BoostFSM Evaluation

We consider the artifact to be the framework BoostFSM and the benchmarks we used in the paper. The results
got from this artifact evaluation can prove that the proposed BoostFSM enables scalable FSM parallelization.

A zip file containing the basic version of our implementations of BoostFSM and some real-world FSMs as well
as input data has been provided for download and evaluation. We have also provided a VM image which has
already built up the necessary software environment. Because we need to use a KNL architecture with 64 cores for
performance measurement, i.e., Table 2, part of Figure 4, Figure 16 and Figure 17 in the paper, users are encouraged
to contact authors for remote access (to the target machine; and If you are the conference AE reviewers,
please contact the AEC chair).

In this artifact, we can reproduce the key experimental results shown in the paper (and we want to keep the total
evaluation time under 4 hours and our framework evolves over time). This hopefully suffices to validate the claims
made in the paper. For any bugs, comments, or feedback, please do not hesitate to contact authors.

Artifact Overview

In general, We provide the following items in our artifact:
e The source codes of BoostFSM;
e The FSM benchmarks evaluated and their corresponding input data;
e A number of scripts for reproducing the major results reported in the paper;

More specifically, the main directory ASPLOS21_AE (If you choose to open the VM image on VirtualBox, it is on the
desktop; we do provide a VM image, please contact the authors for more details) contains the following:

e scripts/ is a directory with all the scripts needed to run the evaluations mentioned in the paper;
e data.zip is a file holding the corresponding input data;

e src/, include/ and test/ are directories where the source codes of BoostFSM are;

benchmarks is a directory with the 16 FSMs shown in the paper;

e three one-step evaluation scripts run.sh, run fast.sh and run_perf.sh.

Getting Started

To verify the state of the artifact, the first step is checking whether the requirements of software environments are
met (e.g., centos 7, gcc 4.8.5, enabling bash scripts, cmake 2.8 and boost 1.66.0), but if you are using the VM image
or accessing our machine remotely, you don’t need to worry about this. We do not provide the way to reproduce
Figure 17, because Figure 17 can be easily drawn by repeating the evaluations of Table 2 over input with different
sizes (due to the space limitations, we just provide the Medium size input shown in Figure 17).

We provide a script for fast checking. It will generate part of results for Table 1-5 and Figure 16 in the paper,
respectively. Though those results may be quite different from what the paper shown, this script in fact can help
the users to know whether everything works well in a relatively short time (maybe 30 minutes). But you can skip
this one if you don’t think you need a fast check.

$ bash run_fast.sh

The major evaluation should be done by using the script run.sh, which will generate the time-irrelevant results (i.e.,
Table 1, 3, 4 and 5) in just one step/command. All results generated from this scripts should be in the reasonable
errors ranges, compared with the ones claimed in the paper (more details can be found in the following sections).

$ bash run.sh

We also provide a script about performance measurement (i.e., time measurement). If both the hardware requirements
(a Xeon Phi or similar platforms) and the software requirements can be met, we can use the following script and
command to reproduce Table 2, part of Table 4 and Figure 16 in the paper.

$ bash run_perf.sh

Step-by-Step Instructions for Evaluation

We have provided a script run.sh to generate all the time-irrelevant results in one step (as mentioned above), but
we also enable very flexible evaluations or manual testing. The total evaluation time of this artifact should be about
4 hours (which depends on the underlying machines) and the total size of this artifact should be 20GB (including
the data but excluding the VM image).

Compilation

Under the directory ASPLOS21_AE, there is a script compile.sh. By executing the following command, we will
generate all the executables, and two new folder bin and build under ASPLOS21_AE. And the executables are also
copied into scripts/ for the next steps. Here, we need to ensure software dependencies are met before executing
the command.

$ bash compile.sh

Reproducing Results Separately

After generating the executables, we can break down the executions in run.sh into the following parts, and take a
deeper look into our artifact. The detailed executions of each part can be checked in the corresponding scripts.
Get Table 1

The results in Table 1 are the collected FSM properties. We just need to use part of the inputs to finish this profiling.
By run the following commands, we can get the key results in Table 1.

$ cd ./scripts
$ bash GetTablel.sh InputConf_five.in 64

Note that, as introduced in the paper, the input data used for profiling should be randomly selected, here we should
allow some reasonable differences between the results got and the one shown in the paper. The output results of the
above evaluations should be

—————— Generate the major components in Table 1- - - - - -
FSM: conv(10%) conv(10°%) SpecAcc
M1 1/2 1/1.99048 0

M2 1/7.93016 1/1 0.0539683

M3 1/1.99683 1/1.70794 0.660317
M4 1/5 1/5 0

M5 1/6.25079 1/1 0.0666667

M6 1/8.40317 1/1 0.031746

M7 1/4.15873 1/1 0.107937

M8 1/2 1/2 1

M9 1/5 1/5 0

M10 1/53.9524 1/20.9841 0.0031746

M1l 1/2 1/2 0
M12 1/2 1/2 0
M13 1/2 1/2 0
M14 1/2 1/2 0.31746
M15 1/2 1/2 0
M16 1/1 1/1 1

Get Table 3 and 4

The results in Table 3 and 4 are the statistics of Path Fusion. There are two part, for Static Path Fusion and
Dynamic Path Fusion, respectively. By run the following commands, we can get the key results in Table 1 (Assume
originally you are in ASPLOS21_AE/).

$ cd ./scripts
$ bash GetTable3a.sh
$ bash GetTable4.sh InputConf.in 64

But if the evaluations are executed with using the VM image, please using the following commands (assume the
number of available cores is k in your VM setup, which we prefer k = 64)

$ cd ./scripts
$ bash GetTable3a.sh
$ bash GetTable4.sh InputConf.in k

Note that, if the hardware dependencies are not met, the time measured will be quite different from the ones in Table
3 (This execution time will be expected to be 1.5 to 2 hrs). The output results of the above evaluations should be

—————— Generate the major components in Table 3a- - - - - -
FSM: FS Time

M1 173 0.0568 seconds.

M3 2876 1.22554 seconds.

M4 486 0.219338 seconds.

M8 6655 4.73284 seconds.

M11 19899 36.2001 seconds.

and

—————— Generate the major components in Table 4- - - - - -
FSM: VecS Nuniq Nfused
M1 1.99444 1132.77 7.42937
M2 143016 17128.7 130.918
M3 1.92778 1311.37 11.3365
M4 5961.351 4.98968

M5 1.2246 10981.3 148.506
M6 1.36349 21121.4 246.257
M7 1.05079 829.622 56.8913
M8 2 896.775 4.7746

M9 5 1339.44 10.3516

M10 11.8349 10464.6 115.902

M1l 2 1222.8 13.4976

M12 2 161796 1208.53

M13 2 640.504 3.74921

Ml14 2 1245.24 7.8881

M15 2 1024.94 6.49444
Get Table 5

The results in Table 5 are the speculation accuracy. By running the following commands, we can get the results in
Table 5 (Assume originally you are in ASPLOS21_AE/, and this execution time will be expected to be 1 to 2 hrs).

$ cd ./scripts
$ bash GetTable5.sh InputConf.in 64

The output results of the above evaluations should be

—————— Generate the major components in Table 5- - - - - -
FSM: B-Spec || #Iteration | Iteration...

M1 0.607143 || 1.85 | 0.607143 1.00

M2 0.047619 | 2 | 0.047619 1.00

M3 0.0015873 || 2 | 0.0015873 1.00

M4 0 | 24 | 0 0.980159 1.00

M5 0.05 || 2 | 0.05 1.00

M6 0.0460317 || 2 | 0.0460317 1.00

M7 0.0865079 || 2 | 0.0865079 1.00

M8 1 | 1 | 1.00

M9 0 | 3 | 0 0.015873 1.00

M10 0.616667 || 2.6 | 0.616667 0.973138 1.00
M11 0 || 2 | O 1.00

M12 0.0246032 || 3 | 0.0246032 0.569841 1.00
M13 0 || 2 | 0 1.00

M14 0.334127 || 3 | 0.334127 0.572222 1.00
M15 0 | 205 | 0 0.984127 1.00

M6 1 | 1 | 1.00

Time Measurements (Table 2, part of Table 4 and Figure 16)

If the hardware dependencies are met, users can reproduce the results shown in Table 2, part of Table 4 and Figure
16 in the paper, by executing the following commands. (Again, assume originally you are in ASPLOS21_AE/)

$ cd ./scripts

$ bash GetTable2.sh InputConf.in 64

$ bash GetTable4_x1.sh InputConf.in 64
$ bash GetTable4_x2.sh InputConf.in 64
$ bash GetFigurel6.sh InputConf.in 64

The output results of the above evaluations should be

Now Try Table 2 and Figure 16 (Please check the Hardware dependencies)
—————— Generate the major components in Table 2- - - - - -
FSM: Seq(s) B-Enum, B-Spec, S-Fusion, D-Fusion, H-Spec

M6 9.47893 36.8969 28.3816 / 13.4187 40.0112

—————— Generate the major components in Figure 16(a)- - - - - -
B-Enum D-Fusion B-Spec H-Spec S-Fusion

11 1 1 1

0.569912 1.00609 1.8835 1.88386 1.31313

1.09578 1.92198 1.74094 1.49052 2.56572

The differences between the evaluation results and the ones shown in paper should be less than 5%.

More Flexible Evaluation

This artifact can be also used in other FSM benchmarks and input data. Please follow the format shown in
benchmarks/, and the commands in the scripts to evaluated other FSMs.

