
An Accountable Decryption System Based
on Privacy-Preserving Smart Contracts

Rujia Li1,2, Qin Wang3, Feng Liu1, Qi Wang1, and David Galindo2,4

1 Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China.
liuf2017@mail.sustech.edu.cn, wangqi@sustech.edu.cn

2 University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
rxl635@student.bham.ac.uk, d.galindo@cs.bham.ac.uk

3 Swinburne University of Technology, Melbourne, VIC 3122, Australia
qinwang@swin.edu.au

4 Fetch.AI, St John’s Innovation Center, Cambridge, CB4 0WS, United Kingdom

Abstract. Accountability is a fundamental after-the-fact approach to
detect and punish illegal actions during the execution of a warrant for
accessing users’ sensitive data. To achieve accountability in a security
protocol, a trusted authority is required, denoted as judge, to faithfully
cooperate with the rest of the entities in the system. However, malicious
judges or uncooperative protocol participants may void the accountabil-
ity mechanism in practice, for example by fabricating fake evidence or
by refusing to provide any evidence at all. To provide remediation to
these issues, in this paper we propose Fialka, a novel accountable de-
cryption system based on privacy-preserving smart contracts (PPSC).
The neutrality that is inherent to a secure blockchain platform is inher-
ited by PPSC which are then used in our approach as an accountable key
manager as well as a transparent judge. To the best of our knowledge,
we present the first PPSC-based accountable decryption system to in-
crease the transparency of warrant execution with formal definitions and
proofs. Furthermore, we provide and evaluate a prototype implementa-
tion using the PPSC-enabled platform Oasis Devnet, which additionally
demonstrates the feasibility of Fialka.

Keywords: Accountability, Privacy-Preserving Smart Contract, Blockchain

1 Introduction

Accountable cryptographic protocol is increasingly crucial in sensitive personal
data protection. We focus on the following scenario. Law enforcement or intel-
ligence agencies may demand access to personal encrypted data held by service
providers, and sometimes even require access to the communication metadata
that is closely related to sensitive information of individuals. In most cases, a
granted warrant is needed from a legal authority. However, data owners have no
way to know when and how law enforcement collects and accesses their sensitive

2 R. Li et al

data. In particular, abuses of granted warrant of decryption may easily happen
since the overseers cannot verify whether the practical investigation activities
match the scope permitted in the document. Therefore, accountability mech-
anisms is a critical after-the-fact remediation technique to deter investigators,
since it provides an instant evidence to detect malicious or deviant behaviors,
which increases the transparency of warrant execution.

However, achieving accountability is tricky, and requires additional roles in-
volved. The investigators cannot autonomously convince others of the account-
ability of their actions. They need to resort to one or more neutral trusted parties,
usually named judge(s), to audit their actions. More specifically, an accountabil-
ity mechanism requires each investigator to generate evidence on their warrant
execution. This evidence is then examined by the judge to detect dishonest
behaviors or declare the examined participant compliant. This approach relies
heavily on faithful cooperation of the judge and the investigator, as a malicious
judge or dishonest investigator may undermine the accountability mechanism.
If the investigator rejects to cooperate with the judge in order to provide the
required evidence, or if the judge themselves examine fake evidence or apply the
wrong examination procedure, outsides cannot audit investigators’ decryption
actions. In this paper, we generalise the above example as a standard case, in
which an investigator obtains an order from a court, and his access of users’ data
needs to be audited by the judge. The discussed challenges lead to the following
research question:

Is it possible to design an accountability mechanism guaranteeing that (1) the
judge honestly checks the evidence; (2) the investigator does not refuse to provide
the evidence trail of their actions?

Based on the previous discussion, the answer would intuitively be “NO”.
Firstly, it is difficult to guarantee that a judge will always be secure and re-
liable. Even if the judge claims to be neutral, she faces the threat of being
attacked or provided with misleading evidence. Once the judge is compromised,
the accountability mechanism fails as it cannot be applied. Undoubtedly, mul-
tiple judges may mitigate such concerns, but the judge collusion issue cannot
be effortlessly overcome. Secondly, asking the investigator to neutrally create
a piece of honest evidence also confronts difficulties. The isolated local execu-
tion environment makes it potentially easy and profitable for the investigator to
generate fake evidence while incurring a low risk of being detected. Several pro-
posals [3, 9] employed a certain trusted hardware to aid the evidence generation.
Intuitively, physical hardware is more secure and reliable since the evidence logic
and its measurement are hardcoded in non-volatile storage. However, the risk of
compromised hardware still exists [17].

Blockchain-based smart contracts [26, 27] have been used in [4, 14, 23] as a
building block to implement the judge. Roughly speaking, a smart contract is
composed of a set of protocols to be automatically executed in a distributed net-
work, which naturally guarantees the neutrality and behaviour of the judge thus
obtained. However, the input/output data of the smart contract is transparent
to the public, which limits its usage in some scenarios. For instance, private

An Accountable Decryption System Based on PPSCs 3

key-dependent protocols such as decryption are executed in an isolated local en-
vironment. A transparent smart contract cannot prevent the investigator from
producing fake evidence if it does not have access to the secret key material.
But in the latter case, the secrecy of the private key material would be compro-
mised. Privacy-preserving smart contracts (PPSC) [6, 13, 16, 25, 29] inherit the
security, availability and neutrality benefits of smart contracts while additionally
protecting the privacy of the contract data. It naturally could act as a high-level
cryptographic primitive to aid in the evidence generation involving local proto-
col executions. For example, PPSC could be used to implement a private key
manager to make decryption accountable.

In this paper, we propose Fialka, a novel transaction-triggering accountability
framework using PPSC to make investigators accountable for executing decryp-
tion calls. Our framework prevents the decryption queries evidence from being
maliciously generated (e.g. hidden) while guaranteeing the authenticity of the
evidence. More precisely, Fialka combines PPSC with an IND-CCA secure public
key encryption (PKE) scheme [15] at the protocol level to construct an account-
ability mechanism. PPSC cryptographically hides a secret random number used
as an additional decryption key, where external investigators have to interact
with PPSC for the execution of decryption warrant. The secret key will be ex-
tracted by invoking the decryption-related smart contract, which consequently
generates a transaction-based evidence as an on-chain record. After that, another
smart contract plays the role of the judge who transparently checks the transac-
tion to decide whether the decryption is legal in a specific setting. The account-
ability is thereby achieved. Additionally, our framework inherits the benefit of
high availability from the underlying blockchain protocol. This further improves
reliability of the PPSC-based judge. Our contributions are summarized here:

– We propose an accountable decryption system called Fialka that combines
the techniques of PPSC and PKE.

– We formally define our system and provide a security analysis of its account-
ability properties, namely fairness and completeness.

– We provide a prototype implementation based on the PPSC platform Oasis
Devnet [1, 8], and evaluate its running time and gas cost.

The rest of our paper is structured as follows. Some related studies are dis-
cussed in Section 2. Definitions and building blocks are detailed in Section 3. In
Section 4, we present the formal model with its property definitions. In Section
5, we provide the design of Fialka. Both the proof and security analysis are pre-
sented in Section 6. Implementations and evaluations are discussed in Section 7
and Section 8. Finally, Section 9 presents summaries and future work.

2 Related work

The smart contract-based accountability approach has been studied comprehen-
sively recently. Xu et al. [28] proposed a remotely decentralized data auditing
scheme for network storage service, where accountability is achieved by involving

4 R. Li et al

smart contract as a third-party auditor to notarize the integrity of outsourced
data. Azaria et al. proposed MedRec [4], in which an Ethereum [27] smart con-
tract is used as a meta-data agent to manage the permission of data usage,
making patients’ choices accountable. Neisse et al. [23] proposed a blockchain-
based framework for data accountability and provenance tracking. However, a
pure smart contract does not provide a complete accountable protocol, since it
cannot guarantee the authenticity of the input (i.e. the submitted evidence).
In other words, even if the smart contract is neutral and trustful, a client may
provide fake evidence to the smart contract without being detected.

Several solutions have been proposed to ensure the authenticity of the submit-
ted evidence. Among them, equipping entities with secure hardware devices [3,
24, 17] is an attractive approach. Alder et al. [3] employed Intel SGX [10] to pro-
duce a verifiable measurement of the resource usage in each function invocation.
Luo et al. [21] applied the Intel SGX with blockchain to a data sharing scheme,
where the decryption process also relied on the confidentiality of secure hard-
ware devices. The hardware-based approach is intuitively reliable and robust,
since trusted hardware devices cannot change the evidence generation rules once
loaded. However, the security cannot be guaranteed when adversaries success-
fully attack the hardware. The approach using multiple hardware may mitigate
such security concerns to a certain extent. Unfortunately, the efficiency issue
and incentives issue cannot be easily overcome. Another promising approach is
directly employing the protocol execution result as the evidence, such as using
the ciphertext and the private key as evidence. A typical example is accountable
identity-based encryption [11, 12, 19], where a judge can decide whether a PKG
is malicious by showing cryptographic proofs that contain the decryption key.
However, such an approach lacks practicality.

Privacy-preserving smart contract (PPSC) is a special contract that aims to
make the contract state private. The techniques on PPSC have been studied
extensively in the recent years. Enigma [29] provided a decentralized confiden-
tial computation platform by employing multi-party computation. Hawk [16],
Zether [6] and Zkay [25] realized privacy-preserving smart contract by heavily
relying on zero-knowledge proofs. Ekiden [8] and Microsoft Coco framework [22]
employed Intel SGX to achieve confidential smart contracts. Essentially, PPSC
is a decentralized confidential computing technology, which inherits the benefit
of transparent execution from a smart contract while additionally protecting the
privacy of contract data. Our accountable system leverages the main benefits of
PPSC. The transparent execution of smart contracts ensures the judge honestly
checks the evidence, and the trigger mechanism of contract execution enforces
investigators to invoke PPSC through transactions, which ensures investigators
neutrally provide the evidence.

3 Preliminaries

Let λ be the security parameter, and negl(λ) be a negligible function. The chal-
lenger and adversary are represented as C and A, respectively. We use the nota-

An Accountable Decryption System Based on PPSCs 5

tion a to denote the game in security deduction, adv to represent the advantage
that the adversary holds, and the notation “≈” to show these two games are
computationally indistinguishable. The message space is denoted as M.

3.1 Privacy-Preserving Smart Contract

Smart contract was first proposed by Nick Szabo [26] and further developed
by Ethereum [27] in the blockchain system. A blockchain-based smart contract
consists of two mutually interacting components: contract state and operational
code [27]. The contract state covers the input and output of the operational
code, while operational code specifies operations/commands to store or transfer
the contract state. The intuitive target for a privacy-preserving smart contract
is to make the contract state private. However, purely protecting the privacy of
the state against the public is not sufficient, especially when multiple entities
are involved in one contract to finish complex cryptographic tasks. The state
in a contract is required to reach a new consensus view after the execution
of operational codes, in which this rule is followed by PPSC projects such as
Zether [6], Ekiden [8] and Oasis Devnet [1]. Thus, we capture two main PPSC
principles: P.1 the contract state should be protected against the public; P.2
the authorized entities should see the same private data view.

PPSC-based Accountability. The initial contract state and the operational
code will reach consensus after the successful deployment. After that, two ap-
proaches can trigger the execution of the operational code: the internal schedule
code and the external message call. The first approach allows the operational
code to execute periodically. However, it cannot complete a complex task due
to massive gas consumption [27]. Thus, to trigger the execution, an external
message call with sufficient gas is crucial. PPSC inherits the state triggering
mechanism from smart contracts, namely, the state-changing is based on exter-
nal message call. For example, Oasis Devnet [1] requires an external caller to
firstly build a secure channel with the TEE-protected smart contract, and then
the transition of the private state is accomplished through this channel when a
transaction call is provided. Origo Network [2] reveals the private input to an
off-line executor and then allows the executor to provide a ZKP-proof transac-
tion for online state transferring. Zether [6] funds the Zether tokens (ZTH) by
sending some Ethereum [27] tokens (ETH) and converts ZTH back to ETH by
sending a ZK-proof transaction. In summary, a transaction is required to trigger
the execution and obtain the state from PPSC. Therefore, by tracing the sender
who sends the transaction, the auditor implicates the wrongdoing of the contract
caller. Based on the above analysis, we give a formal definition of PPSC.

Definition 1 (P̂PSC) A Privacy-Preserving Smart Contract (PPSC) is a pri-
vate state machine built on top of a blockchain system and can be modeled by

5-tuple (S,S ′, T , s,B) and a transition function f : S ⊗ T B−→ S ′, where S repre-
sents a set of private state with the initial state s, S ′ is the new state set after the
specified operations, T means the publicly visible transactions that can trigger the

6 R. Li et al

execution of a contract, and B represents the blockchain oracle which provides
the execution environment.

– Deploy < bytecode > ⊗ Tx −→ (< opcode >,< reqcode >, s): The deploy-
ment is triggered by a transaction Tx, where Tx ∈ T . It takes the binary
code < bytecode > as input, and outputs the private state s. The contract
is compiled into < opcode > and < reqcode >, where < opcode > specifies
the operation set to be executed and < reqcode > defines the conditions
depending on which the operation of < opcode > can be conducted.

– Transfer < input > ⊗ S ⊗ Tx
B−→ S ′: By sending a transaction Tx with the

input < input >, the current private state S is transited to the new private
state S ′ under the blockchain oracle B. The new state S ′ returns only when
Tx satisfies the condition defined in < reqcode >, i.e., Tx ∈ < reqcode >.

– Access S ⊗ Tx
B−→ S: By sending a query transaction Tx through the

blockchain oracle B, the private state returns only when Tx satisfies the
condition predefined in < reqcode >, i.e., Tx ∈ < reqcode >.

Based on the above syntax, we provide four PPSC security properties: state-
privacy, state-consistency, transaction-transparency and transaction-unforgeability.
The state-privacy guarantees that the state is protected against the public (Prin-
ciple P.1). Only the caller who satisfies the predefined conditions can learn the
state. Meanwhile, the state-consistency ensures that a smart contract shares
the same data view after operational code is executed (Principle P.2). The
transaction-transparency ensures that transactions triggering the execution of
PPSC can be freely queried, while the transaction-unforgeability guarantees the
transactions (as evidence) are reliable and authentic without being forged or
cheated. PPSC is secure when these four security properties are all satisfied.

Definition 2 PPSC achieves state-privacy, if for all PPT adversaries A, there

exists a negligible function negl(λ) such that adv
aprivacy

A,ppsc(λ) < negl(λ), where

adv
aprivacy

A,ppsc(λ) is the advantage that A successfully obtains the private state without
satisfying the condition predefined in < reqcode >.

Definition 3 PPSC achieves state-consistency, if for all PPT adversaries A,
there exists a negligible function negl(λ) such that advacons

A,ppsc(λ) < negl(λ),

where advacons

A,ppsc(λ) is the advantage that A obtains a valid state S? through the
algorithm Transfer in which s? does not belong to the state set S, i.e., s? /∈ S.

Definition 4 PPSC achieves transaction-transparency, if for all PPT adver-
saries A, there exists a negligible function negl(λ) such that advatran

A,ppsc(λ) <

negl(λ), where advatran

A,ppsc(λ) is the advantage that A successfully obtains a trans-

action Tx? through calling the algorithm Transfer with the condition Tx? /∈ T .

Definition 5 PPSC achieves transaction-unforgeability, if for all PPT adver-

saries A, there exists a negligible function negl(λ) such that adv
aunforg

A,ppsc(λ) <

negl(λ), where adv
aunforg

A,ppsc(λ) is the advantage that A successfully forges a trans-

action Tx? and obtains the state through Tx?.

An Accountable Decryption System Based on PPSCs 7

3.2 Decision Linear Assumption

Decision Linear Assumption [5, 15] is based on the Linear Problem. Due to lim-
itation of space, we skip a full definition and refer to Appendix A for details.

4 General Construction

4.1 System Overview

Our system consists of four entities (see Fig 1.a): common users (sender/receiver),
investigator, key management smart contract (PPSC-KM), and auditor smart
contract (PPSC-AD). PPSC-KM is used to manage investigators’ decryption
keys. PPSC-AD is employed as a “judge” to decide whether the event of the
investigator’s decryption is conducted under the court-issued order. A detailed
workflow is shown as follows. The sender encrypts messages with a random num-
ber, which is hidden in PPSC-KM, and then it sends the encrypted message to
the receiver. The receiver decrypts the ciphertext as normal. Meanwhile, the in-
vestigator who obtained a court-issued order decrypts the ciphertext by fetching
the random number from PPSC-KM. When a query is sent to PPSC-KM, the
actions will be recorded through a transaction as the evidence. Next, PPSC-AD
will check the evidence to report malicious decryption. In our protocol, PPSC-
KM and PPSC-AD are, respectively, abbreviated as ĉkm and ĉad for simplicity.
Formally, we provide the general construction as follows.

User Investigator

!"#$
%&'(

$)

*"+
,$)

-

."/0
1))1

2(

3$4
)-5

(&627"8
24)

-5(
&62

3$4
)-5

(&62

9":2
'5$

4(&6
2

PPSC-KM

PPSC-ADPPSC

;<&$2(='&>$

Contrat

TEE

PPSC-AD

PPSC-KM

PPSC

Investigator

User
KM

TEEBlockchain Consens!" Node

?$)@$)='&>$

?$4,)$/;A122$<

(a). Framework (b). Implementation Architecture

Fig. 1. System Framework & Architecture

Setup (pms, ĉkm, ĉad) ← Setup(1λ, codes). The algorithm takes as input a
security parameter λ and binary codes codes, and returns public parameters
pms and two contracts ĉkm, ĉad.

Key Generation (pk, sk, tk)← KeyGen(pms). The algorithm takes as input
pms, and returns receiver’s key pair (pk, sk), and a secret tag key tk.

Registration s
B←− Register(tk, P̆). The algorithm takes as input a master

key tk and accountability policies P̆ , and returns an initial state s ∈ S. The tk
and policies P̆ are added to ĉkm and ĉad, respectively.

8 R. Li et al

Encryption ct ← Encrypt(tk, pk,m). This algorithm takes as input tk, pk,
and a message m, and then returns a ciphertext ct.

Decryption m ← Decrypt(sk, ct). The algorithm takes as input sk, ct, and
returns m ∈M.

Warrant Decryption (m,Tx)
B←−WDecrypt(r, r1, s, ct). This algorithm takes

as input a random number r, r1, and s (including tk) calls the algorithm Transfer
described in Section 3.1, and returns m ∈M.

Inspection true/false
B←− Inspect(Tx, P̆). This algorithm takes as input P̆

and Tx, and returns the inspection result. The result true indicates that the
authorized decryption is legitimately executed under the warrant, and vice versa.

The procedure of Decryption represents normal decryption run by offline
users, whereas Warrant Decryption is run by the investigators who are forced
to leave evidence each time of decryption. Meanwhile, the access control condi-
tions in ĉkm and the accountability policies in ĉad are set as the same. We notice
that the logic of Warrant Decryption might be confusing: the ĉkm has defined
the access control conditions for investigators. Is the accountability necessary
for investigators’ decryption? We clarify that access control and accountability
in our system play different roles. The access control condition in ĉkm is similar
to an order issued by the court, which describes the actions that an investigator
should do but not yet, whereas the accountability policies in ĉad are responsible
for checking the actions an investigator has done (e.g., whether an investigator
has executed the decryption under a warrant). We define malicious decryption
as: the investigator’s decryption does not match the actions permitted in the
issued orders.

4.2 Security Definitions

Our Fialka system is denoted by Π, and above algorithms are abbreviated as:
Set, Gen, Reg, Enc, Dec, WDec, and Insp, respectively. We assume an investigator
has already obtained a warrant from a court, and his access to users’ plaintext
needs to be audited by the judge. Inspired by [18], the investigator should obtain
fair treatment, neither being framed for the legitimate investigation nor being
escaped from the punishment for wrongdoings. We captures two properties w.r.t
accountability: fairness and completeness.

Fairness. This property prevents the judge from framing honest investigators.
An honest investigator should follow the pre-defined policies and return true.
We consider the adversary A who imitates an honest investigator, and then
maliciously executes the warrant/order attempting to frame him.

Definition 6 (Fairness) Fialka satisfies fairness, if for all PPT adversaries A,

there exists a negligible function negl(λ) such that adv
afair

A,Π(λ) < negl(λ) where

adv
afair

A,Π(λ) is the advantage of A wins the game afair defined as,

An Accountable Decryption System Based on PPSCs 9

– Initialization?. The system configures the parameters pms = ⊥, and cre-
ates ĉkm and ĉad by running the algorithm Set. Then, C generates the secret
key tk by running the algorithm Gen. Next, C registers the tk and decryption
policies P̆ to the ĉkm and ĉad, respectively.

– Actions?. At each round, the adversary A and the challenger C execute
the following algorithms. (1) A generates the key pair (ska, pka) by running
the algorithm Gen. (2) C inputs the public key pka, message m, a random
numbers r and a secret key tk, and then obtains the ciphertext ct by running
the algorithm Enc. (3) C runs the algorithm Transfer, and then returns r2
and Tx to the A. (4) A inputs r2, the ciphertext ct, and outputs the message
m by running the algorithm WDec. (5) ĉad executes the algorithm Insp with
the input Tx, and return the inspection result.

– Challenge. Assume that A executes above actions at most for l times, and
obtains a set T = {Tx0,Tx1, ...,Txl}. A wins if A generates a transaction
Tx? satisfying the conditions: false← Insp(Tx?, P̆) ∧ Tx? /∈ T .

Completeness. This property guarantees that the judge always punishes the
users who misbehave. To define completeness, we consider an adversary A aims
to evade the responsibility of illegally executing the authorized decryption.

Definition 7 (Completeness) Fialka satisfies completeness, if for all PPT

adversaries A, there exists a negligible function negl(λ) such that adv
acomp

A,Π (λ) <

negl(λ), where adv
acomp

A,Π (λ) is the advantage of A wins acomp defined as,

– Initialization and Actions. The steps are same with that in fairness game
labeled with (?).

– Challenge. Assume that A executes the above action at most for l times,
and then obtains a set of ciphertext-transaction tuple {C, T } = {(ct0,Tx0), (ct1,
Tx1), ..., (ctl,Txl)}. A wins if A successfully generates a new tuple (ct?,Tx?)
that satisfying the conditions: true← Insp(Tx?, P̆) ∧WDec(r, s, ct?) = m? ∧
(ct?,Tx?) /∈ {C, T }.

5 Concrete Instantiation

In this section, we present an instantiation of Fialka based on Kiltz’s PKE pro-
tocol [15] and the Oasis Devnet [1, 8]. Kiltz’s PKE is an efficient and IND-CCA
secure scheme with a tight security reduction, while Oasis Devnet is an SGX-
backed PPSC platform with a rigorous security proof under the Universal Com-
posability (UC) framework [7]. In this instance, PPSC-KM manages a secrete
random number as the investigator’s decryption key and its access permission
through the SGX enclave, and the PPSC-AD audits the transactions, and then
reports the investigator’s malicious decryption. Specifically, a decryption key us-
ing for investigation is loaded in PPSC-KM and hidden in an enclave, which
forces the outside investigator to fetch it, and further leaves the transaction-
based evidence that will be audited by PPSC-AD. Note that SGX-based PPSC

10 R. Li et al

is an example by hiding the secret key inside the hardware, and other approaches
can also achieve the same goal, such as cryptographically hiding secret key by
ZKP. Our framework is compatible with various aforementioned PPSC tech-
nologies [6, 13, 16, 25, 29]. Importantly, our construction can easily be extended
to other accountable PKE protocols without significant modifications.

Setup (pms, ĉkm, ĉad) ← Setup(1λ, codes). The algorithm takes as input a
security parameter λ, and returns public parameters including the multiplicative
cyclic group G with prime order p. Then, it chooses two collision resistant hash
functions H1 : {0, 1}? → Zp and H2 : G × G → Zp. Next, it takes as input
contract binary codes, and calls the algorithm Deploy (defined in Section 3.1),
and finally returns two contracts ĉkm and ĉad.

Key Generation (pk, sk, tk)← KeyGen(pms). The algorithm is run by the
sender and receiver. The receiver runs the algorithm to generate her key pair
(pk, sk), and the sender runs the algorithm to obtain a secret tag key tk.

tk, x1, x2, y1, y2 ←− Z∗p;
Choose (g1, g2, z) ∈ G, satisfying gx1

1 = gx2
2 = z;

u1 ←− gy11 ;u2 ←− gy22 ; pk ← (G, p, g1, g2, z, u1, u2); sk ← (x1, x2, y1, y2).

Registration s
B←− Register(tk, P̆): The algorithm is run by the sender. It

takes as input tk and policies P̆ , and outputs contract initial state s. In particular,
the tag key tk is registered into ĉkm. The policies P̆ are added to ĉad by the means
of external message calls (see Section 3.1). The privacy of tk and s are protected
by the SGX enclave. More details can be found in our implementation.

Encryption ct ← Encrypt(tk, pk,m). This algorithm is run by the sender.
It takes as input tk, pk, and a message m, returns a ciphertext ct.

pk = (G, p, g1, g2, z, u1, u2); r1, r ←− Zp;
r2 ← H1(tk|r);C1 ← gr11 ;C2 ← gr22 ; τ ← H2(C1, C2); V ← r1;

D1 ← zτr1ur11 ;D2 ← zτr2ur22 ;K ← zr1+r2 ;E ← mK;

ct← (C1, C2, D1, D2, E, V).

Decryption m ← Decrypt(sk, ct). This algorithm is run by the receiver. It
takes as input the receiver’s secret key sk, the ciphertext ct, and returns m ∈M.

Parse ct as(C1, C2, D1, D2, E, V);

s1, s2 ←− Zp; τ ← H2(C1, C2);

K ′ ← C
x1+s1(τx1+y1)
1 C

x2+s2(τx2+y2)
2

Ds1
1 D

s2
2

; m← E(K ′)−1.

Warrant Decryption (m,Tx)
B←− WDecrypt(r, r1, s, ct). This algorithm is

run by the investigator. It takes as input r, r1 and the private state s (including
tk), and then calls the Transfer algorithm to execute the function r2 ← H1(tk|r)

An Accountable Decryption System Based on PPSCs 11

in an isolated environment provided by the SGX. This calling progress is repre-
sented in the form of a transaction Tx.

Parse ct as(C1, C2, D1, D2, E, V);

r2,Tx← Transfer(s, r);

K ′′ = zr1+r2 ; m← E(K ′′)−1.

Inspection true/false
B←− Inspect(Tx, P̆). This algorithm is run by ĉad. It

takes as input P̆ and Tx, and returns inspection result. The true indicates the
warrant decryption satisfying the policies, and vice versa.

Here, the correctness of our construction is easy to check as we have

K ′ =
C
x1+s1(τx1+y1)
1 C

x2+s2(τx2+y2)
2

Ds1
1 D

s2
2

= Cx1
1 Cx2

2

(
Cτx1+y1

1

ztr1ur11

)s1 (
Cτx2+y2

2

zτr2ur22

)s2

=Cx1
1 Cx2

2

(
g
r1(τx1+y1)
1

g
r1(x1τ+y1)
1

)s1 (
g
r2(τx2+y2)
2

g
r2(x2τ+y2)
2

)s2
= gr1x1

1 gr2x2
2 .

Note that the random numbers s1 and s2 are used for implicitly testing if the
ciphertext is consistent with tag τ [15]. We see that K = zr1+r2 = gx1r1+x1r2

1 =
gx1r1
1 gx2r2

2 . Then, we observe that K = K ′ = K ′′. Thus, both the receiver and
investigator can obtain the message m by

Dec(sk, ct) = E(K)−1 = mK(K)−1 = m.

6 Security Proof

Theorem 1 (Fairness) Assume that the SGX-based PPSC is secure, our con-
struction Fialka satisfies the property of fairness.

Proof Suppose that there exists an adversary A who wins the fairness game
afair with a non-negligible advantage. Then, we transform an adversaryA against
Fairness into adversaries against PPSC security. Next, we describe a sequence
of games to finish the proof.

Lemma 1 (SGX-based PPSC [8, 20]) Our SGX-based platform is a secure
instantiation of PPSC whose protocols match the ideal functionality in the UC
framework. More details can be found in [8].

Game a0. This is an unmodified game. Trivially, the winning probability of
this game equals the advantage of A against fairness game, namely, advafair

A,Π (λ).
Game a1. In this game, when A calls C, we disallow C to call contract ĉkm.
Game a2. In this game, when A calls C, the transaction-based evidence is

not allowed to be given to the ĉad. Instead, the evidence is randomly selected for
auditing.

Obviously, the winning probability of the game a2, denoted as adva2

A,Π(λ), is
negligible, since the transaction-based evidence is randomly selected. Next, to
find out the differences between these games, we define the following events.

12 R. Li et al

� E[a1]: forging an evidence. The event E [a1] implies that the adversary B1
forges a valid transaction Tx∗ without update ĉkm, denoted as ¬Transfer.

r2,Tx
∗ B←− ¬Transfer(s, r) ∧

WDec (r, r1, s,Enc(tk, pk,m)) = m ∧

false
B←− Insp(Tx∗, P̆)

⇒ E[a1] .

� E[a2]: forging an inspection result. The event E[a2] implies that the adver-
sary B2 forges an inspection result, where the originally “true” in the algo-
rithm Inspect is modified to be “false”.

r2,Tx
B←− Transfer(s, r)∧

WDec (r, r1, s,Enc(tk, pk,m)) = m∧

false
B←− Insp(Tx, P̆)

⇒ E[a2] .

Game a0 ≈Game a1. The winning condition for a0 is equal to the winning
condition for a1 if and only if the event E[a1] does not happen. The probability
of E [a1] happening is identical to the advantage of breaking the promise of
transaction-unforgeability. Thus, we have

|Pr[a0]− Pr[a1] | = Pr[E[a1]] = adv
aunforg

B1,Π
(λ).

Game a1 ≈Game a2. The winning condition for a1 is equal to the winning
condition for a2 if and only if the event E[a2] does not happen. We consider the
possibility of E[a2], and it is identical to the advantage of breaking the promise
of state-consistency. Thus, we obtain

|Pr[a1]− Pr[a2] | = Pr[E[a2]] = advacons

B2,Π
(λ).

Putting everything together, we conclude that

advafair

A,Π (λ) ≤Pr[E[a1]] + Pr[E[a2]] + adva2

B,Π(λ)

≤advaunforg

B1,Π
(λ) + advacons

B2,Π
(λ) + adva2

A,Π(λ) ≤ negl(λ).

Theorem 2 (Completeness) Assume that SGX-based PPSC is secure and
Kiltz’s full PKE scheme [15] is secure against chosen-ciphertext attacks, Fialka
satisfies completeness.

Proof The concrete proof can be found at Appendix B.

7 Implementation

In this section, we discuss the implementation1 of our instantiation based on the
SGX-based PPSC platform Oasis Devnet [1, 8] (version 2.0). Our implementation

1 A demo site and reference source code are accessible at http://www.fialka.top.

An Accountable Decryption System Based on PPSCs 13

(see Figure 1.b) has two components: the client-side and the server-side. The
client-side is run by the sender, receiver and investigator, while the server-side is
run by the PPSC platform. The client-side covers four algorithms: Set, Gen, Enc,
Dec. They are implemented by 1000+ lines of Javascript codes in total, contain-
ing the packages of client and client-connector. The client implements
basic operations executed by end-users at local, while client-connector builds
a bridge between the client-side and the server-side. The server-side consists
of two pieces of privacy-preserving smart contracts: PPSC-KM and PPSC-AD.
PPSC-KM covers the algorithms CGen, Reg and Trans2, while PPSC-AD includes
the algorithm Insp. Both of them are implemented in Rust. PPSC-KM protects
private decryption keys by using the enclave technology from Intel SGX [10],
while PPSC-AD determines whether the decryption is legal or not by checking
the security policies.

To be specific, after a successful deployment of the contract PPSC-KM and
PPSC-AD, the evidence inspection algorithm Insp and the investigator’s key
generation algorithm (by revoking Trans) as well as their access conditions, will
be compiled as the binary codes and replicated to the enclaves [10] in SGX-
powered blockchain nodes. Then, an encrypted contract state containing the
investigator’s key H1(tk|r) reaches an agreement across distributed blockchain
nodes. After that, to obtain the key from PPSC-KM, two requirements must
be fulfilled: (1) a transaction with the input satisfying access conditions should
be provided; (2) An encrypted and authenticated channel connected to enclaves
should be established (after a successful attestation [1, 8, 10]). Then, an invoked
progress will be executed in the form of a transaction, and remains visible and
immutable which could be publicly accessed. Each entity is able to see/witness
the progress of obtaining the investigator’s key, but no entity except the con-
tract caller, knows the exact output (key) of the smart contract. Subsequently,
PPSC-AD audits the transactions through an internal query to detect suspi-
cious activities. Essentially, the privileges of the Trans algorithm are protected
and managed in a CPU-level by Intel SGX. Only designated investigators should
be allowed to access this secret key. We also notice that our implementation only
provides one-off auditing, since it can only trace the records when the first time
an investigator extracts the secret key. Our implementation provides a prototype
to demonstrate the feasibility.

8 Evaluation

We first provide the performance evaluation on average CPU-time, representing
the consumed time since the operation starts. The evaluation contains all the
algorithms, and the testing environment is set as follows. The client-side runs
on a Dell precision 3630 Tower with 16GB of RAM and one 3.7GHz six-core i7-
8700K processors running Ubuntu 18.04. The server-side runs on a blockchain
node, which is provided by Oasis SDK [1, 8].

2 Trans (Transfer algorithm) calculates the investigator’s key and it belongs to WDec.

14 R. Li et al

Table 1. The average CPU-time, Gas cost and Latency of Operations.

Operations CPU-time/ms Cost/gas Latency/ms

Set 1.16 - -
Gen 50.04 - -

CGen† 0.0880 5129943 5683
Reg 0.0104 494553 3960
Enc 102.35 - -
Dec 64.86 - -
Trans 0.0325 342514 3643
Insp 0.0027 251971 2450

†: CGen means contract generation

CPU-time. The evaluation results illustrate some critical points. The offline
operation Enc is the most time-consuming operation since the encryption covers
the seven exponentiations. The offline operation Dec takes approximately half
the time of that in encryption because it processes four exponentiations. On the
contrary, blockchain-related operations CGen, Reg, Trans and Insp take much less
than offline operations, since they do not have group mathematics computation.
In particular, the operation Insp is the fastest operation, which indicates the
efficiency of our accountability protocol. However, CPU-time is close to testing
environment, inefficient to convince that our framework is practical. Therefore,
we provide further evaluations on gas cost and latency for real-world scenarios.

Gas cost. The gas cost measures the amount of computational effort that a
blockchain takes to execute an algorithm. The gas cost evaluation includes the
operations of CGen, Reg, Trans and Insp. The operation CGen costs the most gas
among all since the initial configuration of a smart contract has to be loaded.
Fortunately, this bottleneck can be ignored, because each contract is created only
once and can be reused multiple times. The cost of Reg is relatively high, since
the public parameters are needed to store on smart contracts. The cost of Trans
and Insp are relatively low due to simple online calculations, which indicates
that our accountability protocol is financially feasible3. In a real-world setting,
different investigators may call the functions in a same PPSC for decryption
and auditing simultaneously. To demonstrate the practicability of our system,
we simulate a distributed environment by increasing the number of invocations
from different investigators. Specifically, we test the gas cost of Trans and of
Insp along with a maximum 1000 invocations simultaneously. As shown in Fig.2,
the outputs remains relatively stable under the variations, and the average cost
of Trans reaches approximately 340k while Insp is about 250k. It matches our
intuitive expectation, since the gas cost is theoretically independent with the

3 Estimates on real value of gas cost are omitted, since the Oasis token has not been
officially released at the time of writing.

An Accountable Decryption System Based on PPSCs 15

number of investigators. Based on such results, our accountability framework is
practically affordable which could be widely adopted.

Latency. Our latency test covers all the blockchain-related operations includ-
ing CGen, Reg, Trans and Insp. Among them, CGen is the most time consuming,
as the contract codes need to be compiled into the blockchain. The operation
Reg also takes a long time because all parameters have to be configured into
contracts. In contrast, the operations Trans and Insp are in low latency, due to
the fact that they do not have sophisticated on-chain computations. We also
provide a simulation by increasing the invocations in a distributed environment.
Our simulation includes the most two frequently used functions in PPSC, namely
Trans and Insp. As shown in Fig.2, the results turn out that the latency stably
increases along with the growing number of invocations. Theoretically, numerous
invocations will impose a heavy burden onto the distributed network, which may
even cause the network failure or transaction stuck. We set an upper bound of
invoking transactions with 1000 users at the peak. The testing results confirm
our expectations.

Fig. 2. Gas and latency evaluation

Weakness. The average latency of the operation Trans reaches approximately
five seconds, which is the primary drawback of our implementation. Frankly
speaking, our system, at least built on the current version of Oasis Devnet (ver-
sion 2.0), cannot compatibly support the applications that require fast decryp-
tion, due to the latency constraints. However, it is worth noting that the execu-
tion of warrant focuses on finding criminal evidence, which is latency insensitive.

9 Conclusion

In this paper, we propose Fialka, a novel transaction-triggering accountable de-
cryption system based on the privacy-preserving smart contracts. Our system

16 R. Li et al

utilizes PPSC to trace and detect the decryption evidence, which makes war-
rant execution accountable. To the best of our knowledge, we present the first
PPSC-based accountability mechanism with formal definitions and proofs. The
security analysis shows that our system holds the accountability properties of
fairness and completeness. The implementation based on Oasis Devnet with the
detailed evaluation indicates that our system is feasible and applicable.

Future Work. Fialka is a composite framework containing PKE and PPSC. The
definition and proof of our instantiation are complete and sound. However, SGX-
based PPSC and its underlying blockchain are inherently hybrid systems with a
sophisticated mechanism, making our assumption inevitably strong. The possi-
bility to weaken the assumption will be further explored.

Acknowledgments. R. Li, F. Liu and Q. Wang were supported by the Na-
tional Science Foundation of China under Grant No. 61672015 and Guangdong
Provincial Key Laboratory (Grant No. 2020B121201001). D. Galindo was par-
tially supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 779391 (FutureTPM).

References

1. Oasis labs: A safer way to use data (2020), https://www.oasislabs.com/
2. Origo: the privacy preserving platform for decentralized applications (2020),

https://origo.network/
3. Alder, F., Asokan, N., et al.: S-faas: Trustworthy and accountable function-as-a-

service using intel sgx. In: CCSW’19. pp. 185–199 (2019)
4. Azaria, A., Ekblaw, A., Vieira, T.: Medrec: Using blockchain for medical data

access and permission management. In: OBD’16. pp. 25–30. IEEE (2016)
5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: CRYPTO’04. pp.

41–55. Springer (2004)
6. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart

contract world. In: FC’20 (2020)
7. Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. In: FOCS’01. pp. 136–145. IEEE (2001)
8. Cheng, R., et al.: Ekiden: A platform for confidentiality-preserving, trustworthy,

and performant smart contracts. In: EuroSP’19. pp. 185–200. IEEE (2019)
9. Contractor, D., Patel, D.R.: Accountability in cloud computing by means of chain

of trust. IJ Network Security 19(2), 251–259 (2017)
10. Costan, V., Devadas, S.: Intel sgx explained. IACR Cryptology ePrint Archive

2016(086), 1–118 (2016)
11. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-

based encryption. In: ACM CCS’08. pp. 427–436. ACM (2008)
12. Guo, H., Zhang, Z., et al.: Generic traceable proxy re-encryption and accountable

extension in consensus network. In: ESORICS’19. pp. 234–256. Springer (2019)
13. Juels, A., Kosba, A., Shi, E.: The ring of gyges: Investigating the future of criminal

smart contracts. In: ACM CCS’16. pp. 283–295. ACM (2016)
14. Kaaniche, N., Laurent, M.: A blockchain-based data usage auditing architecture

with enhanced privacy and availability. In: NCA’ 17. pp. 1–5. IEEE (2017)
15. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: TCC’06. pp.

581–600. Springer (2006)

An Accountable Decryption System Based on PPSCs 17

16. Kosba, A., Miller, A., et al.: Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In: IEEE S&P’16. pp. 839–858. IEEE (2016)

17. Kroll, J.A., Zimmerman, J., Wu, D.J., Nikolaenko, V., Felten, E.W.: Accountable
cryptographic access control. In: Workshop, CRYPTO’18. vol. 2018 (2018)

18. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: ACM CCS’10. pp. 526–535. ACM (2010)

19. Lai, J., Tang, Q.: Making any attribute-based encryption accountable, efficiently.
In: ESORICS’18. pp. 527–547. Springer (2018)

20. Li, R., Galindo, D., Wang, Q.: Auditable credential anonymity revocation based on
privacy-preserving smart contracts. In: ESORICS’19 CBT, pp. 355–371. Springer
(2019)

21. Luo, Y., Fan, J., Deng, C., Li, Y., Zheng, Y., Ding, J.: Accountable data sharing
scheme based on blockchain and sgx. In: CyberC’ 19. pp. 9–16. IEEE (2019)

22. Microsoft: The coco framework: Technical overview (May 2019),
https://github.com/Azure/coco-framework/

23. Neisse, R., Steri, G., Nai-Fovino, I.: A blockchain-based approach for data account-
ability and provenance tracking. In: ARES’17. p. 14. ACM (2017)

24. Ryan, M.: Making decryption accountable. In: SPW. pp. 93–98. Springer (2017)
25. Steffen, S., et al.: zkay: Specifying and enforcing data privacy in smart contracts.

In: ACM CCS’19. pp. 1759–1776. ACM (2019)
26. Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY: The

Journal of Transhumanist Thought,(16) 18, 2 (1996)
27. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper 151(2014), 1–32 (2014)
28. Xu, Y., et al.: Blockchain empowered arbitrable data auditing scheme for network

storage as a service. IEEE TSC 13(2), 289–300 (2019)
29. Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized computation plat-

form with guaranteed privacy. arXiv preprint arXiv:1506.03471 (2015)

A Appendix: Linear Problem

Definition 8 (Linear Problem [5, 15]) Let G be a cyclic multiplicative group
with prime order p, and g1, g2, g3 be generators of G. Given g1, g2, g3, g

a
1 , g

b
2, g

c
3 ∈

G, decide whether a+ b equals to c. If a+ b = c, outputs true, or false otherwise.
The advantage of an algorithm A in deciding the linear problem in G is

advLPA =

∣∣∣∣∣∣∣∣
Pr[A(g1, g2, g3, g

a
1 , g

b
2, g

a+b
3) = true:

g1, g2, g3 ← G, a, b← Zp]
−Pr[A(g1, g2, g3, g

a
1 , g

b
2, η) = true:

g1, g2, g3, η ← G, a, b← Zp]

∣∣∣∣∣∣∣∣,
with the probability taken over the uniform random choice of the parameters to
A and over the coin tosses of A.

Assumption 1 (Decision Linear Assumption) No adversary A succeeds in
deciding the Linear Problem in G with a non-negligible advantage.

Lemma 2 Assume H2 is a target collision-resistant hash function, under the
Decision Linear Problem, Kiltz’s full PKE scheme [15] is secure against chosen-
ciphertext attacks.

18 R. Li et al

B Appendix: Completeness

Proof (Theorem 2: Completeness) Suppose that there exists an adversary
A who wins the completeness game acomp with non-negligible probability. Then,
we transform an adversary A against Completeness into adversaries against
PPSC security and IND-CCA security of Kiltz’s PKE scheme. We describe a
sequence of games to conduct the proof.

Game a0. This is the unmodified completeness game. The winning probabil-

ity equals the advantage of A against Completeness game, namely, adv
acomp

A,Π (λ).
Game a1. In this game, when the adversary calls the C, we disallow contract

ĉad to execute the algorithm Insp, and then ĉad outputs true to the adversary.
Game a2. In this game, we disallow A calls C, and thus Transfer in ĉkm

cannot be executed, indicating A cannot obtain secret key from blockchain.
Clearly, without querying smart contract, the adversary’s advantage of win-

ning a2 equals the advantage of breaking the CCA security of PKE. The ad-
versary against security of Kiltz’s PKE scheme advaCCA

B,Π (λ) is negligible, and
the proof is given in Lemma 2. To find out the difference between these games,
we define the events: (1) E [b1]: blocking the transaction-based evidence. The
adversary B1 fetches the key from the blockchain, and successfully hides the
transaction Tx? that used for validation in the algorithm Insp. (2) E[b2]: forging
an inspection result. The adversary B2 forges an inspection result by executing
¬Insp, where ¬Insp means the malicious behaviors of inspection and it modifies
the false result as true. (3)E [b3]: breaking the security of PPSC. The adversary
B3 obtains a valid private key without invoking the blockchain.

Game a0 ≈ Game a1. The winning conditions for a0 equals the winning
conditions for a1 if neither event E [b1] nor event E [b2] happen. Thus, we have
|Pr[a0] − Pr[a1] | = Pr[E[b1]] + Pr[E[b2]] . We then consider the happening
probabilities of the E [b1] and E [b2]. The happening of E [b1] implies that the
adversary B1 hides the transaction evidence, which contradicts the assumption
of the transparency properties. Thus, the wining advantages of E[b1] is identical
to breaking the promise of transaction-transparency. If the event E[b2] happens,
indicating that the adversary B2 breaks the state-consistency of PPSC, the pos-
sibility is identical to the advantage of breaking the promise of state-consistency.
Thus, we have Pr[E[b1]] = advatran

B1,Π
(λ) and Pr[E[b2]] = advacons

B2,Π
(λ).

Game a1 ≈Game a2. The winning condition for a1 is equal to the winning
condition for a2 if and only if event E [b3] does not happen. The possibility of
E [b3] is identical to the advantages of breaking the promise of state-privacy.

Thus, |Pr[a1]− Pr[a2] | = Pr[E[b3]] = adv
aprivacy

B3,Π
(λ).

Combining everything together, we obtain that

adv
acomp

A,Π (λ) ≤Pr[E[b1]] + Pr[E[b2]] + Pr[E[b3]] + adv
ano-query

B,Π (λ)

≤advatran

B1,Π
(λ) + advacons

B2,Π
(λ) + adv

aprivacy

B3,Π
(λ) + advaCCA

B,Π (λ) ≤ negl(λ).

