indeed topology independ-
ent as long as £ > tJ. In panel c¢) we compute the same
quantity for a two-dimensional square lattice to highlight
that the features of the dynamics are not dependent on
the dimensionality or connectivity of the partition. Here
we consider S = A U B where A is a square of linear
dimension ¢ = L/4 at the center of the system. In pan-
els d)-e)-f) we focus on the behaviour of the SR-purity
in the absence of dissipation, to emphasize that the bath
plays a decisive role in the dynamical purification, and on
quenches starting from different states, since we expect
our results to hold when the initial state is separable (cf.
IIT A). The initial state being at half-filling, ¢ = ¢/2 is
the only populated sector at t = 0. We will consider the
quantity Pa(q) where ¢ is shifted by a constant %, e.g.
g = 1 refers to the sector £/2 + 1, i.e., one particle more
than half-filling. We omit ¢/2 in Pa(q) to be concise.
In all the following simulations we always consider open
boundary conditions (OBC).

In Fig. 4a), we show Pa(q) for ¢ = 0,1,2,3, L = 128.
The sector ¢ = 0 is the only one occupied at t = 0. It
is pure at the start of the evolution and does not exper-
ience any purification. Oppositely, as soon as dynamics
kicks in, the sector ¢ = 1 becomes mixed. Its purity
increases at intermediate times (dynamical purification)
and approaches equipartition for longer times. This is
highlighted in the inset showing the behaviour of P4 (q)
for Jt € [1,5] in logarithmic scale. The purification for
the other sectors is present, but less evident as it is con-
nected to higher-order perturbative processes.

In Fig. 4b) we fix ¢ = 1 and consider P4 for differ-
ent values of £ with L = 2¢. In agreement with theory,
the peak of the curves decreases, approaching zero. The
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Figure 4. Results of the simulation of Pa(¢/2 4 ¢) for a quadratic open fermionic system. We omit £/2 and use ¢ = ¢ — £/2
to label the symmetry sectors. Parameters: J =1, = 0. First line: Symmetry resolved Rényi entropy for a) 1D system with
L =64,1=32,7=0.05; b) 1D system for L = 2¢, ¢ = 1, v = 0.05; ¢) 2D system with L = 4¢, N = L? ¢=1,~v=0.2. Second
line: Symmetry resolved Rényi entropy for d) 1D system with L = 64, | = 16, v = 0, purely coherent dynamics; e¢) 1D system
for L =2¢, g =1, v = 0.05, starting from the Majumdar-Ghosh dimer state; f)1D system for L = 2¢, ¢ = 1, v = 0.05, starting
from the ground state of a nearest-neighbours tight binding model with J = 1.

point at ¢ = 0" should approach zero as ~ 1/¢, as well,
like it has been anticipated in the previous sections. The
inset shows a fit of P4(q¢ = 1,t = 0T) as a function of ¢,
which demonstrates the log-volume regime already dis-
cussed.

The behaviour of the SR-purity for a two-dimensional
systems is analogous. In Fig. 4c¢) we plot the purity, at
fixed ¢ = 1, for different values of L. The total number
of sites of the lattice is N = L? and the subsystem A
consists of [? = N/16 sites picked at the center of the
square. Studying the position of the point at ¢t = 0F
one observes that it scales as ~ 1//? as calculated in
Eq. (19) and shown in Fig. 1d): this confirms a 2D log-
volume scaling at short times, with the corresponding
SRRE displayed in the inset for the sake of completeness.

In Fig. 4d), we take into account the SR-purity in the
case of a purely coherent dynamics. This show remark-
ably how the purification process is strictly related to the
presence of a bath for this class of models. We consider
L = 64 and £ = 32. While ¢ # 0 sectors are mixed at
time ¢ = 0T in presence of bath, this is not the case for
v = 0. In the inset one can see the population of each
given sector as a function of time. As the coherent dy-
namics starts playing its role, the population increases
and the purity decreases correspondingly. The ¢ # 0
sectors are involved in the evolution but they do not ex-
perience any purification, instead their purity decreases
monotonously to a unique value independent of ¢, wit-
nessing information equipartition. All these results are
compatible with the exact ones reported in Ref. 12.

Finally, in Fig. 4e-f), we depict the SR-purity in the
sector ¢ = 1, in the case of a global quench starting from
two different states. Firstly, in e), we consider a global
quench from the Majumdar—Ghosh dimer product state
and an evolution under the Hamiltonian in Eq. (30);
secondly, in f), we take as starting point the ground state
of Eq. (30) and evolve the system according to a long
range hopping Hamiltonian in the form:

—ZLCTCJ
. : %
Gl

(31)

where a = 2.

The purpose of panels e) and f) is to show that the dy-
namical purification is present only in the case the initial
state is separable, as it happens for Fig. 4b)-e). In the
inset of Fig. 4e) we show a fit of Pa(q = 1,¢ = 0T) as
a function of ¢, which exhibits a 1/¢ behaviour, as pre-
dicted by perturbation theory. Oppositely, if the initial
state is entangled, one cannot see any emergent purific-
ation during the dynamics (Fig. 4f)). This is due to the
fact that the SR RDM is already mixed in all Ej sectors,
and thus, local coherent dynamics is insufficient to purify
the state, as the number of non-zero eigenvalues in each
sector is exponentially large in the partition size. In the
inset of the figure the populations of sectors ¢ = 0,1, 2
for L = 256 are shown. Evidently, all the sectors are
occupied already at t = 0.

Ezxperimental setups. - The U(1) dynamics discussed
in this section is of direct relevance for various experi-



mental settings. The first ones are fermionic or (hard-
core) bosonic atoms trapped into optical lattices. There,
one of the main sources of dissipation (in addition to
spontaneous emission, that can be made small with the
use of blue detuned lattices) is single particle loss. While
in principle loss rates due to inelastic background scat-
tering are small when compared to the typical lattice dy-
namics, localized losses can be engineered in a variety of
ways, including weak-laser coupling to untrapped levels
or via electron beams.

The second setting that is relevant to this subsection
are arrays of superconducting qubits. In the strong coup-
ling limit, the dynamics of such systems can be well ap-
proximated by an XX model. Qubit relaxation will then
play the same role as single particle loss.

V. EXPERIMENTAL PROTOCOL FOR
MEASURING SYMMETRY-RESOLVED
PURITIES

Our protocol to extract symmetry-resolved purities is
based on randomized measurements. These methods
have been introduced and experimentally demonstrated
to measure entanglement entropies?%2?:3%32  and other
nonlinear functions of the density matrix, such as state
fidelities”, out-of-time ordered correlators®!»"?, topolo-
gical invariants”>°?, and entanglement negativity>+%. In
the quantum information context, the moments of stat-
istical correlations between randomized measurements
can also be used to define powerful entanglement wit-
nesses without reference frames?#%6-100,

While standard projective measurements performed in
a fixed basis can only give access to expectation val-
ues of a particular observable, randomized measurements
consist instead in measuring our quantum state in dif-
ferent random bases, giving access to complicated non-
linear functionals of the density matrix, here symmetry-
resolved purities.

As in Refs. 32 and 34, our approach is based on the
idea of combining two results: randomized measurement
tomography?®1°!, and ‘shadow’ tomography%'92. Let
us consider here a spin system and show how to measure
the symmetry-resolved purity of a reduced state p4 made
of N4 spins.

Randomized measurements are realized by applying
random local unitaries p4 — upAuT, U=u1 @ - QUN,,
where each u; is a spin rotation that is taken, independ-
ently, from a unitary 3-design'®?'04. After the applica-
tion of random unitary, a projective measurement is real-
ized in a fixed basis. This procedure is repeated with M
different random unitaries, in order to obtain a list of M
measured bitstrings k", r =1,..., M.

Randomized measurementsare tomographically com-
plete in expectation and can be used to provide an es-
timator of the density matrix?®32:33,101,105

P = @[3 |k (k7

i€EA

W’ -], (32)
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with the expectation value over randomized measure-

ments ]E[,ég)] = pa. It is not our aim to reconstruct the
density matrix based on Eq. (32) i.e., to perform tomo-
graphy, as it will be too costly in terms of measurements
(and classical post-processing). However, we can make
use of this expression Eq. (32), in order to relate dir-
ectly polynomial functionals of p to the measured data
k(32 For the symmetry-resolved purity, simply con-
sider two independent randomized measurements r # 1/,
and define the symmetrized estimator

Palg) ™) =Ltel(p% )T, (5 11,)]
+3er(p ) (6T, (33)

Using Eq. (32), this can be seen as a simple bi-linear func-
tion of the measurement data. Averaging over many pairs
(r,7"), boosts convergence to the estimator’s expectation
value

E[Pa(q)"] =Ltr[(E[6]TT, ) (B[6§ ]TI,)]
+ LB, (EBTL,)] = Pala).

Here, we have used that ﬁf:) and [)X/) are independ-

ent realizations of Eq. (32). This means that P4 (q)""")
is an unbiased estimator of the symmetry-resolved pur-
ity. This procedure can be straightforwardly extended
to higher moments with triplets of randomized meas-
urements r # 1’ # r”, etc. Appropriate implementa-
tion of partial transposes moreover allows for extracting
SR Rényi entropies (6). This is the content of upcom-
ing work®”, where we also provide a thorough statist-
ical analysis for estimating SR-resolved quantities based
on randomized measurements. The upshot is that es-
timator (33) can be equipped with rigorous confidence
bounds. Already 2V4P4(q)/e* measurement repetitions
suffice to estimate a given SR purity P(q) up to accur-
acy €. This favorable scaling is a key advantage over full
quantum state tomography — especially if P4(q) is itself
very small. Our analysis of experimental data, c.f. next
section, support this favorable picture.

Therefore, we believe that SR-purities can be meas-
ured in various NISQ platforms up to moderate parti-
tion sizes Nga = 10 ~ 20, which are sufficient large to
observe many-body effects, such as dynamical purifica-
tion. The second advantage of randomized measurements
with respect to tomographic-type estimations is the post-
processing step. Here, the estimation of PA(q)(’"’T/) from
the data simply consists in multiplying estimators pA(AT)
with an efficient tensor-product representation (Eq. (32))
with a projection operator with sparse-matrix structure
(which can be for instance efficiently written as a Matrix-
Product-Operator!“%).

Note finally that here randomized unitaries do not
have a symmetric structure, and therefore each estima-
tion of the density matrix does not have a block-diagonal
structure. Alternatively, one can envision to perform
symmetry-resolved random unitaries incorporating sym-
metries?®3%31, While these random unitaries appear as



Figure 5. Experimental demonstration of symmetry resolved
purification and entanglement in a trapped ion quantum sim-
ulators, using data obtained in the context of Ref. 26. We con-
sider a system of N = 10 spins, with subsystems A = [4, 5, 67]
and B =[1,2,3,8,9,10]. In panels a) and b), the symmetry
resolved populations and Rényi entropies of various magnet-
ization sectors ¢ = 0, =1 of the reduced density matrix pa are
shown as function of time (see Fig. 1 for symmetry resolved
purities). Error bars have been calculated with Jackknife res-
ampling. In panel b), data for the magnetization sector ¢ = 1
at Jt = 0 has been omitted due to large errorbars, resulting
from small populations. Lines are numerical simulations of
unitary dynamics (dashed) and including decoherence (solid)
as decribed in the text.

more challenging to realize experimentally compared to
local spin rotations, one should expect a reduction of
statistical errors in this situation'?!.

VI. EXPERIMENTAL OBSERVATION OF
DYNAMICAL PURIFICATION IN TRAPPED
ION CHAINS

In this section, we demonstrate symmetry resolved
purification experimentally in a trapped ion quantum
simulator, using data taken in the context of Ref.?S.
Here, quench dynamics with a long-range XX-model were
realized, governed by the Hamiltonian

Hxx = ﬁZJij(UTUj_ +o; o) +hBZUiZ (34)

i<j %

with o7 the third spin-1/2 Pauli operator, o} (0;") the
spin-raising (lowering) operators acting on spin i, and
Jij &~ Jo/|i — j|¢ the coupling matrix with an approx-
imate power-law decay o ~ 1.24 and J, = 420s~!.
The effective magnetic field is taken to be large B =~
2m - 1.5kHz ~ 22J, such that the unitary dynamics con-
serve the total magnetization S, = )", o7.

In addition, decoherence is present in the experiment,
during initial state preparation, time evolution and the
randomized measurement. As detailed in Ref. 26, we can
model these decoherence effects as follows.

The time evolution is subject to local spin-flips, and
spin excitation loss (spontaneous decay). We describe
the corresponding dynamics with a master equation with
jump operators C; = /ypoy for i = 1,...,N and

Citn = /ypo; for i = 1,...,N, capturing the spin

13

flip and excitation loss, respectively. Here, the rates are

In the experiments, the initial state is not pure,
but rather it is a mixed product state pg =
&, (i 1) (T + (1 —ps) |4) ({]) with p; = 0.004 for i even
and p; ~ 0.995 for ¢ odd. Finally, during the application
of the local random unitary, local depolarizing noise is
acting which is modeled as

p(tﬁnal)

1;
— (1= pppN)p(tena) + por > Tri[p(tna)] @ e

(35)

In Fig. 5, we present experimental results, obtained
with the estimators defined in Eq. (33), and numerical
simulations, for unitary dynamics and including the de-
coherence model described above. In panel a), the pop-
ulations tr{Il,p4} of the magnetization sectors ¢ of the
reduced density matrix p4 are shown, with A consisting
of spins A = [4,5,6,7]. Initially, the (¢ = 0)-sector is
predominantly populated, with small fractions in other
sectors, due to the finite initial state preparation fidelity.
With time, the population in other sectors, in particular
q = %1, increases. The symmetry resolved second Rényi

entropy Sf) (¢) is shown in panel b) for various magnetiz-
ation sectors (see Fig. 1 for the corresponding symmetry
resolved purity). The experimental data clearly shows
dynamical purification (decrease of the Rényi entropy)
in the ¢ = —1 sector. Data in the ¢ = +1 sector are
also suggestive of dynamical purification, even if a strong
statement cannot me made here do to comparatively lar-
ger error bars. In particular, this demonstrates that dy-
namical purification can be observed in one-dimensional
systems with algebraically decaying long-range interac-
tions (see also Sec. IITA). At long times, the symmetry
resolved Rényi entropies approach similar values for all
displayed sectors, consistent with expected equipartition
of the symmetry sectors'?.

VII. CONCLUSIONS AND OUTLOOK

Symmetry is an ubiquitous element characterising syn-
thetic quantum matter - from quantum simulators, to
noisy-intermediate scale quantum devices. In this work,
we have developed a theoretical framework for the de-
scription of symmetry-resolved information spreading in
such open quantum systems, focusing on the epitome
case of U(1) symmetries common to several experimental
platforms - from cold gases in optical lattices, to trapped
ions and superconducting circuits. We have shown how,
for various settings, specific quantum number sectors un-
dergo dynamical purification under ubiquitous conditions
of weak noise and separable initial states. Such phe-
nomenology is general, occurs in any dimension, is not
sensitive to the partition topology, and features specific



scaling scenarios for the entropy as a function of parti-
tion size. Most importantly, the dynamical purification
considered here occurs in symmetric systems and stems
from the competition between coherent and incoherent
dynamics that is a leitmotif of current NISQ devices.

We have introduced and experimentally demonstrated
a protocol to measure symmetry-resolved quantum in-
formation quantities based on a combination of random-
ized measurement probing and shadow tomography. Our
approach is scalable to partition sizes that are well bey-
ond what is accessible to full state tomography, and is
applicable to a broad spectrum of experimental settings
with single site control and high repetition rate. Both
scalability and applicability are of key importance in or-
der to probe genuinely many-body features of entangle-
ment dynamics in state-of-the-art experiments. Based
on our protocol, we have shown how the experiments
performed in Ref. 26 have already realized dynamical
purification in a trapped ion chain described by a long-
range XX model. This observation, in full agreement
with our theory predictions, testifies for the generality of
symmetry-resolved dynamical purification under experi-
mentally realistic conditions.

The capability of addressing the combined role of sym-
metry and quantum correlations in NISQ devices opens
a novel interface between theory and experiments, where
many-body effects intertwine with information theoretic
applications. The first instance of that is what role sym-
metry plays in quantum information protocols, in par-
ticular, error correction. Our tools may be of particular
importance here, as several error correcting codes can
be cast as gauge theories, one example being the toric
code'?”. In this context, the role of specific symmetry
sectors is associated to the presence of excitations. It
may thus be useful to employ the experimental tools we
have used here to access how specific perturbations access
the reliability of a quantum memory. Going beyond that,
understanding whether dynamical purification occurs in
the presence of local symmetries is an open question, that
could be in principle addressed within the same methods
presented here.

The second possible applications of our methods con-
cerns the capability of utilizing dynamical purification as
a proxy of the system dynamics, in particular, to determ-
ine its dissipative dynamics. One first element is that
dynamical purification is expected for a quantum noise,
that is local: it is thus informative about the nature of
the dissipation. The fact that the dissipation rates inter-
twines with the partition size could also help to quantify
the relative strength of incoherent versus coherent pro-
cesses, at least in cases where specific initial states could
be realized with high fidelity. Remarkably, despite being
a short-to-intermediate time phenomenon, thanks to the
area-to-volume ratio being tunable, dynamical purifica-
tion is also informative about very weak dissipation: this
is particularly important for diagnostics, as one would
expect that the latter requires long-time evolution to be
characterized.
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On more general grounds, symmetry-resolved dynam-
ical purification reveals how certain many-body phenom-
ena can only be properly characterized utilizing sym-
metry to emphasize or even magnify relevant informa-
tion. In particular, symmetry-resolution allows to prop-
erly diagnose physical phenomena that would not be ac-
cessible otherwise, by amplifying the role of sectors in the
reduced density matrix whose information content could
be otherwise overwhelmed by other less informative - but
highly-weighted - sectors. In this context, the many-body
theory we develop seems to suggest that symmetry can
be used to develop improved entanglement detection that
could outperform their respective ’'symmetry-blind’ coun-
terparts®’.
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Appendix A: Effective Markovian dynamics for the
symmetry-resolved reduced density matrix

We now provide a simple interpretation of the effect-
ive description derived in Sec III. Our main interest here
is to determine whether dynamical purification is an ef-
fect that relies on a specific correlation present in an ef-
fective bath (derived by applying the symmetry resolved
projectors to the density matrix), or whether it is unre-
lated to that, and thus captured entirely by an emergent
Markovian dynamics describing p4 4.

Indeed, even though the evolution of the global dens-
ity matrix p is governed by the Markovian master equa-



tion of Eq. (15), the symmetry-resolved reduced dens-
ity matrix p4,, could have a non-Markovian time evol-
ution. The dissipation rates derived in Eq. (16) can be
interpreted as an effective master equation acting dir-
ectly on the symmetry-resolved reduced density matrix,
with time dependent rates. We consider two arbitrary
density-matrices product states, whose SR RDM can be
written in diagonal form pj, prr, with matrix elements
aj;.;r and ajj.7r, respectively. What we are interested in
is whether the two states can become dynamically more
distinguishable as a function of time: if this is possible
even for a finite time window, the time evolution is non-
Markovian!'%®. In order to address this point, we define
the distance between these states as:

Dy 1 =Tr\/prpir- (A1)

After a few lines of algebra, and defining as N, M the
total rank of the density matrix and the number of the
states belonging to Ej, respectively, one obtains:

o _ !
ot 2(1+4 Nyt + MJ2t2)2

Y(ajjr + ajjirr + 27t)

X
j€Eo Vi + ) (ajjrr +t)

+ Z (v + 2J%t) (a1 + ajjor + 29t + 2J%t2)

5 agir At + P2 agar + ot + J78)

2(N~y +2M J?t)
(1+ Nyt + MJ?2)3

X

> \/(ajj;l +yt)(azgr +t) +

JEEo

+ Z \/(ajj;l+’Yt+J2t2)(ajj;H+7t+J2t2)
JEEL

so that, under the condition above, one has dD/dt < 0,
as this is just the sum of two negative terms. This implies
that arbitrary states of the type discussed above become
less distinguishable as a function of time, a signature of
effective Markovian dynamics.

The very same conclusion can be obtained on more
general grounds by noticing that the rate equations
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above all have positive rates, thus satisfying P-divisibility
criteria. At the physical level, this is a consequence of
the fact that the relaxation time of the environment (in
this case, the part of the system we are tracing upon
in a symmetry resolved fashion'??) is much longer than
the timescales we are interested in. For longer times
(not accessible to the regime we can tackle with our
theory, but definitely numerically accessible), we expect
that such effective Markovian description would ulti-
mately break down due to the bath dynamics timescales
being comparable to the one characterizing the partition.

Appendix B: Symmetry resolved purification in
one-dimensional systems

The system we consider here is a one-dimensional ver-
sion of the system considered in Sec. IIT A, that we divide
into two connected partitions A U B with N4 and Np
sites, respectively. We assume that the system is initial-
ized in a charge-density wave |¢g) = |}, T,...,T) (a Neéel
state), and for simplicity, take N4 and Np to be even.
We consider dynamics governed by Eq. (21) and focus
on timescales accessible within perturbation theory, that
is, J%t2,ty < 1. We are interested in the sector ¢ = —1.
Adapting the 2D calculations presented in the main text,
we find that pa(¢ = —1) is divided into two blocks (in
perturbation theory):

1. Eop(—1): the state that is connected to the CDW
by a single hopping process, or a loss event, at the
boundary with rate \5°

2. E1(—1): the (IN4/2 — 1) states that are connected
to the CDW by a single loss in the rest of the system
with eigenvalue )\kEl;

At the lowest order in perturbation theory, one has the
following scaling of the eigenvalues of p4(—1):

NP = (JH2 1) JA(1), AP = t/A() . (B1)
with normalization
A(t) = 4t(Na/2) + J*t2. (B2)
This gives
Na/2 — 1)y + (J*2 + ~t)?

[(Na/2)vt + J?t2]2
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