

ASHVIN has received funding from the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement No 958161. This document reflects only the

author’s view and the Commission is not responsible for any use that may be made of the
information it contains.

@AshvinH2020

ASHVIN H2020 Project

www.ashvin.eu

D1.1 LAUNCH VERSION OF

THE ASHVIN PLATFORM

Mirko Teodorović, Mainflux

D1.1 Launch Version of the Ashvin Platform

 1

Project Title
Assistants for Healthy, Safe, and Productive Virtual

Construction Design, Operation & Maintenance using a

Digital Twin

Project Acronym ASHVIN

Grant Agreement No 958161

Instrument Research & Innovation Action

Topic LC-EEB-08-2020 - Digital Building Twins

Start Date of Project 1st October 2020

Duration of Project 36 Months

Name of the deliverable Launch version of the ASHVIN platform

Number of the

deliverable
D1.1

Related WP number and

name
WP 1 IoT driven digital twin platform

Related task number

and name
T1.1 IoT Platform

Deliverable

dissemination level
PU

Deliverable due date 01-12-2020

Deliverable submission

date
31-12-2020

Task leader/Main author Mirko Teodorović (MFL)

Contributing partners
Timo Hartmann (TUB), Rahul Tomar (DTT), Ilias Koulalis

(CERTH), Jason Pridmore (EUR), Ken Gavin (NGEO),

Rolando Chacón (UPC)

Reviewer(s) Timo Hartmann (TUB), Rahul Tomar (DTT)

ABSTRACT

MFL deployed, in the cloud managed by Digital Ocean, an open-source, secure and

scalable IoT platform that ensures device provisioning, connectivity and management, data

accumulation and consumption. The plat form is based on the microservices combined with

Kubernetes orchestration mechanisms. The platform is available at https://iot.ashvin.eu. A

set of user and technical manuals is provided in the appendix of this report. Deliverable

1.1. represents the launch version of the Ashvin plat form that will be further improved

throughout the project and a final version will be described in D1.6 Full Version of the

Ashvin Digital Twin Platform.

KEYWORDS

IoT platform, microservices, cloud, user manuals, ABAC, edge computing, protocols, data

formats

D1.1 Launch Version of the Ashvin Platform

 2

REVISIONS
Version Submission date Comments Author

V0.1 28.12.2020 Initial draft Mirko Teodorović (MFL)

V0.2 29.12.2020 Editing and formatting Timo Hartmann (TUB)

DISCLAIMER

This document is provided with no warranties whatsoever, including any warranty of

merchantability, non-infringement, fitness for any particular purpose, or any other

warranty with respect to any information, result, proposal, specification or sample

contained or referred to herein. Any liability, including liability for infringement of any

proprietary rights, regarding the use of this document or any information contained

herein is disclaimed. No license, express or implied, by estoppel or otherwise, to any

intellectual property rights is granted by or in connection with this document. This

document is subject to change without notice. ASHVIN has been financed with support

from the European Commission. This document reflects only the view of the author(s)

and the European Commission cannot be held responsible for any use which may be

made of the information contained.

D1.1 Launch Version of the Ashvin Platform

 3

ACRONYMS & DEFINITIONS

IoT Internet of Things

IIoT Industrial Internet of Things

CERTH Centre of Research & Technology - Hellas

DTT DigitalTwin Technology GmbH

FAS Przedsiebiorstwo Robót Elewacyjnych Fasada sp.zo.o.

ABAC Attribute-based access control

CRUD Create, read, update and delete

AIP Ashvin Internet of Things Platform

D1.1 Launch Version of the Ashvin Platform

 4

ASHVIN PROJECT

ASHVIN aims at enabling the European construction industry to significantly

improve its productivity, while reducing cost and ensuring absolutely safe work

conditions, by providing a proposal for a European wide digital twin standard, an

open source digital twin platform integrating IoT and image technologies, and a

set of tools and demonstrated procedures to apply the platform and the

standard proven to guarantee specified productivity, cost, and safety

improvements. The envisioned platform will provide a digital representation of

the construction product at hand and allow to collect real-time digital data

before, during, and after production of the product to continuously monitor

changes in the environment and within the production process. Based on the

platform, ASHVIN will develop and demonstrate applications that use the digital

twin data. These applications will allow it to fully leverage the potential of the IoT

based digital twin platform to reach the expected impacts (better scheduling

forecast by 20%; better allocation of resources and optimization of equipment

usage; reduced number of accidents; reduction of construction projects). The

ASHVIN solutions will overcome worker protection and privacy issues that come

with the tracking of construction activities, provide means to fuse video data and

sensor data, integrate geo-monitoring data, provide multi-physics simulation

methods for digital representing the behavior of a product (not only its shape),

provide evidence based engineering methods to design for productivity and

safety, provide 4D simulation and visualization methods of construction

processes, and develop a lean planning process supported by real-time data.

All innovations will be demonstrated on real-world construction projects across

Europe. The ASHVIN consortium combines strong R&I players from 9 EU

member states with strong expertise in construction and engineering

management, digital twin technology, IoT, and data security / privacy.

D1.1 Launch Version of the Ashvin Platform

 5

TABLE OF CONTENTS

1 IOT PLATFORM................................ 8

1.1 Ashvin IoT platform in the context of the Ashvin toolkit... 9

1.2 Platform features .. 10

1.3 Platform Access .. 10

1.3.1 System management .. 10

1.3.2 Messaging.. 11

2 FINE-GRADED ACCESS12

2.1 Current administration system .. 12

2.2 New administration system (work in progress) .. 12

2.3 Administration system development roadmap .. 13

2.4 State of development.. 13

3 EDGE COMPUTING MECHANISMS15

3.1 Edge connectivity .. 15

3.2 Edge communication mechanisms ... 15

3.3 Rules engine ... 15

3.4 Network bandwidth and storage costs... 16

3.5 IoT data analytics .. 16

3.6 Ongoing research .. 16

4 DATA GATHERING AND EXCHANGE MECHANISMS17

4.1 Data exchange mechanisms .. 17

4.2 Data gathering mechanisms .. 17

5 MEETINGS18

6 CONCLUSION19

D1.1 Launch Version of the Ashvin Platform

 6

7 APPENDIX 1: ABOUT ASHVIN IOT PLATFORM21

7.1 What is Ashvin .. 21

7.2 What is Ashvin IoT platform (AIP)? .. 21

7.3 AIP Address .. 22

8 APENDIX 2: ASHVIN IOT PLATFORM ENTITIES................................23

8.1 Things ... 23

8.2 Channels ... 23

8.3 Messages .. 24

8.4 Users .. 24

8.5 Twins.. 25

8.5.1 Twin’s Anatomy ... 26

9 APPENDIX 3: ASHVIN IOT PLATFORM RELATED TOOLS28

9.1 Create, read, update, and delete (CRUD) entities ... 28

9.1.1 Ashvin IoT GUI.. 28

9.1.2 Postman .. 28

9.2 Send and receive messages ... 28

9.2.1 Mosquitto .. 28

10 APPENDIX 4: ASHVIN IOT PLATFORM GUI29

10.1 Login screen.. 29

10.2 Dashboard .. 29

10.3 Things ... 30

10.4 Channels ... 35

10.5 Twins.. 37

11 APPENDIX 5: POSTMAN42

11.1 User authentication request .. 42

11.2 Postman environments ... 45

D1.1 Launch Version of the Ashvin Platform

 7

11.3 Create thing request ... 47

11.4 Retrieve thing request... 50

11.5 Requests specifications ... 51

11.5.1 Automatic request generation .. 53

11.5.2 Ashvin Collection .. 54

12 APPENDIX 6: MOSQUITTO56

12.1 MQTT client .. 56

12.2 Subscribe and publish ... 56

12.3 SenML .. 57

D1.1 Launch Version of the Ashvin Platform

 8

1 IOT PLATFORM

Ashvin IoT platform is based on Mainflux, a messaging middleware geared towards

the Internet of things. Mainflux is a scalable, secure, open-source, and patent-free

IoT cloud platform written in Go. It accepts connections over various network

protocols (i.e. HTTP, MQTT, WebSocket, CoAP).

Mainflux IoT platform consists of multiple microservices with separate and well-

defined responsibilities such as management of users and authentication concerns,

management of things and channels - Mainflux IoT platform primitives used to build

complex IoT topologies – and authorization concerns. These microservices can be

run in many different ways according to the use case needs. They can be run locally

or in the cloud, on premise or off-premise. They can be run as a composition of

Docker containers (a lightweight, standalone operating system abstraction that

includes everything needed to run an application) or as standalone applications on

the local host computer.

Mainflux IoT as a core of the Ashvin IoT platform has a complex architecture. Blue

boxes on the picture bellow show Mainflux primitive entities, such as users, things,

adapters, etc. Green cylinders are databases where the messages are persisted.

White cylinders are Mainflux internal message buses. They centralize different

message pathways (data traveling via different protocols of communication). NGINX

acts as Mainflux internal domain name server (reverse proxy) and forwards requests

coming from the “outside world”, i.e. from platform clients, to the corresponding

services (users, things, etc.). Finally, the cloud icon refers to clients of the IoT

platform - devices (data produces) and applications (data consumers).

D1.1 Launch Version of the Ashvin Platform

 9

For the first version of the Ashvin platform, we have chosen to install Mainflux IoT

platform as a Docker container composition orchestrated by Kubernetes.

Mainflux is installed in the cloud managed by DigitalOcean, a cloud infrastructure

provider with data centres worldwide, including Europe. The servers of the Ashvin

IoT platform are located in Frankfurt, but this can be changed easily. NB: we will use

Ashvin IoT platform and Mainflux IoT platform interchangeably in this report.

1.1 Ashvin IoT platform in the context of the Ashvin toolkit

The Ashvin IoT platform (based on Mainflux) is the messaging (communication) core

of the Ashvin toolkit. It is meant to connect data produces – usually, physical devices

on the construction site – to the data consumers – Ashvin toolkit applications

processing the data. Its role is also to store the data. The image below shows the

Ashvin toolkit “stack”. The IoT platform is in the middle of the stack, thus connecting

the “south” end of the stack (data producers) with the “north” end of the stack (data

consumers).

https://www.digitalocean.com/

D1.1 Launch Version of the Ashvin Platform

 10

1.2 Platform features
The main and fully functional features of the deployed platform are following:

 User management, where the user represents the real (human) user of the

system or an organization.

 System provisioning

o Provisioning things, where things represent devices or applications

connected to the platform.

o Provisioning channels, where channels represent communication

pathways between devices and/or applications. Channel serves as a

message topic that abstracts away complexities of the underlying

communication protocols. It is used by things to send and receive

messages.

 Messaging

o with supported protocols

 HTTP

 MQTT

 WS

 CoAP

 LoRaWAN

 OPC UA

o Mutual TLS Authentication with X.509 Certificates over HTTPS, and

MQTTS.

 Storage - platform supports various databases for message persistence

(storing): - CassandraDB - MongoDB - InfluxDB - PostgreSQL

1.3 Platform Access

1.3.1 System management
Platform user can access the platform in multiple ways. For user management and

system provisioning and storage, we use an HTTP RESTful API.

Some of the well-known RESTful API clients include command line tools such as

CURL and GUI tools such as Postman. The use of these kinds of tools is

documented in the Ashvin IoT platform user manual.

Mainflux IoT platform - a backbone of the Ashvin IoT platform - provides also a

custom command line tool - mainflux-cli - as well as a custom GUI tool – Ashvin

IoT platform GUI. The use of the latter is documented in the Ashvin IoT platform

user manual ().

All of these tools are already fully functional and are ready for use in production as of

this writing. Ashvin IoT platform experimental GUI can be accessed at the address

https://iot.ashvin.eu/. The address iot.ashvin.eu itself can be used with any of the

https://iot.ashvin.eu/
https://iot.ashvin.eu/

D1.1 Launch Version of the Ashvin Platform

 11

tools in order to use the Mainflux IoT platform for user management, system

provisioning or messaging.

1.3.2 Messaging
Mainflux IoT platform is a messaging middleware. It is akin to a post office in the

sense that it collects messages on the so-called south end or edge (fog) – where

data producers reside – and relays messages to the so called north end (cloud) –

where data consumers reside.

Once a channel is provisioned and a thing is connected to it, the latter can start

publishing and receiving messages over the former. HTTP, MQTT, WS and CoAP

are supported out of the box and don’t require any special configuration. LoRaWAN

requires that a device be connected to a LoRaWAN server. Once device is

connected to the server, we can connect it with the Ashvin IoT platform. OPC UA

works out of the box, but it is still in the experimental stage.

You can use command line tools such as CURL and GUI tools such as Postman to

send messages via HTTP, the mosquitto_pub and mosquitto_sub MQTT clients to

send and receive messages over MQTT. To send and receive messages over CoAP,

you can use Copper CoAP user-agent. Naturally, those are only some of the well-

known tools and are recommended by Mainflux Labs. The use of these tools with the

Mainflux IoT platform will be documented in the Ashvin IoT platform user manual.

D1.1 Launch Version of the Ashvin Platform

 12

2 FINE-GRADED ACCESS

Mainflux team started an implementation of the fine-graded access based on the

Attribute-based access control (ABAC) model. The ABAC model enables easy

creation and management of users, channels and things groups as well as per

group and per entity (user, channel or thing) permissions.

2.1 Current administration system

Currently, Mainflux users are represented by email and password. The latter are

used as platform access credentials in order to obtain an access token, i.e. as a

means of user authentication. Once logged into the system, the user can manage

resources in a CRUD manner and define things-channels access control policies

(authorization) by connecting things and channels. One should not confuse user

authentication with the thing authorization. The former is used to authenticate a user

and the latter is used to check whether a given thing can send messages to and

receive messages from the given channel.

2.2 New administration system (work in progress)
The development of the new administration system is ongoing and is nearly done. In

the new system there is a root admin. It is created by default and, so, there is

always a root admin and there is a possibility to create additional super admins.

This system is similar to UNIX root and regular users system.

The main role of the root admin and super admins is to organize users into groups to

match the structure of business applications and to organize the access rights. User

groups are further divided into subgroups so there is a hierarchical organization of

parent, children and sibling super- and subgroups of an arbitrary depth.

User groups should be matched with things (devices and apps) groups. When adding

devices or applications in the system, they should be organized so that organization

matches the structure of company organization or some other real word organization

structure (for example devices can be organized in flats, buildings, streets, cities,

etc.).

D1.1 Launch Version of the Ashvin Platform

 13

2.3 Administration system development roadmap
Mainflux users and things groups have a hierarchy and various metadata. Groups

can have parents and children. This opens up the possibility and need for complex

queries of users, things and channels along the lines of metadata and hierarchical

structure. Therefore, queries for traversing relationship trees are on the development

roadmap.

2.4 State of development

The current state of development of the new administration system can be followed

anytime at the address https://github.com/mainflux/mainflux/pull/1246 as well as at

the address https://github.com/mainflux/mainflux/pull/1313. This development is

nearly done, so as of this reading, it may be very well merged into the main version

that can be found anytime here https://github.com/mainflux/mainflux.

https://github.com/mainflux/mainflux/pull/1246
https://www.google.com/url?q=https://github.com/mainflux/mainflux/pull/1313&sa=D&ust=1609147778355000&usg=AOvVaw1G22Hze3YQm0PKbrpX65Zg
https://github.com/mainflux/mainflux/

D1.1 Launch Version of the Ashvin Platform

 14

Once the new version of Mainflux is out, it will be tested on an Ashvin demo

deployment (found also on Digital Ocean) and if everything goes well, it will deployed

on the https://iot.ashvin.eu/. Once deployed, all the existing users of the platform will

be migrated to use the new administration system.

https://iot.ashvin.eu/

D1.1 Launch Version of the Ashvin Platform

 15

3 EDGE COMPUTING MECHANISMS

“Edge”, “fog” or “south-end” is an Industrial Internet of Things (IIoT) terminology used

to refer to the very physical site where data sources are located. Data sources are

various and tend to be numerous, even on a single production site. Even a single

machine can use several protocols or means (such as CSV files) to emit

measurement data and to receive control data.

This means two things. Firstly, there is a plethora of communication methods that

need to be addressed by the IoT platform. Secondly, there is a high quantity of

produced data. This data is collected by a gateway - a south-end hardware device

that hosts an edge IoT platform and serves as a single point of collection of the

production site messages. Usually, a gateway forwards this data to the cloud

applications.

3.1 Edge connectivity
One of the special challenges of the Mainflux IoT platform is enabling the connectivity

of the various types of devices over the gateway. Since there is no "one size fits all"

solution, various services need to be developed that enable device-gateway

communication. The Mainflux IoT platform supports several protocols - MQTT, WS,

CoAP, HTTP, LoRaWAN and OPC UA - out of the box. If a device supports one of

these protocols, this means that it can be directly connected to the platform. However,

if a device is not connected to the internet or the device supports a specific

communication protocol, a special software service (a “daemon”) must be written in

order to enable one-way or two-way device-gateway communication.

3.2 Edge communication mechanisms
Mainflux IoT platform has, as an add-on, export service. The latter can send

messages from one Mainflux cloud to another via MQTT, or it can send messages

from edge gateway to Mainflux Cloud. The development of the export service is

ongoing and can be found here https://github.com/mainflux/export.

Mainflux IoT Agent is a communication, execution and software management agent

for Mainflux IoT platform that runs on the gateway. The development of the Agent is

ongoing and can be found here https://github.com/mainflux/agent.

3.3 Rules engine
Rules engine is a production rule system. The rule-based approach is dependent

on a knowledge representation that pertains to a specific domain. A rule has a

condition and an action. Rules engine uses knowledge representation to encode a

current state of the system. Based on the current state, the rules engine evaluates

rules and takes appropriate actions if the rule conditions associated with these

https://github.com/mainflux/export
https://github.com/mainflux/agent

D1.1 Launch Version of the Ashvin Platform

 16

actions are met. This enables a real-time processing of production data on the IIoT

edge and specifically, on a gateway. This is important for two reasons. Firstly, we

want to save network bandwidth and storage costs. Secondly, we want to be able to

do some kind of basic data analytics on the data production site.

3.4 Network bandwidth and storage costs
The amount of production site data is usually so huge that there are significant

network bandwidth and storage costs associated with data fog-cloud transfer. One of

the aims of rules engine is to transform and filter data in order to save network

bandwidth and reduce storage requirements.

3.5 IoT data analytics
Edge lightweight IoT data analytics software such as rules engine is used for

predictive maintenance and to improve system safety. By analysing and processing

data from different data sources, various failures related to operation and safety can

be predicted and a further insight into the system operation can be gained.

3.6 Ongoing research
We are currently analysing and testing two candidates for the rules engine that will

be used on the edge. The candidates are Grule and EMQ X Kuiper. The idea is to

integrate one of these two rules engines into the existing Mainflux IoT platform. Both

of the rules engines are written in the programming language Go and are lightweight

and are thus well adapted for the resource constrained edge devices such as

gateways. The projected end of research is the end of December 2020. We should

start the integration of the rules engine with the Mainflux IoT platform in the January

2021. However, if we decide that none of the existing rules engine matches the

special needs of the Ashvin use cases and the internals of the Mainflux architecture,

we will start the development of the custom in-house rules engine.

https://github.com/hyperjumptech/grule-rule-engine
https://github.com/emqx/kuiper

D1.1 Launch Version of the Ashvin Platform

 17

4 DATA GATHERING AND EXCHANGE MECHANISMS

4.1 Data exchange mechanisms
One of the problems that need to be solved is the data exchange mechanism

between Mainflux IoT platform consumers - Ashvin tools, parts of the Ashvin toolkit -

 and the platform itself. Two things need to be taken into account. Firstly, we need to

determine compatible data formats. Secondly, we need to address the multitude of

protocols used to transfer messages or data.

Mainflux is collaborating closely with CERTH and DTT on defining the data format

and the data exchange mechanisms. For now, the preferred way to transfer data is

via the RESTful mechanisms and the preferred data format is JSON. Mainflux IoT

platform has already well defined RESTful API that is thoroughly documented by

means of OpenAPI specification documents and is ready to use.

4.2 Data gathering mechanisms
The exact details of the demo sites are still unknown. However, in close collaboration

with FAS, Mainflux Labs created a detailed questionnaire for the demo site owners in

order to gather as much details as possible about the data sources (various data

producing devices such as sensors) existing on the demo sites. Also, there is an

ongoing effort with the representatives of the Zadar airport to determine the best

network and device setup for the demonstration site in question.

Mainflux also launched an independent research on the sensors typically used on

construction sites and in buildings. The reason behind this research is not only to

predict possible challenges on construction sites, but also to make a

recommendation document that details how to connect, or enrich with connectivity,

construction sites which are not connected, or are not sufficiently connected, to some

sort of network (LAN, WAN, private, public, etc.) or are not sufficiently equipped with

sensors.

D1.1 Launch Version of the Ashvin Platform

 18

5 MEETINGS

Mainflux Labs organized two meetings related to the work package 1. The first

meeting was an initial meeting. The meeting was attended by the representatives of

TUB, DTT, EUR, FAS and UPC. The second meeting, related to the planning and

development of WP-1 and related WP-3 tasks was attended by DTT and UPC.

Meeting minutes can be found in the https://nextcloud.ashvin.eu/ > Documents >

WP1 > Meeting Minutes. Representatives of Mainflux Labs also participated in the

numerous meetings organized by various Ashvin partners.

https://nextcloud.ashvin.eu/

D1.1 Launch Version of the Ashvin Platform

 19

6 CONCLUSION

This accompanying report briefly describes Deliverable 1.1 of the Ashvin project –

the launch version of the Ashvin IoT platform available at https://iot.ashvin.eu. The

platform serves as basis for all technical development of the Ashvin project. Having

an initial version of the platform available at the start of the project already allows for

data collection from demonstration projects. The platform will be further improved

throughout the project and a final version will be described in D1.6 Fulll Version of

the Ashvin Digital Twin Platform.

https://iot.ashvin.eu/

D1.1 Launch Version of the Ashvin Platform

 20

D1.1 Launch Version of the Ashvin Platform

 21

7 APPENDIX 1: ABOUT ASHVIN IOT PLATFORM

7.1 What is Ashvin

Ashvin strives to develop a solution that will place the European construction industry

on the international stage as the number one example to follow. It will do this by
employing the power of digitalization and the cutting-edge Digital Twin Technology.

Digitizing and transforming the European construction industry

7.2 What is Ashvin IoT platform (AIP)?

Ashvin IoT platform is a modern, scalable and secure IoT platform. It can be deployed
in cloud or on premise. It is meant to be run on Linux machines, but can be also
deployed on Mac and Windows machines natively. AIP accepts connections over
various network protocols (i.e. HTTP, MQTT, WebSocket, CoAP) making a seamless
bridge between devices and applications.

While Ashvin project aims at providing the Ashvin platform, i.e. “an open source digital twin
platform integrating IoT and image technologies, and a set of tools and demonstrated
procedures to apply the platform” (About Ashvin), Ashvin IoT platform (AIP) is the
underlying layer of connectivity that enables the real-time device to device, app to app,
device to app and app to device communication. Thus, AIP plays the role of a low-level
enabler of the higher level (more abstract) and end-user oriented aspects of the Ashvin
platform. In a nutshell, AIP is a messaging middleware backbone of the Ashvin platform.
AIP is based on Mainflux, an open-source and patent-free IoT messaging middleware written
in Go.

http://www.ashvin.eu/
http://www.ashvin.eu/about/
https://github.com/mainflux/mainflux

D1.1 Launch Version of the Ashvin Platform

 22

Mainflux messaging middleware written in GO

AIP is made and maintained by Mainflux Labs.

7.3 AIP Address

Ashvin IoT platform can be accessed at iot.ashvin.eu internet address. In order to use

it, you need a valid user, i.e. you need access credentials. To get the credentials,
please write an email to ashvin@mainflux.com.

https://www.mainflux.com/
https://iot.ashvin.eu/
mailto:ashvin@mainflux.com

D1.1 Launch Version of the Ashvin Platform

 23

8 APENDIX 2: ASHVIN IOT PLATFORM ENTITIES

AIP features two basic entities used to represent physical devices or software
applications and their communication. Firstly, things represent hardware such as
gateways and devices (sensors and actuators) as well as software such as

visualization tools, rules engines, etc. Secondly, channels represent means of
communications between things.

Things exchange messages via channels. Things can send or publish messages over channels.
Things can receive or listen to channel for the incoming messages. A Thing has to be
connected to a channel in order to send and receive messages via the respective channel.
Messages sent over channels are persisted in a database.

Ashvin IoT platform architecture

8.1 Things

AIP Thing represents any data source or producer (provider). It can be a sensor

based physical device, cloud based app that generates data or any edge located data
source such as gateway.

Thing represents also any data destination or consumer. It can be an actuator based physical
device, a cloud based app that receives data - e.g. data visualization tool such as Grafana - or
an edge located app such as machine software, gateways etc.

8.2 Channels

Channels are communication pathways or data transmission mediums. AIP things
communicate via channels by a) sending messages to and b) receiving messages

D1.1 Launch Version of the Ashvin Platform

 24

from channels. Channels should be best thought of as pipes which let messages flow
in both directions.

Channels abstract away complexities of low-level communication protocols (MQTT, HTTP,
etc.) handling and offer a unified and easy to use interface to exchange messages.

8.3 Messages

Message consists of communication payload - information of interest - accompanied
by a metadata such as who sent the message, when the message was sent, etc. AIP

saves every message into a database of choice. DBs supported out of the box are
MongoDB and InfluxDB.

AIP implements publish and subscribe model (pubsub model). Things publish messages over
channels by means of HTTP, WebSocket, MQTT and CoAP protocols (other protocols are also
supported). Things subscribe to channels by means of WebSocket, MQTT and CoAP
protocols. Any thing can publish message to any channel and any thing can receive message
from any channel. It is important to keep in mind that sending thing does not know anything
about receiving things and vice versa, receiving things do not know anything about the
sending thing - except for the sending thing’s id. Things are generally only “aware” of
channels and messages.

This is how a typical Mainflux message looks like when received in the JSON format:

{
 "channel": "038774f6-1d37-4dab-9107-487adc3466a4",
 "subtopic": "room3.occupancy",
 "publisher": "6d2d8ad1-87b1-4b72-9b6f-2c00ae8755a1",
 "protocol": "http",
 "name": "occupancy3",
 "time": 1608542793.263,
 "bool_value": false
}

The field publisher refers to the sending thing’s AIP internal id and time refers to
Unix time. Instead of bool_value message can also have a float, string or binary

value.

8.4 Users

Users are AIP tenants and represent physical persons and organizations. Users own

channels and things. Users provide authentication mechanisms to AIP, i.e. a secure
access to things and channels and their manipulation.

User is represented via e-mail and password. The latter are used as platform access
credentials in order to obtain an access token. Once logged into the system, user can
manage his resources (i.e. things and channels) in CRUD fashion and define access control
policies by connecting them.

There is an important distinction to keep in mind here. While user provides access rights to

https://www.json.org/
https://en.wikipedia.org/wiki/Unix_time

D1.1 Launch Version of the Ashvin Platform

 25

and allows one to perform CRUD operations on channels, things and their connections,
thing’s ID and key are used as credentials - a sort of username and password - to send and
receive messages over channels.

8.5 Twins

Not to be confused with DTT’s digital twin.

In the IoT terminology, twin refers to a digital representation of a real world data system
consisting of possibly multiple data sources/producers and/or destinations/consumers (data
agents).

A machine can use multiple protocols such as MQTT and OPC UA, and a regularly updated,
machine hosted CSV file to send measurement data - such as flow rate, material
temperature, etc. - and state data - such as engine and chassis temperature, identity of the
current human operator, etc. - as well as to receive control (messages) - such as, turn on/off
light, increment/decrement borer speed, etc. On the cloud end of the IoT spectrum, an
application can consume, but it can also generate data. There can be a whole series of
logically interconnected applications that produce data.

Twin is an abstract digital replica of a real world system such as the machine we have just
described or a series of logically interconnected applications, or both. It is used to store
system’s state snapshots, to compare system states over a given period of time - so-called
diffs or deltas - as well as to control agents composing the system.

Twin entity is built on top of the Ashvin IoT platform and relies on its architecture and
entities, more precisely, on users, things and channels. Ashvin IoT twin consists of three
parts:

• General data about twin itself, i.e. twin’s metadata,

• History of twin’s definitions, including current definition,

• History of twin’s states, including current state.

All twins and their states are persisted in the database. Currently, Ashvin IoT system
supports MongoDB for twin persistence out of the box. (Messages can be persisted

in MongoDB as well as in InfluxDB.)

D1.1 Launch Version of the Ashvin Platform

 26

AIP architecture with twin service

8.5.1 Twin’s Anatomy

Twin’s general information stores twin’s owner email - owner is represented by an
Ashvin IoT platform user -, twin’s ID (internal unique identifier) and name (not
necessarily unique), twin’s creation and definition update times as well as twin’s
revision number - the sequential number of twin’s definition.

Twin’s definition is a semantic representation of system’s data producers and consumers
(data agents). Each data agent is represented by means of an attribute. An attribute consists
of data agent’s name, channel and subtopic. Nota bene: each attribute is uniquely defined
by the combination of channel and subtopic and we cannot have two or more attributes
with the same channel and subtopic in the same definition.

A typical twin’s definition might look like this:

{
 "id": 6,
 "created": "2020-12-15T09:05:19.445Z",
 "attributes": [
 {
 "name": "room2 > temperature",
 "channel": "32628244-4569-45fa-84c8-a4ac4a77f258",
 "subtopic": "room2.temperature",
 "persist_state": true
 },
 {
 "name": "room2 > humidity",
 "channel": "32628244-4569-45fa-84c8-a4ac4a77f258",
 "subtopic": "room2.humidity",
 "persist_state": true
 },
 {
 "name": "room2 > occupancy",
 "channel": "32628244-4569-45fa-84c8-a4ac4a77f258",
 "subtopic": "room2.occupancy",

D1.1 Launch Version of the Ashvin Platform

 27

 "persist_state": true
 },
],
 "delta": 1000
}

A typical twin’s state might look like this:

{
 "twin_id": "8905064a-af8d-4705-9970-bf6f6d49fe83",
 "id": 3501,
 "definition": 6,
 "created": "2020-12-15T12:23:13.556Z",
 "payload": {
 "room2 > humidity": 66.51826718978143,
 "room2 > occupancy": false,
 "room2 > temperature": 28.917830716862856
 }
}

D1.1 Launch Version of the Ashvin Platform

 28

9 APPENDIX 3: ASHVIN IOT PLATFORM RELATED TOOLS

Ashvin IoT platform (AIP) is at its core a messaging middleware. Except for the well-
defined and comprehensive IoT entities CRUD and messaging oriented application
programming interface, it does not offer much in terms of a user interface. However,

there are many open source tools that can use AIP application programming
interface in order to

• log in,

• perform create, read, update, and delete (CRUD) operations on AIP basic
entities,

• send and receive messages.

Every interaction with the API requires a valid Ashvin IoT platform user.

9.1 Create, read, update, and delete (CRUD) entities

9.1.1 Ashvin IoT GUI

Ashvin IoT platform has a dedicated GUI for the platform operators. GUI is under
development and can be used for all CRUD operations. GUI is not supposed to be

used for messaging. In other words, it is used to create, read, update, and delete
things and channels as well as their connections (for more information, please see

entities). This is the easiest way to perform CRUD operations in AIP. You can get
more information here.

9.1.2 Postman

Postman is the API Client that enables you to send HTTP requests and receive HTTP

responses. Postman enables you to do manually what your browser is doing
automatically for you. That means that you can use Postman to gain a greater and

fine grain control over AIP CRUD operations. You can get more information here.

9.2 Send and receive messages

9.2.1 Mosquitto

Eclipse Mosquitto is an open source message broker that implements the MQTT
protocol. The Eclipse Mosquitto project also hosts the development of the popular

mosquitto_pub and mosquitto_sub command line MQTT clients. You can get
more information here.

entities.md
index.md#aip-address
entities.md
gui.md
postman.md
https://mosquitto.org/
https://en.wikipedia.org/wiki/Message_broker
mosquitto.md

D1.1 Launch Version of the Ashvin Platform

 29

10 APPENDIX 4: ASHVIN IOT PLATFORM GUI

To operate AIP in an intuitive way, we use AIP dedicated graphical user interface
(GUI). To be clear, this GUI is not a platform itself. It is only an external tool used to
operate a platform. To understand why, please keep in mind that the AIP is at its

core a messaging middleware that exposes a well-defined API to be used with
various protocols such as HTTP, MQTT and CoAP.

AIP GUI leverages a RESTful web service design. In practice, this means that you can use
HTTP methods, such as GET, HEAD, POST, PUT, etc. to perform create, read, update, and
delete (CRUD) operations on the AIP entities and that is exactly what AIP GUI enable us to
do.

NB: AIG GUI is not meant to be used to send messages. You can use Mosquitto client to send
and receive messages over AIP.

10.1 Login screen

AIP GUI is located at iot.ashvin.eu. Once you go there, you are presented with the
login screen. To use it, you need to be a valid user, i.e. you need access credentials.

Please see here how to get the credentials.

10.2 Dashboard

Once you are logged in, you are presented with the dashboard.

GUI dashboard

In the central panel you can see the description and some useful links, amongst others, link
to this documentation.

The menu on the right shows you the top-level options. The majority of these options reflect

https://en.wikipedia.org/wiki/Representational_state_transfer
entities.md
mosquitto.md
https://iot.ashvin.eu/
index.md#aip-address

D1.1 Launch Version of the Ashvin Platform

 30

AIP entities and these options let you operate, in a CRUD fashion, these entities.

10.3 Things

If you select the Things menu option, you will be presented with the following
screen:

Things list

This is the list of the things that belong to your user, i.e. to the currently logged in user.
To add a new thing, click on the plus sign, enter thing’s name and click the check mark sign:

Add thing

entities.md
entities.md#things

D1.1 Launch Version of the Ashvin Platform

 31

The thing’s ID will be automatically generated. Now you can click on the details icon (a
magnifying glass) to see the details of your thing. You will be presented with the details
screen:

Thing’s details

On the details screen, you can see thing’s ID and thing’s key. The former is the internal
Ashvin IoT platform identifier. The latter is best understand as thing’s password. You need
this in order to send and receive messages with this thing. The thing’s key is an AIP
abstraction: it abstracts away complexities of different protocol authorization procedures.
As things abstract away complexities of protocol authorization, channels abstract away
complexities of protocol message “routing”. In order to exchange messages via the thing in
question, we need to connect the thing to the appropriate channel:

postman.md
entities.md#messages
entities.md#channels

D1.1 Launch Version of the Ashvin Platform

 32

Connect thing and channel

In the upper-right corner of the screenshot, we see the possible channels listed in the drop
down menu.

In this particular example, the channel represent single machine’s communication “route”.
Our hypothetical machine is endowed with many sensors represented by AIP things and all
this sensors communicate with a cloud application via this single channel. (Naturally, there
are other ways to represent the real data system by using AIP things and channels.) This
single channel could stand for (and abstract away complexities of) an mqtt host and topic,
for example.

To connect a thing to a channel, simply select the channels and click on the connect button.
You can also edit the thing’s metadata:

D1.1 Launch Version of the Ashvin Platform

 33

Thing’s metadata

Metadata is used to add an arbitrary data to a thing. We normally add a type of the thing.
For example, a type can be device or an application. You can have more precise types
like drilling machine, etc. This kind of data is called metadata because - unlike thing’s
key and thing’s ID which are AIP internal data necessary for the proper functioning of the AIP
-, AIP does not understand anything about the metadata structure and semantics. It is a
responsibility of a user - be it a real person or another application built on top of AIP - to
figure out the organization and meaning of the metadata.

To add a metadata, simply type a valid JSON object in the Metadata card and click on the
edit button. If your JSON is valid, which you can check beforehand, for example, here, you’ll
get a metadata edit success notification.

Finally, in the card Messages, you can see all messages sent or received by the current
thing:

https://www.json.org/
https://jsonformatter.org/

D1.1 Launch Version of the Ashvin Platform

 34

Thing’s messages in table format

You can get a “raw” message list - messages formatted as a list of JSON objects - by clicking
on the table dropdown menu and selecting json:

Thing’s messages in JSON list format

A thing can be subscribed to multiple channels, and many things can be subscribed to one
channel. To tell if a thing is a receiver or a sender of a message, just compare the
publisher field of a particular message with thing’s ID. If they are the same, than the
current thing is the publisher of the message.

D1.1 Launch Version of the Ashvin Platform

 35

10.4 Channels

The interface part for CRUD operations on channels follows the same logic as the
interface part related to things. Firstly, you can list channels that you (or your user)
have by simply clicking on the Channels in the left hand side menu.

Channels list

From there on, you can create the new channel in the same way you create a new thing. Just
click on the plus sign, enter channel’s name and cl ick the check mark sign. By clicking on the
magnifying glass icon, you can visit particular channel’s details page.

Ashvin IoT platform supports one-to-one, one-to-many, many-to-one and many-to-many
connections between arbitrary things and channels. In other words, you can connect any
thing to any channel and vice versa. You can connect things and channels either on thing’s
details page or on channel’s details page. The procedure is the same:

entities.md#channels
entities.md#things
entities.md#channels

D1.1 Launch Version of the Ashvin Platform

 36

Connect thing and channel

You can edit channel’s metadata in the same way you edit things metadata. Just enter a
valid JSON object and click on the Edit button. If the JSON object is valid, you will get a
success notification:

Channel’s metadata

As with things, metadata is not related to internals of Ashvin IoT platform. Rather, it enables
IoT system designers to make an IoT data system with a custom semantics and structure.
Finally, you can also get a list of messages send or received over the channel in question by
simply inspecting the card Messages:

D1.1 Launch Version of the Ashvin Platform

 37

Channel’s messages in table format

Obviously, channel attribute of a particular message will always be the same as the
channel ID of the current channel.

10.5 Twins

Mainflux twin is a digital representation of a real world data system consisting of

multiple data sources/producers and/or destinations/consumers. Its aim is to
facilitate the logical or semantic grouping of physical devices and applications.

The interface part for CRUD operations on twins follows the same logic as the interface part
related to things. Firstly, you can list twins that you (or your user) have by simply clicking on
the Twins option in the left hand side menu.

entities.md#twins
entities.md#twins

D1.1 Launch Version of the Ashvin Platform

 38

Twins list

You can create a new twin in the same way you create a new thing: click on the plus sign,
enter twin’s name and click the check mark sign. By clicking on the magnifying glass icon,
you go to the particular twin’s details page.

Twin’s details

Twin info card shows you the name and internal ID of the twin, owner and when it was
created as well as when it was updated. To understand what twin update means, one needs
to understand the anatomy of a twin. In a nutshell, the main part of a twin is it’s definition
which consists of a set of attributes, where each attribute is uniquely defined by a
combination of channel and subtopic.

entities.md#twins-anatomy
entities.md#channels

D1.1 Launch Version of the Ashvin Platform

 39

Definition card shows you the current definition of a twin. By clicking on the button
History, you get a chronological list of successive twin’s definitions.

Twin’s definition

The field persisted tells us whether an attribute is persisted in the database. This leads us
to the question of twin’s state. Twin’s state is a snapshot in a certain point in time of a data
agent represented by a twin. It stores the values of attributes in a certain point i n time. The
new snapshot occurs when any of the attributes change and if the time difference, delta,
between the last snapshot and the snapshot being taken is greater than a set amount of
time.

State on the twin’s details page

Twin’s details

D1.1 Launch Version of the Ashvin Platform

 40

shows us the current values of the attributes whether they are persisted in a database
(currently only MongoDB is supported) or not. By clicking on the History button, you go to
the chronological list of states:

Twin’s states

You see a total count of states and from and to fields, where you can enter the range of
states (max range spans 100 states) to be displayed in the lower list. Each state has an ID -
which is simply state’s ordinal number - and a Definition field corresponding to a certain
revision number of a twin, i.e. to a certain definition of twin. The date refers to the time
when the state snapshot was made. Finally, the column payload shows us the attribute
names and their corresponding values.

In the bottom of the twin’s details page, you can find an attribute editor:

D1.1 Launch Version of the Ashvin Platform

 41

Twin’s attribute editor

In the area outlined by rectangle 1, you can see an individual attribute editor. You can give a
name, select a channel, enter a subtopic and select whether you want to persi st an
attribute. By clicking on the Add/Update Attribute button, you add an attribute to an
attribute list (or update it, if the attribute was already there). An attribute list itself, the area
outlined by the rectangle 2, shows you the list of attributes and their properties. This list
represents a set of attribute that will compose the future (next) definition of a twin. You can
also set the time difference delta (see above). By clicking on Update definition button, you
update the twin’s definition, i.e. you turn the attribute list from the attribute editor in to the
current twin’s definition.

D1.1 Launch Version of the Ashvin Platform

 42

11 APPENDIX 5: POSTMAN

Postman is, amongst other, the API Client that enables you to send HTTP requests
and receive HTTP responses. Postman enables you to do manually what your
browser is doing automatically for you. This means that you can use Postman to gain

a greater and fine grain control over AIP CRUD operations.

11.1 User authentication request

Let us now see how to create an HTTP request in Postman. Every Postman request is

a part of a collection of requests. So we need to make a collection first.

Postman Collection

Once you make a collection, click on the Add requests link and you will be presented with
the request metadata (we will enter request HTTP data later) editor:

https://www.postman.com/

D1.1 Launch Version of the Ashvin Platform

 43

Postman Request

Enter the request name as “User authentication” and save the request to the collection.
The first thing you want to do when interacting with the AIP is to get your user token. This
token is then used in all other requests that you send to the AIP. Token is used by AIP to
verify the authenticity of your requests. So let us set the Postman request that we have just
made to request the user token. Go to the Params tab (it should be open by default),
replace GET method by POST and enter the iot.ashvin.eu/tokens in the URL field.

Method selection

Every request that you make via Postman is directed towards a certain address. Every
request addressed to the AIP begins with iot.ashvin.eu/. We use the POST method of
request sending in order to post our username and password in the request body.

D1.1 Launch Version of the Ashvin Platform

 44

To set a request body, go to Body tab, select raw body and from the dropdown menu select
JSON. Then enter

{
 "email": "<email>",
 "password": "<password>"
}

in the body text field, replacing <email> and <password> with the email and
password that you used to create a user (pay attention to keep " around your email

and password in order to respect how JSON format specifies strings).

Request body

When your done, you are almost ready to send a request. You need to put the information
in your request that you are sending a JSON content in the request body. Go to Headers tab
and enter Content-type in the first row and the KEY column and application\json in
the first row and the Value column.

index.md#aip-address

D1.1 Launch Version of the Ashvin Platform

 45

Request headers

Now click on the Send button and, if everything went well, you should get something similar
to this as a response body:

{
 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2MDg2N
zU5MDQsImlhdCI6MTYwODYzOTkwNCwiaXNzIjoibWFpbmZsdXguYXV0aG4iLCJzdWIiO
iJwZXRhci5wZXRyb3ZpY0BlbWFpbC5uZXQiLCJpc3N1ZXJfaWQiOiJhOWM1MWE1MC1jM
zQwLTQ5YTctOTA2ZC1jZDUwNmU3NTM1ZTQiLCJ0eXBlIjowfQ.B-I464fhsneLAOJZdj
RgCJLIt1aDvymVrlDpWAkW-Fg"
}

Your token is this long cryptic word, in our case

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE2MDg2NzU5MDQsImlhdCI
6MTYwODYzOTkwNCwiaXNzIjoibWFpbmZsdXguYXV0aG4iLCJzdWIiOiJwZXRhci5wZXR
yb3ZpY0BlbWFpbC5uZXQiLCJpc3N1ZXJfaWQiOiJhOWM1MWE1MC1jMzQwLTQ5YTctOTA
2ZC1jZDUwNmU3NTM1ZTQiLCJ0eXBlIjowfQ.B-I464fhsneLAOJZdjRgCJLIt1aDvymV
rlDpWAkW-Fg

We will use it to create our first thing. So note it down.

11.2 Postman environments

Better yet, let us use Postman itself to store the token (see above). This is a
preferred alternative, since we will be able to reuse our stored token in multiple
requests. When we start a new session and get a new token, we will simply update
the value stored in Postman and we will not have to change any of our requests (see
below).

Postman use environments to store logically related sets of values. To create an
environment, click on the icon marked by 1 in the image below.

D1.1 Launch Version of the Ashvin Platform

 46

Postman environment

After that, click on the button Add (2 on the image above) and you will presented with the
following window:

Postman environment

Enter the environment name (1), enter token as a variable name (you can enter any name
you like), fill in the initial and the current value of the variable - in our case, simply paste the
token value in both fields (2) -, and finally click on the Add button (3).

To use your environment, simply select it from the dropdown list (1) and to visualize it and
edit it, click on the eye icon button (2):

D1.1 Launch Version of the Ashvin Platform

 47

Postman environment

11.3 Create thing request

Now that we have set the environment, we can use our environment variable token
to create another request. We will create a request that will instruct AIP to create a

thing (a platform entity mostly used to represent a real world device or a software
application). Add a new request to the collection:

Postman request

And give it a name Adds new thing (you can give it any name you like). Select POST as a

entities.md#things

D1.1 Launch Version of the Ashvin Platform

 48

request method and enter iot.ashvin.eu//things in the URL text field. In the headers
tab, you need to add two rows: one with the key Content-type and the value
application/json and the other with the key Authoization and the value
{{token}}. The {{<variable_name>}} syntax tells to Postman to look for the value of
token in the currently chosen environment - the Ashvin docs environment, in our case.

Postman request

Finally, switch to the tab Body, select raw as a body type and select JSON as a body type
specifier from the dropdown list. In the Body text field, enter the name and the metadata of
the thing you want to create, e.g.

{
 "name": "borer temperature sensor",
 "metadata": {
 "min heat": 15,
 "max heat": 55
 }
}

You can normally enter any kind of metadata you like as long as it follows JSON
format. Also, the thing’s name is arbitrary.

We should be all set now. If you click the Send button, you should get a response with a
Status: 201 Created. Of special interest are the response headers of the response:

https://www.json.org/json-en.html
https://www.json.org/json-en.html

D1.1 Launch Version of the Ashvin Platform

 49

Response headers

It is important to note the thing’s id which you get in the Location header. It’s a long
number in a uuid format that follows the /things/ prefix, e.g. aa5edfa6-d362-462c-
8270-4c0caff44aa8. Please note it down, or better yet, let’s add it to our Postman
Ashvin docs environment. Click on the eye icon, and then on the button Edit and enter
the variable name, initial and current value:

Postman environment

D1.1 Launch Version of the Ashvin Platform

 50

11.4 Retrieve thing request

Now we are ready to fetch our created thing and see it’s properties. In order to do
so, create another request and name it, for example, Retrieve thing info. Set
requests method to GET. Our URL, iot.ashvin.eu//things/:thingid is a bit
unusual this time, because it contains :thingid. This means that this part of the
URL will be replaced by the value we put in the parameter row with a key thingid.

Parameters

We will put our environment variable {{thingid}} in the value column. We need to put
our token environment variable in the Headers tab as we did for the create thing request:

Headers

D1.1 Launch Version of the Ashvin Platform

 51

As explained (see above), this is needed in order to authenticate the platform user.
And we are ready to send a request. By clicking on the button Send, you should get a
response with a body similar to this one:

{
 "id": "aa5edfa6-d362-462c-8270-4c0caff44aa8",
 "name": "borer temperature sensor",
 "key": "635c2084-60da-491f-b448-4df5ab6abfef",
 "metadata": {
 "max heat": 55,
 "min heat": 15
 }
}

You can see your thing’s id, name, key and metadata.

11.5 Requests specifications

We have added three requests so far, so one might ask how do we know all the data

needed to create requests. What is more, how do we know what requests we can
make? This is a general question, since it is not related specifically to Postman.

Postman is just one of the tools we can use to make HTTP requests addressed to the
the Ashvin IoT Platform (AIP). (One of the popular choices is curl, an open-source CLI

HTTP client.)

AIP is based on Mainflux, a “scalable, secure, open-source, and patent-free IoT platform”.
Mainfluxes exposes a well defined HTTP API and that is the API that the Ashvin IoT platform
is using. This API itself is described in the following files:

• users

• things

• twins

For a non-programmer, those files are rather cryptic. So, select the entire text in an

individual file, copy it and head to the online Openapi specification editor. (Openapi
is the name of the specification standard followed by the AIP (Mainflux) HTTP API

specifications.) If everything went well, you should get a document similar to this
one:

https://curl.se/
https://github.com/mainflux/mainflux
https://raw.githubusercontent.com/mainflux/mainflux/master/users/openapi.yml
https://raw.githubusercontent.com/mainflux/mainflux/master/things/openapi.yml
https://raw.githubusercontent.com/mainflux/mainflux/master/twins/openapi.yml
https://editor.swagger.io/
https://swagger.io/specification/

D1.1 Launch Version of the Ashvin Platform

 52

Openapi specification

All the possible requests you can make are listed there. You can now unfold any of the
request in order to see the data needed to construct a request (in Postman, or in any other
HTTP client, such as curl):

Openapi specification request

In the upper image, I have unfolded the request to add a new thing. We can see that request
takes one parameter, Authorization. This parameter takes as a value our user token in
the form of a uuid string. Furthermore, the request expects a JSON body with a following
schema:

https://curl.se/

D1.1 Launch Version of the Ashvin Platform

 53

{
 "key": "string",
 "name": "string",
 "metadata": {}
}

When we created a thing (see above), we have actually used the following JSON
body:

{
 "name": "borer temperature sensor",
 "metadata": {
 "min heat": 15,
 "max heat": 55
 }
}

We left out key field and we, thus, let AIP to generate a thing key for us.

11.5.1 Automatic request generation

Postman allows us to automate the process of request creation by importing directly
Openapi specifications. Click on the Import button, switch to Link, enter one of

the URLs from the upper list and click on the button Continue.

Import Openapi specification

Finally, click on the button Import and Close, and you should get a collection of requests
generated based on the Openapi specification. These requests are more or less ready to use.
You should go through each request you want to use and fill in the missing info, such as the
URL prefix, your user token, thing id, etc.

D1.1 Launch Version of the Ashvin Platform

 54

11.5.2 Ashvin Collection

If you don’t want to generate the requests yourself, you can go here and download
the request collection and the associated environment.

Github

Click on the Download zip button, unpack the zip archive. In the ashvin folder you will
find two files, Ashvin.postman_environment.json and
Ashvin.postman_collection.json. In order to import a collection, click on the
Import button and then on the Upload files button.

Import Openapi specification

https://github.com/MainfluxLabs/postman

D1.1 Launch Version of the Ashvin Platform

 55

Select Ashvin.postman_collection.json and follow the procedure.
In order to import an environment, click on the environments button and then on the
Import button.

Import Openapi environment

Click on the Choose Files button, select Ashvin.postman_environment.json and
follow the procedure.

You use Ashvin collection in conjunction with the Ashvin environment so be sure to select
Ashvin environment from the environments dropdown list in order to activate it. Once you
select environment, be sure to fill in the environment variables with your desired values for
the URL prefix, your user token, thing id, etc.

D1.1 Launch Version of the Ashvin Platform

 56

12 APPENDIX 6: MOSQUITTO

12.1 MQTT client

Eclipse Mosquitto is an open source message broker that implements the MQTT
protocol. Since the Ashvin IoT platform uses an MQTT message broker, amongst

other brokers, to send and receive messages, You can use the AIP to send and
receive messages over MQTT. Eclipse Mosquitto features mosquitto_pub and
mosquitto_sub command line MQTT clients for sending and receiving messages
over MQTT.

Since mosquitto_pub and mosquitto_sub are command line tools, you will need a
terminal (or a console) in order to send and receive messages. Every major operating system
comes with a terminal pre-installed, so you do not need to worry about that. You can find
the installation instructions for mosquitto message broker here. This will also install
mosquitto publish and subscribe clients, i.e. mosquitto_pub and mosquitto_sub.

12.2 Subscribe and publish

In order to publish messages via MQTT you need at least one thing and one channel.
For the sake of clarity, we will use two things: one will publish messages to a channel
and the other will listen for these messages on the same channel (please do note
that the same thing can be used to publish and listen for messages on the same
channel). Publishing and listening things need to be connected to the channel that
will be used for the message transmission. To create things and channels and
connect them, you can use an the AIP dedicated GUI or any other HTTP client,
e.g. Postman.

So, now you have two things - one that will publish messages over mqtt, and the other that
will receive them - and a channel used for message transmission. Both things need to be
connected to the channel. Please note down both things’ ID and key as well as the channel’s
ID (channels do not have key since they are used to route messages and not to authenticate
senders and receives). We will need to use things’ IDs and keys as means of authentication
and the channel’s ID to construct an MQTT topic.

To actually receive messages, we need first to subscribe to a channel. In order to do it, you
use this general format of command:

mosquitto_sub -u <thing_id> -P <thing_key> -t channels/<channel_id>/
messages -h iot.ashvin.eu

Where you replace words in <> (together with <>) with concrete values. For
example,

mosquitto_sub -u 5b8e259c-f69e-4da3-8cf8-266b4ad18d98 -P d87c90b7-00
00-4774-b2ab-0900f122a3e2 -t channels/44c669a4-7ebc-40c8-ab6d-5bf9ac
8398c5/messages -h iot.ashvin.eu

Please do notice how we do not use user’s credentials in order to subscribe to a
channel. Rather, we use thing’s credentials, i.e. thing’s ID and key. We do it in order

to see whether a thing with the given credentials is authorised to publish and

https://mosquitto.org/
https://en.wikipedia.org/wiki/Message_broker
https://mosquitto.org/download/
entities.md#things
entities.md#channels
gui.md
postman.md

D1.1 Launch Version of the Ashvin Platform

 57

subscribe to a given channel. In the terminology of the AIP, we check whether the
thing is connected to a given channel.

To publish a message over a channel, call the following command:

mosquitto_pub -u <thing_id> -P <thing_key> -t channels/<channel_id>/
messages -h localhost -m '[{"bn":"some-base-name:","bt":1.2760200760
01e+09, "bu":"A","bver":5, "n":"voltage","u":"V","v":120.1}, {"n":"c
urrent","t":-5,"v":1.2}, {"n":"current","t":-4,"v":1.3}]'

For example,

mosquitto_pub -u aea9e669-2526-495b-bcd4-7d3d26c65f5d -P d07541b9-30
89-48c5-b914-4bb90e0d9b5e -t channels/44c669a4-7ebc-40c8-ab6d-5bf9ac
8398c5/messages -h iot.ashvin.eu -m '[{"bn":"some-base-name:","bt":1.
276020076001e+09, "bu":"A","bver":5, "n":"voltage","u":"V","v":120.
1}, {"n":"current","t":-5,"v":1.2}, {"n":"current","t":-4,"v":1.3}]'

Mosquito

In the upper pane of the console, I have first subscribed to a channel. Afterwards, in the
lower pane of the console, I have sent a message. Finally, in the upper pane of the console,
in the second line, I see that the message has successfully arrived and is echoed in the
console.

12.3 SenML

In order to understand the structure of the message

[{"bn":"some-base-name:","bt":1.276020076001e+09, "bu":"A","bver":5,
 "n":"voltage","u":"V","v":120.1}, {"n":"current","t":-5,"v":1.2},
{"n":"current","t":-4,"v":1.3}]

D1.1 Launch Version of the Ashvin Platform

 58

we have sent and received with the upper commands, we need to get acquainted
with the SenML. SenML is a format used for representing sensor measurements and
device parameters. For example, a temperature sensor, could use it to send the

measurements or receive the configuration.

Ashvin IoT platform uses preferably SenML format to send, receive and persist messages
although an arbitrary formatted JSON message can also be used.

SenML message is an array with a series of measurements. In our upper example, we have
three measurements. bt refers to the time offset of each measurement, so in order to get a
time of a particular measurement, we add t (represented in floating point as seconds) to the
bt (itself expressed in Unix time also as a floating point seconds number). v is a value field
used to store a float type value. There are other fields for values of other data types: vs for
a string value, vb for a boolean value and vd for a binary value. Here is a full table of an
individual SenML measurement fields:

 +---------------+-------+------------+------------+------------+
 | Name | Label | CBOR Label | JSON Type | XML Type |
 +---------------+-------+------------+------------+------------+
 | Base Name | bn | -2 | String | string |
 | Base Time | bt | -3 | Number | double |
 | Base Unit | bu | -4 | String | string |
 | Base Value | bv | -5 | Number | double |
 | Base Sum | bs | -6 | Number | double |
 | Base Version | bver | -1 | Number | int |
 | Name | n | 0 | String | string |
 | Unit | u | 1 | String | string |
 | Value | v | 2 | Number | double |
 | String Value | vs | 3 | String | string |
 | Boolean Value | vb | 4 | Boolean | boolean |
 | Data Value | vd | 8 | String (*) | string (*) |
 | Sum | s | 5 | Number | double |
 | Time | t | 6 | Number | double |
 | Update Time | ut | 7 | Number | double |
 +---------------+-------+------------+------------+------------+

(Source: tools.ietf.org)

https://tools.ietf.org/html/rfc8428
https://www.json.org/
https://en.wikipedia.org/wiki/Unix_time
https://tools.ietf.org/html/rfc8428#section-4.3

