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Abstract

Good measures of the turbulence structure are important for turbulence modeling, flow

diagnostics and analysis. Structure information is complementary to the componentality

anisotropy that the Reynolds stress tensor carries, and because structures extend in space,

structure information is inherently non-local. Given access to instantaneous snapshots of a

turbulence field or two-point statistical correlations, one can extract the structural features

of the turbulence. However, this process tends to be computationally expensive and cumber-

some. Therefore, one-point statistical measures of the structural characteristics of turbulence

are desirable. The turbulence structure tensors are one-point statistical descriptors of the

non-local characteristics of the turbulence structure and form the mathematical framework

for constructing Structure-Based Models (SBM) of turbulence. Despite the promise held by

SBM, the tensors have so far been available only in a small number of DNS databases of

rather simple canonical flows. This inhibits further SBM development and discourages the

use of the tensors for flow analysis and diagnostics. The lack of a clear numerical recipe

for computing the tensors in complex domains is one the reasons for the scarce reporting of

the structure tensors in DNS databases. In particular, the imposition of proper boundary

conditions in complex geometries is non-trivial. In this work, we provide for the first a time a

rigorous and well-documented description of a mathematical and computational framework

that can be used for the calculation of the structure tensors in arbitrary turbulent flow con-

figurations.
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1. Introduction

1.1. Background

Far from being equivalent to white noise, the turbulent motion of fluids is organized in

the form of coherent structures, often given the label ‘eddies’. In high Reynolds number

flows, the size of the turbulence eddies can span several orders of magnitude. In these flows,

the small-scale structure is thought to be effectively shielded from external forcing and thus

exhibits a significant degree of isotropy as a result. It is further assumed that the role of the

smaller eddies is primarily to dissipate the turbulence energy. The larger energy-containing

structures, on the other hand, are both shaped by and play a role in determining the response

of turbulence to external deformation. They are dynamically active. The footprint of these

large energy-containing turbulence eddies is reflected in the turbulence statistics. Quanti-

tative measures of turbulence structure are easily constructed using two-point correlations,

but such descriptions tend to be rather costly and impractical for engineering application,

which relies heavily on one-point formulations. Hence, one-point measures of turbulence

structure are needed. Kassinos and Reynolds [15] were the first to develop a comprehensive

one-point mathematical formulation that can be used to quantify different aspects of the en-

ergy containing turbulence structures. They proceeded to propose the use of the one-point

turbulence structure tensors in turbulence modeling and for flow diagnostics, which they

described in [7, 15, 16]. In this regard, they showed that it is possible for two turbulence

fields to share the same componentality state, i.e. to have the same Reynolds stress tensor

values, but yet have different underlying turbulence structure. Differences in the turbulence

structure, although undetectable through the componentality information, lead to different

dynamic behavior of the turbulence, for example in response to external deformation. Hence,

a complete one-point description of the turbulence requires the information contained in the

structure tensors. Namely, the structure dimensionality Dij gives information about the

directions of independence in the turbulence, the structure circulicity Fij gives information

on the large scale circulation in the flow, and the inhomogeneity Cij gives the degree of

inhomogeneity of the turbulence. The third-rank stropholysis Qijk becomes important when

mean rotation breaks the reflectional symmetry of the turbulence. Exact definitions of these

tensors are given in the next section.
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One-point turbulence models that use only the Reynolds stresses and the turbulence

scales to characterize the turbulence are fundamentally incomplete [15]. This applies to

both simple eddy-viscosity closures and to Reynolds Stress Transport (RST) models and

it is particularly problematic when the mean deformation includes strong mean or frame

rotation. For example, in this case, the dynamic response of nearly isotropic turbulence is

very different from that of turbulence with strongly organized two-dimensional structures

and turbulence models should be able to distinguish between the two. Without ad hoc

modifications, most turbulence closures, however, fail to do that because they are insensitive

to the structural characteristics of the turbulence. Furthermore, turbulence models should

incorporate the breaking of reflectional symmetry whenever mean or frame rotation can

dynamically affect the flow (flow through axisymmetric diffuser or nozzle with swirl, flow

through turbomachinery). These aforementioned effects are nonlocal in nature, yet they can

be addressed via the one-point structure tensors, which is the main feature of the tensors

that makes them particularly attractive in engineering practice.

Structure-Based turbulence Models (SBMs) [11, 13, 15, 16, 20] are a class of turbulence

models that make use of the one-point turbulence tensors. SBMs hold promise for resolving

some of the limitations described above. However, an obstacle in the further development of

structure-based models has been the relatively scarce availability of data from simulations

and experiments that could be used for model validation. On one hand, the one-point

structure tensors are not easily available from experiments. Hence, one normally has to turn

to direct (DNS) or large eddy simulations (LES) for obtaining data on the tensors. Even in

this case, however, the specification of proper boundary conditions for the computation of

the structure tensors has so far been considered only in the simplest geometries, e.g. fully-

developed channel flow and free shear flows [16]. The underlying ambiguity over how one

can compute the tensors in complex domains has discouraged the more widespread inclusion

of the tensors in turbulence databases. This in turn has hurt the development of structure-

based models and also prevented the more widespread use of the tensors as flow diagnostics.

As SBM testing and validation progresses to complex flow configurations this limitation

becomes more pressing.

The purpose of this work is to present a clear framework for the numerical computation
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of the structure tensors in arbitrarily complex geometries using DNS or LES data. We

believe that this contribution will encourage the inclusion of the structure tensors in DNS

databases, thus accelerating the development of structure-based models and encouraging the

use of one-point structure tensors as flow diagnostic tools.

1.2. Definition of the Structure Tensors

The structure tensors are determined through the turbulent stream vector ψ′i, defined by

the equations [16]

u′i = εijkψ
′
k,j ψ′k,k = 0 ψ′i,kk = −ω′i , (1)

where u′i and ω′i are the fluctuating velocity and vorticity components, and εijk is the Levi-

Civita alternating tensor. To complete the stream vector definition suitable boundary condi-

tions must be supplied. Hereafter, a comma followed by an index denotes partial differenti-

ation with respect to the implied coordinate direction. The Einstein summation convention

is implied on repeated Roman, but not on Greek indices. Note that ψ′i satisfies a Poisson

equation and hence carries non-local information. As will be shown, the divergence-free con-

dition on ψ′i is important for the physical meaning of the resulting structure tensors. The

focus of this paper is a general strategy for solving (1) in complex domains, thus making

possible the computation of the structure tensors in practical flow configurations.

Expressing the definition of the Reynolds stresses in terms of the fluctuating stream

vector,

Rij = u′iu
′
j = εipqεjrsψ′q,pψ

′
s,r , (2)

and using the identity

εipqεjrs = det


δij δir δis

δpj δpr δps

δqj δqr δqs

 , (3)

leads to the constitutive relation

Rij +Dij + Fij − (Cij + Cji) = δijq
2 , (4)

where q2 = Rkk = 2k is twice the turbulent kinetic energy. Based on this equation, the
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second-rank structure tensors are defined as

Componentality Rij = u′iu
′
j rij = Rij/Rkk r̃ij = rij − δij/3 (5a)

Dimensionality Dij = ψ′k,iψ
′
k,j dij = Dij/Dkk d̃ij = dij − δij/3 (5b)

Circulicity Fij = ψ′i,kψ
′
j,k fij = Fij/Fkk f̃ij = fij − δij/3 (5c)

Inhomogeneity Cij = ψ′i,kψ
′
k,j cij = Cij/Dkk c̃ij = cij − ckkδij/3 . (5d)

Unlike the other structure tensors, the inhomogeneity Cij is not positive semi-definite and

thus the trace Ckk = Dkk − Rkk can be negative or even zero. For this reason, Cij is

normalized in terms of the traceDkk = Fkk. Another possibility would have been to normalize

all structure tensors with the trace Rkk, but this choice is ill-defined on solid boundaries,

where Rkk is zero. On the contrary, Dkk is nonzero at the walls and proves to be the most

meaningful choice for normalizing all the structure tensors.

A detailed discussion of the physical meaning of each structure tensor is given in [16],

but the key features are recounted here. While the structure tensors carry complementary

information, the constitutive equation provides a linear dependence among them, thus any

one of the tensors can be reconstructed if the rest are known. The componentality Rij

(the Reynolds stress tensor) gives information about which components of the fluctuating

velocity are more energetic. The dimensionality Dij carries information about the directions

of independence of the turbulence. This can be easily seen based on the definition of Dij,

since gradients of the stream vector tend to vanish along directions of strong structure

elongation and tend to be strongest along directions in which short structures are stacked.

The circulicity Fij defines the directions with large-scale circulation concentrated around

them. Finally, the inhomogeneity Cij gives the directions of inhomogeneity of the turbulence.

In fact, the inhomogeneity tensor vanishes identically in homogeneous flows, as can be shown

by recasting the inhomogeneity definition into the form

Cij = (ψ′iψ
′
k,j),k − ψ′iψ′k,kj . (6)

Here, the first term is zero only in homogeneous flows, while the second term is always zero

due to the specific choice ψk,k = 0. The inhomogeneity is significant near solid boundaries and

relaxes to zero far away from them. At intermediate distances form the wall, the magnitude
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of Cij becomes small compared to that of the other structure tensors. Since little is known on

how to model Cij in general flows, structure-based turbulence models, such as the Algebraic

Structure-Based Model (ASBM) [2, 14, 17, 22], are based on the homogenized tensors. These

are obtained by absorbing Cij inside Dij and Fij,

Dcc
ij ≡ Dij −

1

2
(Cij + Cji) F cc

ij ≡ Fij −
1

2
(Cij + Cji) . (7)

Note, that the homogenized tensors now satisfy Dcc
kk = F cc

ii = Rii = q2.

To complete the one-point tensorial base, an additional third rank structure tensor must

be defined because one can show that it carries information that is not contained in the

second-rank tensors,

Qijk = −u′jψ′i,k = εjrsψ′r,sψ
′
i,k . (8)

Using the definitions of the second-rank structure tensors, one can show that

εimpQmjp = Rij Qikj −Qjki = εijpRpk (9a)

εimpQpmj = Dij − Cij Qjik −Qijk = εijp(Dpk − Cpk) (9b)

εimpQjpm = Fij − Cji Qkji −Qkij = εijp(Fpk − Ckp) . (9c)

The homogenized tensors can also be calculated from the third rank tensor,

Dcc
ij =

1

2
(εimpQpmj + εjmpQpmi) F cc

ij =
1

2
(εimpQjpm + εjmpQipm) . (10)

A third-rank constitutive equation connects all the structure tensors,

Qijk =
1

6
εijkq

2 +
1

3
εikpRpj +

1

3
εjip(Dpk − Cpk) +

1

3
εkjp(Fpi − Cip) +Q∗ijk , (11)

where the Stropholysis tensor

Q∗ijk =
1

6
(Qijk +Qjik +Qjki +Qkji +Qikj +Qkij) (12)

is the fully symmetric part of the third rank structure tensor. Stropholysis literally means

“breaking by rotation” to bear in mind that this tensor remains zero in turbulence that has

been deformed only by irrotational mean strain. However, mean and frame rotation break

the reflectional symmetry of turbulence and generate Q∗ijk. Once generated, the stropholysis
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can be further modified by irrotational mean strain [15]. It is worth noting that the bi-traces

of the third rank tensor are

Qkik = 0 Qkki = Qikk = −(u′kψ
′
i),k Q∗kik = Q∗kki = Q∗ikk = −2

3
(u′kψ

′
i),k , (13)

which all vanish in homogeneous turbulence.

1.3. The Interpretation of the Structure Tensors

An idealized schematic representation of various types of eddies, along with the corre-

sponding state of the structure tensors is shown in Fig. 1. For example, as shown in Fig. 1a,

a state of d11 = 0, r11 = 0 and f11 = 1 means that the large scale structures are 2D eddies

aligned with x1 axis, with motion confined in planes perpendicular to the x1 axis, and cir-

culation concentrated on the axis of independence. We call this type of structures vortical

eddies. On the other hand, the case d11 = 0, r11 = 1 and f11 = 0 corresponds to 2D eddies

with motion confined along the x1 axis, and no circulation on the axis of independence. We

call these structures jetal eddies. The case d11 = 0, r11 = a and f11 = 1− a, corresponds to

2D eddies with helical type of motion.
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Vortical Eddy

Helical Eddy

d11 = 0, r11 = 0, f11 = 1 

d11 = 0, r11 = α, f11 = 1-α 

x1 

x1 
Jetal Eddy

d11 = 0, r11 = 1, f11 = 0 

x1 

d11 = 0, d22 = d33  

x3 

x2 

d11 = 0, d22 < d33  

x3 

x2 

d11 = 0, d22 > d33  

x3 

x2 

Axisymmetric Eddy

Flattened Eddy

Flattened Eddy

(a) (b)

Figure 1: Schematic of idealized eddies showing the interpretation of the structure tensors.
(a) three types of elongated eddies aligned with the x1 axis and the corresponding values
of the structure tensors: vortical eddy (top) is 2D-2C, jetal eddy (middle) is 2D-1C and
helical eddy (bottom) is 2D-3C; (b) the dimensionality tensor also reflects the flattening of
the eddy cross section.

In addition, the eddies can be flattened instead of axisymmetric, as for example happens

under the action of mean rotation, and this is also reflected in the state of the structure

tensors, as shown in Fig. 1b. When the turbulence eddies are completely flattened, they

become sheets or pancake turbulence [16] (a term coined by W.C. Reynolds), as shown in

Fig. 2. In this case, the turbulence becomes 1D with the direction normal to the pancakes

being the sole direction of dependence. The turbulence can be 1D-1C, as shown in Fig. 2,

and these different states are properly captured by the structure tensors.
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Pancake (Sheet) Turbulence (1D-1C)

d11 = 1, r33 = 1, f22 = 1 
x1 

x3 

x2 

Pancake (Sheet) Turbulence (1D-1C)

d11 = 1, r22 = 1, f33 = 1 
x1 

x3 

x2 

Pancake (Sheet) Turbulence (1D-2C)

d11 = 1, r22 = f33=α,  r33=f22 = 1-α 
x1 

x2 

x3 

(a) (b) (c)

Figure 2: Schematic of idealized sheets (pancake turbulence) showing the interpretation
of the structure tensors. (a) 1D-1C turbulence that depends only on the x1 axis, with
fluctuating motion aligned with the x3 axis and producing large-scale circulation around the
x2 axis; (b) same as in (a), but the motion is along the x2 axis and large-scale circulation
is around the x3 axis; (c) 1D-1C, with the fluctuating motion within the sheets being at an
angle relative to the plane axes.

So far, the discussion has been limited to idealized structures for the sake of clarity.

Nevertheless, it is important to appreciate that these idealizations correspond to structures

that have been observed in various DNS of both homogeneous and inhomogeneous turbu-

lence. The case of homogeneous magnetohydrodynamic (MHD) turbulence offers a nice

example of this. Under the action of an external magnetic field at low magnetic Reynolds

numbers, MHD turbulence can be driven close to the idealized 2D and 1D states depicted

in Figs. 1 and 2. Fig. 3 shows results from a 2563 DNS of homogeneous MHD turbulence

sheared in fixed and rotating frames [12]. The simulations were performed at low magnetic

Reynolds number (Rm = 1) and medium magnetic interaction number (N = 10). In this

class of flows, the evolution of the turbulence structure is determined by the relative magni-

tudes of three characteristic time scales, that of the mean shear (τshear), magnetic diffusion

(τm) and frame rotation (τrot = 1/Ωf ). In the particular case shown in Fig. 3, the three

time scales were comparable (τshear = 2τm = τrot/2), which means that all three effects were

contributing to the deformation of the turbulence structure.

In this regard, it is revealing to examine the structure tensors for large values of the

total shear. Specifically, we want to examine the structure tensors as late as possible given

the size of the computational box. This ensures that the external forcing had the chance

to shape the turbulence structure. Table 1 summarizes the values of turbulence structure
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tensors computed from the DNS simulation for the same instant of time as the contour plots

of Fig. 3. The mean shear tends to elongate the structures in the streamwise direction x1,

while the external magnetic field tends to elongate the structures in its own direction of

alignment, x3. Because in this case the two effects act over similar characteristic time scales

(M = 2), the result is that the turbulence is deformed into thin horizontal sheets that are

stacked on top of each other in the x2 direction. This is reflected in the corresponding values

of the structure tensors in Table 1, namely d11 ≈ d33 → 0 and d22 → 1. In direct analogy

to the schematic of Fig. 2c, motion is confined in these jetal sheets (r11 ≈ r33 � r22), which

produces large scale circulation about the x1 and x3 axes (f11 ≈ f33 � f22). A completely

different structure is obtained when the turbulence is deformed in a rotating frame (Fig. 3b).

In this case, at large times the turbulence is driven into a state characterized by vertical

slabs normal to the spanwise direction (d11 ≈ d22 → 0 and d33 → 1). These structural slabs

correspond to jetal motion primarily in the x1 and to a lesser extent in the x2 direction

(r11 > r22 � r33). As a result, in this case large-scale circulation is concentrated primarily

around the x2 axis and to lesser extent around the x1 axis (f22 > f11 � f33).

x2 

x3 
x1 

B3 Ω3 

x2 

x3 
x1 

B3 

(a) (b)

Figure 3: DNS results for homogeneous shear (dU1/dx2 = S) of MHD turbulence under the
action of a uniform spanwise external magnetic field (B3) at low magnetic Reynolds number
(Rem = 1, N = 10). Two cases are considered: (a) shear in fixed frame and (b) shear in a
frame rotating about the spanwise (Ω3). Velocity magnitude contours taken at large total
shear show remarkable structural differences between the two cases, which are captured by
the structure tensors (Table 1).
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Case r11 r22 r33 d11 d22 d33 f11 f22 f33
Fixed frame 0.5 0.08 0.42 0.12 0.86 0.12 0.38 0.18 0.44
Rotating frame 0.61 0.39 0.0 0.0 0.02 0.98 0.38 0.58 0.04

Table 1: One-point structure tensor components corresponding to the contour plots of Fig. 3

1.4. The Structure Tensors in Inhomogeneous Flows

The behavior of the structure tensors for homogeneous and inhomogeneous turbulence

subjected to various modes of mean deformation was reported by [16]. It is worth noting that

the only case of wall-bounded turbulence that they considered was that of fully-developed

channel flow. In this section, we review the main results from the channel flow simulations

in order to demonstrate the ability of the structure tensors to describe the structure of

wall-bounded turbulent flows.

Consider a fully-developed channel flow where ê1 is in streamwise direction, ê2 is in wall

normal inhomogeneous direction and, ê3 is in spanwise homogeneous direction. For low

Reτ = uτH
ν
≤ 385 (based on the wall shear velocity uτ , and channel half-width H), the

results of [16] (Figure 13 therein) show that the d11 is smaller than d22, and d33 throughout

the channel. This indicates the presence of large-scale structures that are preferentially

elongated in the streamwise direction. Thus, the picture painted by the structure tensors

is consistent with the presence of streaks, quasi-streamwise vortices, large scale and very

large-scale structures that have been observed experimentally and numerically.

In fact, the structure tensors can be used to discern more details. In the near-wall

region (y+ < 5), the values of the structure tensors indicate that the near-wall structures

are almost 2-D (d11 → 0), aligned with the wall (d12 → 0), have roughly circular cross-

section (d22 ≈ d33), have a strong jetal character (r11 � r33 > r22, r12 → 0), and with

little circulation around their axes (f11 → 0). The properties of these structures, as given

by the structure tensors, are suggestive of the streaky structures that are known to exist in

the near-wall region of turbulent channel flows. As one moves away from the wall, d11 gains

value, but it still remains significantly lower than d22 and d33, which points to quasi-elongated

structures in the streamwise direction. In the same area, f11 also increases significantly above

its almost zero near-wall value. Thus, away from the wall the turbulence structure contains
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not only jetal, but also vortical motion about the elongated axis. In fact, these structures

are best described as being of the helical type, since neither a strong vortical (f11 6= 0), nor

a strong jetal character (r11 6= 1) predominates on the structures.

In the near wall region (y+ < 30), the degree of inhomogeneity is strong and this is

reflected in the high values attained by the c22 component of the inhomogeneity tensor.

However, in the log-low region the inhomogeneity is almost zero indicating that the flow

is locally homogeneous. This is in agreement with [23], where local homogeneity in the

log-region has been noted.

2. A Discrepancy is Noted

Based on the preceding discussion, one should be able to appreciate the ability of the

structure tensors to describe qualitatively and quantitatively the structure of turbulent flows.

Before proceeding further, we need to point out a problem with the method previously used

in literature for computing the structure tensors. For example, in the case of fully-developed

channel flow, the stream vector boundary conditions used in [16] are given by

n̂×ψ|S = 0 ∇ ·ψ|S = 0. (14)

However, careful scrutiny of the velocity field reconstructed from the resulting stream vector

reveals a constant offset relative to the original velocity field. The constant shift does not

affect the values of the structure tensor components since these involve only the fluctuating

part of the velocity field. Thus, the structure tensor values reported by [16] were correct.

Nevertheless, despite the fortuitous recovery of the correct result, this discrepancy suggests

that the set of boundary conditions (14) are not quite appropriate.

To clarify this issue further, we have used the aforementioned boundary conditions (14) in

order to compute the stream vector in a DNS of fully-developed pipe flow at Reb = ubD/ν =

5300 (based on the bulk velocity ub, and pipe diameter D) using a streamwise domain of

15R, where R is the pipe radius. The results are shown in Fig. 4, where the reconstructed

streamwise velocity is found again to be offset by a constant. The offset is not a turbulent

effect; it exists also in a laminar fully-developed pipe flow.

As will be shown later, the cause of the spurious velocity offset is the inappropriate

use of the boundary conditions in (14), which are strictly appropriate only in the case of

13



simply connected domains. However, periodic domains, such as those used for fully-developed

channel and pipe flow, are multiply connected. In simple geometries, such as those considered

so far, the inappropriate use of (14) results only in an inconsequential constant offset in

the velocity field. The use of (14) in the case of complex, multiply connected, domains is

much more problematic (i.e. boundary conditions (14) are derived only for wall velocity

boundaries).

Based on this discussion, it is obvious that a much more careful handling of the stream

vector boundary conditions is needed in order to compute the turbulence structure tensors

in flow domains of arbitrary complexity.

Figure 4: fully-developed turbulent flow in a pipe at Reb = 5300. At random instant and for
a random cross section of the pipe, the velocity contours in conjunction with their respective
iso-lines are shown. The original velocity components are represented by black dashed lines,
while those reconstructed from the stream vector are illustrated with red dotted lines. The
contour levels for the streamwise reconstructed velocity are off by a constant shift.

3. Mathematical Framework

3.1. Foundation of the Framework

By definition, the evaluation of the structure tensors involves the computation of the

stream vector. While a vast amount of information is available in the literature for the

solution of two-dimensional flows using the vorticity/stream-function formulation, the three-

dimensional vorticity/stream-vector problem has not received a comparable attention. Here,

we provide the mathematical framework that allows the computation of the structure tensors

in three-dimensional flows for both simply and multiply connected domains. The method we
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have developed is based on the treatment of the three-dimensional vorticity/stream-vector

problem by L. Quartapelle, who describes three alternative solution strategies, including

appropriate boundary conditions [21]. Only two of these methods are suitable for use with

the structure tensors. The first of the two can be used in only simply connected domains,

while the second is also applicable to multiply connected domains.

3.2. The Vorticity Equation

Even though we do not need to solve the differential transport equation for the vorticity,

it is important to bear in mind its origin. Recalling the definition of vorticity

ω = ∇× u (15)

and by taking the curl of the momentum equations, the vorticity equation follows

∂ω

∂t
+ ∇× (ω × u) = ν∇2ω. (16)

As an initial condition for this equation one should use

ω|t=0 = ∇× u|t=0. (17)

By the definition of vorticity it follows that it must be solenoidal at all times, ∇ · ω = 0.

To guarantee the satisfaction of such a property it is sufficient to enforce the divergence-free

condition only on the boundary. This can be shown by taking the divergence of vorticity

equation, which gives
∂(∇ · ω)

∂t
= ν∇2(∇ · ω), (18)

with the initial condition ∇ · ω|t=0 = ∇ ·∇ × u|t=0 = 0. If the homogeneous boundary

condition

∇ · ω|S = 0 (19)

is also supplied, then the solution of the differential equation at any time will be ∇ ·ω = 0.

Thus, it will prove useful to keep in mind the following equations that apply to the vorticity

vector,

∂ω

∂t
= −∇× (ω × u) + ν∇2ω (20a)

ω|t=0 = ∇× u|t=0 (20b)

∇ · ω|S = 0. (20c)
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Two additional boundary conditions are needed to uniquely define the vorticity. As shown

by Quartapelle [21], the stream vector has five boundary conditions, two of which can be

recast into vorticity integral conditions.

3.3. Stream Vector Formulation

In general, any vector field can be decomposed into a divergence free part and an irrota-

tional part (Helmholtz decomposition),

u = ∇φ+ ∇×ψ. (21)

The decomposition is not unique until boundary conditions are prescribed. Since for in-

compressible flows the velocity field is solenoidal, we can define the stream vector according

to

u = ∇×ψ. (22)

From the velocity boundary condition u|S = uS (arbitrary case), it follows that ∇×ψ|S =

uS, where the superscript “S” signifies the boundary surface. Separating the tangential and

normal components of this boundary condition, we get

n̂×∇×ψ|S = n̂× uS n̂ ·∇×ψ|S = n̂ · uS, (23)

where n̂ is the normal vector on the boundary. A partial differential equation for the stream

vector follows from (15) and (22),

∇×∇×ψ = ω. (24)

The differential equation (24) and the boundary condition (23) do not define ψ uniquely.

This is a consequence of the invariance of (22) to gauge transformations of the form

ψ → ψ + ∇θ, (25)

where θ is an arbitrary scalar function. This gauge freedom allows additional conditions on

ψ. One can impose the Euclid (or Coulomb) gauge condition,

∇ ·ψ = 0, (26)
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which implies that (24) is equivalent to

−∇2ψ = ω. (27)

On the other hand, since ∇ · ω = 0, it follows from (27) that

∇2(∇ ·ψ) = 0. (28)

Provided that the boundary condition ∇ · ψ|S = 0 is enforced, the Euclid gauge condition

is automatically satisfied at all times.

The Euclid gauge condition still does not define uniquely the stream vector. The gradient

of any scalar function θ that satisfies the Laplace equation ∇2θ = 0 can be added to the

stream vector (see (25)), which will continue to satisfy the Euclid gauge condition. Therefore,

one must specify additional conditions on the stream vector. As a result of (25), for any

such condition that is imposed, ∇θ must satisfy a corresponding homogeneous condition.

Homogeneous boundary conditions on θ lead to a solution of θ = 0 everywhere in the domain,

and therefore the uniqueness of the stream vector is evident. The different gauge conditions

that can be chosen for the remaining condition lead to different stream vector formulations.

In the following sections, we discuss two such formulations based on the work of Quartapelle

[21].

To summarize we have the following set of equations that uniquely define the stream

vector,

−∇2ψ = ω (29a)

n̂×∇×ψ|S = n̂× uS (29b)

n̂ ·∇×ψ|S = n̂ · uS (29c)

∇ ·ψ|S = 0 (29d)

plus an extra gauge condition. (29e)

It is evident that we have more than three boundary conditions for the stream vector. As

shown by Quartapelle, some of them are satisfied automatically whenever equations from

(29) are used for eliciting suitable (integral) conditions for the vorticity (these are the missing

conditions from equations (20)).
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3.4. Formulation for Simply Connected Domains

In the case of simply connected domains, the as-yet-undetermined gauge condition (29e)

can be used to specify the tangential components of the stream vector at the boundary

surface of the domain. As shown by Quartapelle, the resulting formulation for the stream

vector is well-posed and can be summarized as

−∇2ψ = ω (30a)

n̂×ψ|S = n̂× a
[
a = −n̂×∇Sq

S + ∇Sp
S −∇2

Sq
S = n̂ · uS

]
(30b)

∇ ·ψ|S = 0, (30c)

where ∇S is the surface gradient operator and ∇2
S is the surface Laplacian (or Laplace-

Beltrami) operator. The tangential components of the stream vector at the boundary are

defined by means of the solution to a surface elliptic problem. The solution of the surface

problem specifies the scalar function qS, which in-turn fixes the tangent component of the

stream vector at the boundary. The scalar function pS is instead arbitrary and can be set

to zero without loss of generality. One does not need to specify boundary conditions for the

surface problem since the surface of a 3D domain does not have boundaries. The proof for

the above formulation holds only for simply connected domains1. One can solve analytically

the above equations in a fully-developed laminar pipe flow (simply connected domain with

specified inlet/outlet conditions).

3.5. Formulation for Multiply Connected Domains

In multiply connected domains, a well-posed formulation is obtained if the free gauge con-

dition (29e) is used for specifying the normal component of the stream vector [21]. Without

going into details, the resulting formulation is defined by the equations

−∇2ψ = ω (31a)

n̂ ·ψ|S = aSn

[∮
aSndS = 0

]
(31b)

n̂×∇×ψ|S = n̂× uS , (31c)

1Even though the current formulation is for simply connected domains, it can be used for the calculation
of the structure tensors in multiply connected domains as well. Since for us the velocity field is considered as
known, we can use the current formulation in multiply connected spaces by splitting the domain into smaller
parts that are simply connected.
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where aSn = ψSn (xS, t) is an arbitrary scalar function defined on the boundary S that sat-

isfies the integral constraint of (31b). A valid choice for aSn is simply zero everywhere on

the boundary surface. One can solve analytically the above equations in a fully-developed

laminar pipe flow (periodic domain in the streamwise direction).

3.6. Gauge Invariance

The development of the formulations for simply and multiply connected domains was

based on the Euclid gauge condition that was chosen in section 3.3. The development was

presented without offering sufficient justification for this particular choice. In this section, we

show that imposing the Euclid gauge condition is in fact needed in order to ensure the gauge

invariance of the structure tensors. Furthermore, this particular choice instills a number of

desirable properties to the structure tensors.

The Reynolds stress tensor Rij is gauge invariant and it is desirable that the remaining

structure tensors satisfy this property as well. To clarify the issue of gauge invariance, we will

focus on the particular example of the structure dimensionality tensor Dij. If we allow for

the gauge transformation of the stream vector ψθi = ψi + θ,i, then Dij transforms according

to

Dψθ

ij ≡ ψ′θk,iψ
′θ
k,j

= ψθk,iψ
θ
k,j − ψθk,i ψθk,j

= Dψ
ij + (ψk,iθ,kj − ψk,i θ,kj) + (ψk,jθ,ki − ψk,j θ,ki) + (θ,kiθ,kj − θ,ki θ,kj) . (32)

Thus, in this form the structure dimensionality, and as one can show the remaining structure

tensors as well, depends not only on the stream vector field, but on the gauge θ as well. This

is undesirable as it introduces an element of ambiguity in the interpretation of the individual

tensors. The simplest approach that removes the dependence on the gauge is to impose the

Euclid gauge condition ψi,i = 0, as has already been done in section 3.3. The Euclid gauge

condition implies that the scalar function θ must satisfy the Laplace equation ∇2θ = 0. Any

additional gauge boundary conditions applied on the stream vector imply a homogeneous

time-independent boundary condition for θ. Hence, the Euclid gauge condition results in a

time-independent solution for θ, which in turn causes all the parenthetical terms in (32) to

vanish and renders the structure-tensors gauge independent.
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Furthermore, the particular choice of the Euclid gauge imparts a number of additional

desirable properties to the structure tensors, namely:

• the inhomogeneity tensor Cij becomes identically zero in homogeneous flows,

• a simple relation connects the circulicity spectrum tensor to the vorticity spectrum

tensor in homogeneous flows,

• equation (24) reduces to (27),

• a set of recursive relations between ψi, ui, ωi become possible.

This discussion points to the fact that the Euclid gauge condition appears to be the

natural one to impose.

4. Numerical Framework

4.1. Computational Procedure

The three-dimensional vorticity/stream-vector problem as defined by Quartapelle [21] is

in general very complicated to be solved. The solution strategies of [21] involve deferential

equations for six fields, the components of vorticity and stream vector, which are coupled.

In our case, however, we are only interested in calculating the turbulence structure tensors

in the context of velocity-pressure formulation that is commonly used in CFD codes. The

vorticity needed in the stream vector Poisson equations is calculated through the velocity

field. Therefore, only the stream vector formulation is used from the vorticity/stream-vector

problem defined by L. Quartapelle. To make this point clear, one uses the following procedure

at each time step for computing the structure tensors:

(a) calculate the velocity field via a velocity-pressure formulation,

(b) calculate the vorticity field through the velocity field,

(c) construct the proper boundary conditions and differential equations for the stream

vector, using the previously calculated velocity and vorticity fields,

(d) calculate the stream vector field,

(e) calculate the structure tensors (collection of statistics is implied).
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4.2. Treatment of the Poisson Differential Equations

In a velocity-pressure formulation, the stream vector can be treated as three passive

scalars, since it does not affect the flow field. Thus, any CFD code can be modified to

calculate the stream vector Poisson equations. One simply has to extract from the underlying

CFD code the discretization scheme of the velocity diffusion term, and adopt it for the

Poisson equations of the stream vector. In our case, we have adapted the finite volume

method and the SBP (summation-by-parts) operators used in [9] to discretize the Laplacian

operator. The numerics are described in detail in Appendix A.

For the discretization of the stream vector Poisson equations, we use the standard Carte-

sian coordinates (instead of curvilinear coordinates). This is a necessity if we want to develop

a numerical scheme that is applicable in any geometry. Any geometry can be meshed with

unstructured elements that are defined only in Cartesian coordinates. Furthermore the

stream vector Poisson equations are decoupled in Cartesian coordinates. To elaborate this

further, in the vector equation −∇2ψ = ω the unit curvilinear vectors (that compose ψ) are

also subject to the derivatives of the Laplace operator, while the unit Cartesian vectors are

not.

4.3. Treatment of the Boundary Conditions

The treatment of the boundary terms depends on the type of domain under consideration

(i.e. simply connected vs multiply connected). Here, we proceed with the implementation of

the boundary conditions for multiply connected domains since this represents the more gen-

eral case. A complication arises since the boundary conditions (31b) and (31c) are coupled.

We provide two ways to apply the boundary conditions: (a) the coupled form, and (b) the

segregated form. The coupled form is suitable for solving the stream-vector components con-

currently, while the segregated form is appropriate for an iterative solution procedure. In the

coupled form, all stream vector components are solved at the same time. This means that at

each boundary node a 3× 3 sub-matrix is built. In the segregated form, the components are

solved one at a time, and therefore an iterative procedure within each time step is needed in

order to satisfy exactly the boundary conditions. The coupled form has faster convergence

than the segregated, but also needs more memory (depending on the implementation it needs
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more that 3 and less that 9 times the memory used by the segregated method) to store the

linear system of equations to be solved.

For both coupled and segregated methods, we rearrange the boundary conditions (31b)

and (31c), so that the normal gradient appears explicitly,

njψj|S = 0 (33a)

−n ·∇ψi|S = −nj
∂ψj
∂xi

∣∣∣
S

+ εijknju
S
k , (i = 1, 2, 3) , (33b)

where n ·∇ = nj
∂
∂xj

. Without loss of generality we have set aSn = 0. The above equations are

four and thus one might think that the boundary conditions are overdetermined. Fortunately,

the set of the three equations (33b) are not independent; they satisfy the scalar relation

ni

(
−n ·∇ψi|S + nj

∂ψj
∂xi

∣∣∣
S

)
= niεijknju

S
k = 0. (34)

This leaves us with three independent boundary conditions, (33a) and two from (33b). It

should be noted that in the limit where |nα| → 1, the α component of (33b) becomes trivial

(0 = 0). For this reason, we always drop the α component of (33b) for which the |nα| is

maximum.

In the coupled method, we expand (33a) and (33b) to get

nαψα|S + nβψβ|S + nγψγ|S = 0 (35a)

−n ·∇ψβ|S = −nj ∂ψj∂xβ

∣∣∣
S

+ εβjknju
S
k (35b)

−n ·∇ψγ|S = −nj ∂ψj∂xγ

∣∣∣
S

+ εγjknju
S
k , (35c)

where Greek indices are not subject to the summation convention. Index α corresponds to the

maximum absolute component of the normal boundary surface vector (i.e. |nα| > |nβ|, |nγ|),

while the remaining indices, β and γ, are such that a right handed coordinate system is

formed. All the components of the stream vector appearing both in the left and right hand

side of (35) are treated implicitly (i.e. they are considered unknown).

In the segregated method, we use the Euclid gauge condition to rewrite (33a) and (33b)
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into a form that is more suitable for the iterative procedure used in each time step,

ψα|S = −nβ
nα
ψβ|S −

nγ
nα
ψγ|S (36a)

−n ·∇ψβ|S = εαjknj
∂ψγ
∂xk

∣∣∣
S
− εγjknj

∂ψα
∂xk

∣∣∣
S

+ εβjknju
S
k (36b)

−n ·∇ψγ|S = εβjknj
∂ψα
∂xk

∣∣∣
S
− εαjknj

∂ψβ
∂xk

∣∣∣
S

+ εγjknju
S
k . (36c)

In each of the three equations (36), the right hand side is independent of the stream vector

component appearing on the left and depends only on the remaining two components. Thus,

all components of the stream vector appearing on the right hand side can be treated explicitly

(i.e. they are considered known) and their values are taken from the previous iteration. In

the case of the first iteration, values from the previous time step are used to initiate the

iterative sequence.

4.4. Other Numerical Aspects

For the coupled solution procedure, the linear system of Poisson equations is only built

once. Only the boundary conditions are applied at each time step, since they depend on the

instantaneous velocity field. The performance of the coupled algorithm depends: (a) on the

arrangement of the algebraic equations and (b) the iterative method used to solve the linear

system of equations. We use the matrix arrangement of [6] (section 7 therein). The PETSc

package [3, 4, 5] is used for solving the coupled system of equations. By experimenting with

various solver options available in PETSc, we have concluded that the Generalized Minimal

Residual (GMRES) iterative Krylov subspace method, in conjunction with either the left

preconditioning additive Schwarz method (PCASM) or with block Jacobi preconditioning

(PCBJACOBI), gives acceptable convergence speed.

Once the instantaneous stream vector has been calculated, the structure tensors are

computed by collecting statistics. The structure tensors are defined through the fluctuating

stream vector and the fluctuating velocity vector. Using the relations

u′i = ui − ui (37a)

ψ′i = ψi − ψi, (37b)
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we can rewrite the structure tensors into the following form,

Rij = u′iu
′
j = uiuj − ui uj (38a)

Dij = ψ′k,iψ
′
k,j = ψk,iψk,j − ψk,i ψk,j (38b)

Fij = ψ′i,kψ
′
j,k = ψi,kψj,k − ψi,k ψj,k (38c)

Cij = ψ′i,kψ
′
k,j = ψi,kψk,j − ψi,k ψk,j (38d)

Qijk = −u′jψ′i,k = −(ujψi,k − uj ψi,k) . (38e)

As a result of the no-slip boundary condition (uwalli = 0 at stationary wall boundaries) it

follows that Qwall
ijk = 0 and Rwall

ij = 0. However, the same does not necessarily hold true for

the stream vector, i.e. in general ψwalli 6= 0, and thus in general, Dwall
ij , Fwall

ij , Cwall
ij assume

nonzero values at the wall. Nevertheless, one can show that Dwall
ij = Fwall

ij = Cwall
ij .

The numerical discretization scheme provided in this paper for the Poisson equations is

second order (see Appendix A). The discretization of the tangential (to the surface boundary)

components of the boundary sub-face gradient operator is second order, while its normal

component is only first order. This is not an issue since the internal grid points adjacent

to the boundaries are always very close to the borders of the computational domain due to

viscous limitations (usually a distance of 1/2 wall units is acceptable).

The third rank tensor Qijk uses the gradients of the stream vector and the fluctuating

velocity, while the other tensors uses the gradients of the stream in power two. Therefore,

Qijk carries smaller numerical errors. All the second-rank tensors can either be calculated

directly through the definitions (38) or through tensorial contraction of Qijk with the Levi-

Civita alternating tensor. The later method is preferable as it is less prone to numerical

errors carried by the gradient of the stream vector.

5. Validation of the Implementation

The flow around a circular cylinder placed symmetrically in a plane channel is an ideal

test case for the stream vector implementation. This is true for the following reasons: (a) the

domain is multiply connected, (b) this is a canonical flow covered extensively in scientific

literature, (c) the vorticity/stream function formulation has been developed to solve two

dimensional two component (2D-2C) flows around bluff bodies, (d) it is a simple test case
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that involves the most commonly used velocity boundary conditions (walls, prescribed inlet,

convective outlet, and zero normal gradient).

In what follows, we use velocity data from [10] to compute the stream vector. For the

discretization of the associated differential equations we use the method of Appendix A,

while the boundary conditions are treated as in section 4.3. A comparison of the original

and reconstructed velocity (computed from the stream vector), validates the implementation

of the stream-vector.

Figure 5: Schematic diagram of the flow configuration and related geometrical parameters.
Reproduction from [10].

A schematic illustration of the flow configuration is given in Fig. 5. The geometry consists

of a circular cylinder of diameter D, placed symmetrically in a plane channel. The origin

of the coordinate system is placed in the middle of the cylinder. The ratio of the cylinder

diameter D, to the channel height H, defines the blockage ratio β = D
H

, which in this case

is set to β = 1
5
. The inlet is located at a distance of Li = 12.5D upstream of the cylinder,

while the outlet is placed at a downstream distance of Lo = 35.5D. The spanwise length of

the channel and cylinder is W = 8D.

A Poiseuille parabolic velocity profile is prescribed at the inlet, while at the outlet a

convective boundary condition is applied. A no-slip boundary condition is imposed on the

cylinder surface, the top and bottom walls. A Neumann boundary condition has been

adopted for the velocity field in the spanwise direction. A detailed description of the flow

configuration, boundary condition and computational mesh is given in [10].

The Reynolds number Rec = UcD/ν (based on the cylinder diameter and the inlet

centerline velocity) is used to classify the flow regimes. At Rec = 120, the flow is laminar

but unsteady, with vortices shed from the cylinder, giving rise to the well known von Kármán
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vortex street. This flow regime serves our first validation since it is effectively 2D-2C. Fig. 6a

shows the contour plots of the magnitude of the spanwise vorticity. Obtained at a random

instant of the flow sequence, these plots reflect the vortex shedding process. Fig. 6b shows

the active component of the stream vector ψz computed using the framework described

above. Figs. 6c and 6d show the streamwise, ux, and transverse, uy, velocity components

respectively. In these plots, the black dashed lines and the dotted red lines represent the

original and reconstructed velocities respectively. The reconstructed and original velocity

components coincide.

Figure 6: Flow around a cylinder at Rec = 120. Contour plots of vorticity, the non-zero
components of the stream vector and velocity fields are shown. The flow is 2-D and thus
at a random instant any z = const. describes completely the flow. To enhance the flow
characteristics part of the domain is shown; the x coordinate is restricted in the region
x ∈ [−4.5D, 18.5D]. The velocity contour plots contain also their respective iso-lines. The
original velocity components are represented by black dashed lines, while the stream vector
reconstructed velocities are illustrated with red dotted lines.

At Rec = 330 the flow is in the transitional regime and the ensuing mode A instabilities

change the character of the flow from a 2D-2C to a 3D-3C state. In this regime, the primary
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vortex cores (spanwise rollers) are distorted by the formation of the streamwise vortex pairs.

Depending on their characteristics, these secondary vortices they are classified into mode A

and mode B instabilities (for more information see [10] and references therein). At Rec = 330,

the flow is dominated by mode B instabilities. This case will serve as our second validation

case. Since the flow is 3D, three different slices suffice to validate the implementation.

Figs. 7, 8, 9 correspond to slices (z = 0, y = 0, x = 4D respectively) taken at a random instant

in time. Velocity magnitude contours plots are shown in conjunction with the respective iso-

lines. The dashed black lines and the dotted red lines represent the original and reconstructed

velocities. It is clear that the velocities reconstructed using the stream vector coincide with

the original ones for all three slices.

Figure 7: Flow around a cylinder at Rec = 330. For a random instant and at z = 0 the
velocity contours in conjunction with their respective iso-lines are shown. To enhance the
flow characteristics part of the domain is shown; the x coordinate is restricted in the region
x ∈ [−4.5D, 18.5D]. The original velocity components are represented by black dashed lines,
while the stream vector reconstructed velocities are illustrated with red dotted lines.

27



Figure 8: Same as Fig. 7 but for the plane y = 0.

Figure 9: Same as Fig. 7 but for the plane x = 4D. The direction of the flow is towards the
reader.
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6. Conclusions

A complete and consistent mathematical and numerical framework for the computation

of the one-point structure tensors has been presented. The framework presented can be

used to obtain the stream vector in turbulent flow involving arbitrary geometries, which is a

prerequisite for the computation of the structure tensors. We are already using the method

described herein to compute the turbulence structure tensors in a number of complex flow

configurations, including the case of developing turbulent flow through bifurcating pipe.

We hope that the information made available herein will encourage other workers in the

field to include the one-point structure tensors in their databases of complex turbulent flow

cases. This in turn will provide a significant boost to the efforts of various teams to develop

structure-based models (SBM) of turbulence, and will encourage the use of the tensors in

the diagnosis of turbulent flow.
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Appendix A. Numerical Implementation of the Stream Vector Formulation

In this section, we describe the implementation of the stream vector formulation in the

unstructured collocated nodal-based finite-volume code (CDP) that we use as the main

platform for our CFD computations. In CDP, a second-order accurate centered-difference

scheme, with skewness corrections, is applied to discretize the diffusive and nonlinear terms.

The incompressibility condition and momentum equation are coupled using a fractional-

step method. The time integration of the flow equations is done using a Crank-Nicholson

scheme for the diffusive terms. The non-linear terms are treated semi-implicitly. A very

detailed description of the numerical techniques used by this code is reported in [1, 8, 9, 18,

19, 24]. Numerical aspects that are important for the implementation of the stream vector

formulation will be reported here also.

Figure A.1: A typical unstructured grid element. Variable fields are stored at the nodes.
One edge, one face and the cell center are illustrated. One sub-tet associated with node
P, and its sub-edge and sub-face are shaded. Sub-faces are only used if the node P is a
boundary node. Figure is modified from [9].

A typical unstructured grid element is illustrated in Fig. A.1. Each mesh element is

divided in sub-tetrahedrons (sub-tets), each of which is constructed by a node, an edge, a

face and a cell. One such sub-tet, associate with node P, is sketch in Fig. A.1. The location

of edges, faces and cells are calculated based on simple averages of their associated nodes.

Since field variables are stored on nodes, simple averages are used also for the calculation of
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the field variables at edges, faces and cells. The finite volume, node-based method implies

the construction of the dual mesh. In the dual mesh, the-node based control volumes are

centered around each node (vertices of the original grid). Therefore, the control volume for

each node P, is made out by combining the appropriate sub-tets. Note that in Fig. A.1 not

all neighbors of node P are shown, and thus only one fraction of its total volume can be

constructed from the visible neighbors.

The volume integration of vorticity (right hand side of the stream vector Poisson equa-

tions) is discretized as ∫
P

ωidV ≈
∑
t′∈T ′

P

Vt′ω
P
i , (A.1)

where t′ is an index for the sub-tets, Vt′ is the volume of the sub-tet t′, and T ′P is the total

number of sub-tets associated with P. The vorticity at node P is approximated using the

discrete analog of its definition,

ωPi =
1

VP

∫
P

ωidV

=
1

VP

∫
P

εijk
∂uk
∂xj

dV

=
1

VP
εijk

∮
P

uknjdA

≈ 1

VP
εijk

∑
e′∈E′

P

uek + ufk + uck
3

ne
′

j Ae′ +
1

VP
εijk

∑
f ′∈F ′

P

uPk + uek + ufk
3

nf
′

j Af ′ , (A.2)

where VP =
∑

t′∈T ′
P
Vt′ is the volume of node P, e′ is an index for the sub-edges, E ′P is the

total number of sub-edges of node P, f ′ is an index for the boundary sub-faces and F ′P is

the total number of boundary sub-faces associated with node P. The unit sub-edge ne
′
i and

sub-face nf
′

i normals are pointing outwards with respect to P. The sub-edge Ae′ and sub-face

Af ′ areas are also present (see typical shaded areas in Fig. A.1). It is important to note that

the last term in the above equations is nonzero only when node P is a boundary node.

The Laplacian operator (left hand side of the stream vector Poisson equations) is con-

structed using the divergence theorem and the sub-edge concept as

−
∫
P

∇2ψidV = −
∮
P

∂ψi
∂xj

njdA

≈ −
∑
e′∈E′

P

∂ψi
∂xj

∣∣∣
e′
ne

′

j Ae′ −
∑
f ′∈F ′

P

∂ψi
∂xj

∣∣∣
f ′
nf

′

j Af ′ , (A.3)
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where the last term is active only when node P is a boundary node. The required gradient

operator for each sub-edge is constructed to satisfy the following set of equations

∂ψi
∂xj

∣∣∣
e′
xPBj = ψPBi (A.4a)

∂ψi
∂xj

∣∣∣
e′
xEFj = ψEFi (A.4b)

∂ψi
∂xj

∣∣∣
e′
xECj = ψECi , (A.4c)

where xXXj are the simple average expressions

xPBj = xBj − xPj (A.5a)

xEFj = xfj − xej xfj =
1

NF

∑
nof

xnofj xej =
1

2
(xBj + xPj ) (A.5b)

xECj = xcj − xej xcj =
1

NC

∑
noc

xnocj . (A.5c)

Similarly ψXXi are the simple average operators (since node values of ψi are to be solved)

ψPBi = ψBi − ψPi (A.6a)

ψEFi = ψfi − ψei ψfi =
1

NF

∑
nof

ψnofi ψei =
1

2
(ψBi + ψPi ) (A.6b)

ψECi = ψci − ψei ψci =
1

NC

∑
noc

ψnoci . (A.6c)

Nodes P and B are the two nodes associated with the edge of the sub-edge e′, the index nof

runs over all the nodes of the face (in total NF ) associated with the sub-edge e′, and the

index noc runs over all the nodes of the cell (in total NC) associated with this sub-edge. We

can analytically solve for the sub-edge gradient operators and get the following relations in

compact matrix form
∂ψi
∂x1

∣∣∣
e′

∂ψi
∂x2

∣∣∣
e′

∂ψi
∂x3

∣∣∣
e′

 =
1

xPB · (xEF × xEC)


[
xEF × xEC

]
[
xEC × xPB

]
[
xPB × xEF

]



ψPBi

ψEFi

ψECi

 . (A.7)

The boundary part of the Laplacian operator is a summation over sub-faces, and will be

nonzero at boundary nodes only. In what follows we provide discrete forms for the coupled

and segregated boundary conditions defined in section 4.3.
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For the coupled method, discretisation of (35) leads to

nαψ
P
α
VP
AP

+ nβψ
P
β
VP
AP

+ nγψ
P
γ
VP
AP

= 0 (A.8a)

−∂ψβ
∂xj

∣∣∣
f ′
nf

′

j Af ′ = − ∂ψj
∂xβ

∣∣∣
f ′
nf

′

j Af ′ + εβjk
uPk +u

e
k+u

f
k

3

∣∣∣
f ′
nf

′

j Af ′ (A.8b)

−∂ψγ
∂xj

∣∣∣
f ′
nf

′

j Af ′ = −∂ψj
∂xγ

∣∣∣
f ′
nf

′

j Af ′ + εγjk
uPk +u

e
k+u

f
k

3

∣∣∣
f ′
nf

′

j Af ′ , (A.8c)

where AP =
∑

f ′∈F ′
P
Af ′ is the boundary area associated with boundary node P. The first

equation is scaled by a factor so that it will be of the same order with the remaining two

equations. The above equations consist the coupled form, where the stream vector compo-

nents appearing in both sides of the equations are considered unknown. Equations (A.8b),

(A.8c) are substituted in (A.3), while (A.8a) is used to replace the entire α component of

the Poisson equation at the boundary.

For the segregated method, discretisation of (36) leads to

ψPα = −nβ
nα
ψPβ −

nγ
nα
ψPγ (A.9a)

−∂ψβ
∂xj

∣∣∣
f ′
nf

′

j Af ′ = εβjk
uPk + uek + ufk

3

∣∣∣
f ′
nf

′

j Af ′ + εαjk
∂ψγ
∂xk

∣∣∣
f ′
nf

′

j Af ′ − εγjk
∂ψα
∂xk

∣∣∣
f ′
nf

′

j Af ′(A.9b)

−∂ψγ
∂xj

∣∣∣
f ′
nf

′

j Af ′ = εγjk
uPk + uek + ufk

3

∣∣∣
f ′
nf

′

j Af ′ + εβjk
∂ψα
∂xk

∣∣∣
f ′
nf

′

j Af ′ − εαjk
∂ψβ
∂xk

∣∣∣
f ′
nf

′

j Af ′ .(A.9c)

On the boundary nodes, we replace the entire α component of (A.3) with (A.9a). We

substitute (A.9b), (A.9c) into the β and γ components of (A.3) respectively. The Poisson

equations are solved in succession where for the stream vector components appearing in the

right hand side of (A.9a), (A.9b), (A.9c) the most recent values are used. An iterative scheme

is used until the Poisson equations and boundary conditions are satisfied at an acceptable

level.

The required gradient operator at each sub-face (right hand side of equations (A.8) and

(A.9)) is constructed to satisfy the following set of equations

∂ψj
∂xi

∣∣∣
f ′
xPBi = ψPBj (A.10a)

∂ψj
∂xi

∣∣∣
f ′
xPFi = ψPFj (A.10b)

∂ψj
∂xi

∣∣∣
f ′
xPIi = ψPIj , (A.10c)
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where xPFi = xfi −xPi , xPIi = xIi −xPi and similarly ψPFj = ψfj −ψPj , ψPIj = ψIj −ψPj . Nodes P

and B are on the edge associated with the boundary sub-face f ′, I (for Internal) is the node

along the edge of P that is not part of the boundary face, but is still part of the internal cell

that contains the boundary face (see Fig. A.1). We can analytically solve for the sub-face

gradient operators and get the following relations in compact matrix form
∂ψj
∂x1

∣∣∣
f ′

∂ψj
∂x2

∣∣∣
f ′

∂ψj
∂x3

∣∣∣
f ′

 =
1

xPB · (xPF × xPI)


[
xPF × xPI

]
[
xPI × xPB

]
[
xPB × xPF

]



ψPBj

ψPFj

ψPIj

 . (A.11)

This completes the treatment of the boundary terms.
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