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Abstract: Advanced imaging techniques can noninvasively characterise, monitor, and evaluate how 

conservation treatments affect cultural heritage objects. In this specific field, hyperspectral imaging 

allows nondestructive characterisation of materials by identifying and characterising colouring 

agents, binders, and protective coatings as components of an object’s original construction or later 

historic additions. Furthermore, hyperspectral imaging can be used to monitor deterioration or 

changes caused by environmental conditions. This paper examines the potential of hyperspectral 

imaging (HSI) for the evaluation of heritage objects. Four cameras operating in different spectral 

ranges were used to nondestructively scan a beehive panel painting that originated from the Slo-

vene Ethnographic Museum collection. The specific objective of this research was to identify pig-

ments and binders present in the samples and to spatially map the presence of these across the 

surface of the art piece. Merging the results with databases created in parallel using other reference 

methods allows for the identification of materials originally used by the artist on the panel. Later 

interventions to the original paintings can also be traced as part of past conservation campaigns. 

Keywords: hyperspectral imaging; cultural heritage; nondestructive testing; surface characterisa-

tion; painted beehive panels 

 

1. Introduction 

Imaging techniques used in the conservation of cultural heritage objects play an im-

portant role in authentication, documentation, assessment of material composition, detec-

tion of past conservation, evaluation of object condition, and programming of further res-

toration measures. In the past, all these activities relied solely on the personal experience 

of well-trained experts [1]. However, with the development of alternative diagnostic tech-

niques, modern “high-tech” instruments are increasingly used in the field of art analysis. 

Advances in high-resolution silicon charge-coupled device (CCD) technology have 
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greatly improved the availability and performance of digital imaging systems [2] in vari-

ous applications [3,4]. The optoelectronics revolution provided new solutions for in situ 

measurements, the wide application of miniaturised portable devices [5–7] or 

smartphones [8,9], offering optimal performance at relatively low cost. Even though dif-

ferent methods can be used to study the authenticity, composition, and state of preserva-

tion of art objects, implementing nondestructive and highly reliable techniques is of par-

ticular interest. For qualitative analyses of pigments and binders, methods have often been 

chosen that do not require sampling from the art object and allow in situ investigations, 

such as infrared (IR), Raman spectroscopy, or X-ray fluorescence [10]. However, the anal-

ysis can assess only a very narrow fragment of the artwork under investigation. The meas-

urement is usually repeated several times to increase the signal-to-noise ratio or to obtain 

spatially resolved information. The accurate assessment of the composition of pigments, 

binders, and protective coatings, as well as their deterioration processes, is relevant for 

the development of novel protective systems compatible with the cultural heritage (CH) 

objects of interest [11]. In particular, the research potential of merging various classical 

analytical techniques that provide additional information of different types (spectral re-

sponses, topography, chemical composition, etc.) with digital imaging is enormous 

[12,13]. 

Hyperspectral imaging (HSI) cameras operating in bands of the visible–near-infrared 

and short-wave infrared (VNIR-SWIR) regions are used to determine the characteristics 

and properties of various materials such as soils, minerals, rocks, water, and vegetation. 

Lately, HSI has been successfully applied in the field of cultural heritage to identify and 

classify paint pigments, monitor object deterioration and colour changes, evaluate the ef-

fectiveness of conservation/restoration interventions, and accurately digitise artworks 

[14–17]. The main advantage of HSI over VNIR spectroscopy is that imaging allows a de-

tailed analysis of the spatial distribution of particular pigments or binders. However, both 

techniques allow measurements to be performed in a noninvasive way, eliminating any 

possible physical contact with the surface of the CH objects [18,19]. It is important to men-

tion that the values of light absorption coefficients of pigments for X-rays and infrared 

(IR) are often inverse. Lead white, for example, strongly absorbs X-rays but is largely 

transparent to IR. Conversely, bone black strongly absorbs IR radiation but is nearly trans-

parent to X-rays. It has been reported that HSI spectroscopy is able to distinguish pig-

ments with similar elemental composition that could not be differentiated by other spec-

troscopic methods [13]. According to Roselli and Testa [20], HSI is an extension of con-

ventional conservation photography and does not require collecting samples. Alterna-

tively, HSI can enable the screening and evaluation of archaeological artefacts, as each HSI 

pixel contains spatially resolved chemical information [21]. However, an important tech-

nical challenge is to ensure imaging with an adequate signal-to-noise ratio in low-light 

conditions, such as those encountered in most restoration laboratories or museums. Long 

exposure time, even if beneficial for spectral resolution, can be problematic in the evalua-

tion of art objects due to their sensitivity to deterioration [22]. 

HSI is a powerful combination of spectroscopy and imaging and allows the simulta-

neous acquisition of spectral and spatial information. HSI data are usually arranged in a 

three-dimensional cube called a hypercube, which has one spectral and two spatial di-

mensions. Each pixel of the image is associated with a corresponding spectrum captured 

in a particular spectral range. Such information may refer to a detailed colour mapping 

assessed in the visible range (VIS), as well as to chemical absorption or physical scattering. 

In the latter case, different radiation ranges are used (depending on the application) cov-

ering short (SWIR), mid (MWIR), and long (LWIR) waves of infrared. The acquired signal 

(hypercube) can be transformed into reflection, absorption, or transmission and correlated 

with various chemical and physical properties of the sample. The most common ap-

proaches to reduce the data complexity obtained by HSI scanning are multivariate data 

compression tools such as principal component analysis (PCA). Other methods such as 

partial least squares (PLS) regression or partial least squares discriminant analysis 
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(PLSDA) establish relationships between the spectral data and the constituents of the sam-

ple [23]. Alternatively, hyperspectral images can be analysed using artificial intelligence 

as proposed by Kleynhans et al. [24]. However, large training datasets are needed to suc-

cessfully explore convolutional neural networks (CNNs). New methods for acquiring 

high-resolution hyperspectral images [25–27] or new algorithms for post-processing spec-

tral data [22,28–33] are currently of interest to engineers and researchers working in this 

field. Similarly, multisensor systems that allow automatic characterisation routines of art 

objects with high accuracy and precision are desired [34]. 

Image processing methods allow the grouping and mapping of artist materials and 

alteration products according to their spectral similarities, highlighting aspects that are 

not detectable by visual inspection. However, given recent developments in optics and 

electronics, some limitations in detector sensitivity, as well as data storage and mining, 

might be problematic. Often, after preliminary research with hyperspectral imaging, mul-

tispectral cameras equipped with a set of narrow-band optical filters are developed to 

reduce hardware costs and increase computational speed while still providing fully usa-

ble information [35,36]. 

Analysis of CH objects in the short-wave infrared (SWIR) and mid-wave infrared 

(MWIR) regions offers the possibility of visualising hidden details in the inner layers of 

paintings and highlighting the underdrawings [37]. Stratigraphic analysis is a highly in-

teresting approach to studying the inner layers of complex surfaces. Most of the applicable 

techniques, including microscopy, radiography, fluorescence, diffractometry, and spec-

troscopy, are considered nondestructive [13,38–44] and are consequently suitable for the 

characterisation of cultural heritage objects. However, the effective penetration depth of 

the corresponding radiation depends on its nature, energy, and wavelength. The operat-

ing depth of X-ray diffractometers (XRD) varies from a few to approximately 100 µm, 

depending on the optical density of the material and its X-ray attenuation. Scanning elec-

tron microscopy in combination with energy-dispersive X-ray spectroscopy (SEM/EDX) 

provides information on the subsurface to approximately 2 µm thick. The excitation wave-

length of light in Raman spectroscopy determines the light penetration depth. It corre-

sponds to 0.7 µm with a 532 nm source and increases to 12 µm when a 785 nm laser source 

irradiates the surface. Attenuated total reflectance (ATR) Fourier transform infrared spec-

troscopy (FTIR) is widely used to evaluate the physiochemical properties of materials. The 

use of a particular crystal, such as germanium (Ge), zinc selenide (ZnSe), thallium-bro-

moiodide (KRS-5), silicon (Si), or diamond (C), affects the refractive index of the light and 

the depth of penetration of the infrared into the surface of the object. In this case, it varies 

between approximately 0.5 and 2 µm. A much higher penetration depth is found for near-

infrared radiation, varying between 0.5 and 5 mm, again depending on the optical density 

of the tested material and the wavelength of the irradiating light [45]. 

The aim of this study was to investigate the suitability for assessing coated wood 

panels using four hyperspectral imaging systems operating in different spectral ranges. 

The result of the scanning was then used to produce a detailed colour and chemical map-

ping of the investigated cultural heritage objects. This work is part of a wider research 

campaign looking at the evaluation of painted wood panels using a variety of non- or 

semi-destructive methods. An overall objective is to provide a scientific basis for a routine 

methodology that allows for the automatic identification of pigments and binders. This is 

indispensable for the reliable preparation of mock-ups or to support the conservation of 

CH objects. 

2. Materials and Methods 

2.1. Experimental Sample 

Painted beehive panels are paintings on rectangular wooden supports of smaller di-

mensions that were attached to the frontal planes of outdoor beehives. They were pro-



Coatings 2021, 11, 244 4 of 15 
 

 

duced only in certain Slovene folk regions (mainly in Carniola and Carinthia), predomi-

nantly between the mid-18th and early 20th centuries [46]. As such, they are considered 

unique in the European folk art cultural heritage, with no known preceding examples 

outside Slovenia. It is believed that the beehive panels were traditionally coated using oil 

painting techniques and locally available colouring agents, although no specific material-

analytical studies of the beehive panels have yet been published. The depictions in the 

paintings represent numerous motifs, ranging from religious, secular, satirical, and imag-

inary to ornamental. Stylistically, they are almost always subject to a limited support size, 

often painted somewhat naively, without elements of fine art painting, and executed in 

vivid colours. Artists of these paintings usually belonged to the rural craftsmen class and 

made the panels for local beehive keepers and farmers. The case study presented here is 

an 1836 beehive panel painting titled “Unidentified scene of military violence” (sln. 

“Neugotovljiv prizor vaškega nasilja”), measuring 254 × 128 × 14 mm3 (Figure 1), which was 

kindly made available for research by the Slovene Ethnographic Museum (sln. Slovenski 

etnografski muzej). 

 

Figure 1. Image of the painted beehive panel. 

2.2. Characterisation Methods 

Four hyperspectral cameras, described in Table 1, manufactured by SPECIM (Oulu, 

Finland), were used to record the beehive panel. All cameras were operated in push-

broom mode, which allowed line-by-line spectral measurements. White (spectralon) and 

black (detector background noise) references were measured before each scan of the 

panel. Halogen lamps were used as the light source for VNIR, NIR, and SWIR cameras, 

while thermal radiation was used as the source for the MWIR system. Evince software 

from Prediktera (Umea, Sweden) was used for analysis and exploration of the hyperspec-

tral images. Standard normal variate (SNV) and mean centring were applied as pre-pro-

cessing before PCA modelling. 

Table 1. Spectroscopic characteristics of the hyperspectral cameras used for the study. 

Hyperspectral 

Camera 
FX10 FX17 SWIR MWIR 

Spectral region VNIR NIR SWIR MWIR 

Spectral range (nm) 400−1000 900−1700 1000−2500 1550−5950 

Number of bands 

(pixels) 
224 224 288 154 

Spatial resolution 

(pixels) 
1024 640 384 640 

Field-of-view 

width (mm) 
165 190 195 256 

The representative spectra for selected points of interest on the panel were calculated 

as the mean of a small surface area around that point, assuming that only pixels appearing 
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the same were captured. The set of selected spectra was normalised by an extended mul-

tiplicative scatter correction before calculating the average spectrum. 

3. Results and Discussion 

Images acquired via hyperspectral imaging contain spectra in which both the light 

absorbed by the functional groups of the chemical components and the scattered light are 

recorded. While light absorbance/reflectance/transmittance can be related relatively 

straightforwardly to the chemical composition of materials, the interpretation of light scat-

tering is more complex. The scatter is highly dependent on surface properties, such as 

surface roughness, the refractive index of the pigments used, and the suspension media 

used for painting and conservation [47]. 

Each hyperspectral cube (image) contains thousands of spatially resolved spectra. 

Since many of them are similar, it is very useful to reduce the size of the dataset as the first 

step of the analysis. Image processing tools based on multivariate techniques, such as 

PCA, are often used for this purpose in exploratory analysis of data [48]. The PCA algo-

rithm exploits the fact that adjacent bands of hyperspectral images are highly correlated 

and often convey almost the same information about the object [49]. PCA is therefore used 

to decorrelate and reduce the amount of spectral information in a hyperspectral image. It 

aims to find the best representation of the hyperspectral data in terms of its variance. First, 

the calculation of the eigenvalue decomposition of the covariance matrix is performed. 

Then, only the eigenvectors that correspond to the largest eigenvalues are selected, thus 

achieving a reduction in the dimensionality of the original data while preserving the var-

iance of the data. It is a routine procedure to mean-centre the data before PCA calculation 

[50].  

The significance of principal components (PCs) can be expressed as a linear combi-

nation of scores and loadings that form a model that mimics the original variables. The 

difference between the model and the original dataset is expressed as residuals. It is de-

sired that the sum of the residuals should be as small as possible and contain no signal 

features other than noise. The importance of each original variable is defined by a given 

PC and recorded as the model loading. This can be represented on bidimensional plots 

(loading plots) to ease visualisation of intercorrelations between the original variables. 

Conversely, the score plot contains information about similarity, groupings, and trend 

patterns that characterise the object and is represented as spatially resolved pixels [51].  

Figure 2 shows the results of PCA analysis of the image acquired by the FX10 HSI 

camera in the visible/NIR range. Score plots are shown for the three most relevant princi-

pal components, as well as the corresponding loadings. Analysis of images in the visible 

range provides precise spectral information about the colour distribution at a single-pixel 

resolution. Unlike typical colour images, where the entire spectra are represented only by 

red, green, and blue (RGB), the information provided by the hyperspectral camera is much 

more accurate and contains 224 bands. PC1 and PC2 highlight the figures depicted and 

the right part of the panel, while PC3 highlights the background, showing the dark sol-

dier’s headgear and woman’s dress. Analysis of the loadings is challenging in this case, as 

the available literature refers to the visible spectra of certain pigments, rather than to their 

combination, as in the case of investigated panels. Paint mixing and paint overlaying are 

very common practices, although understanding the contribution of the different compo-

nents to the final spectrum is not trivial [52,53]. The shape of the first loading is similar to 

the reflectance spectrum of lead white that seems to be present in the analysed sample 

[54]. The first loading has a positive value in the wavelength range between 450 and 650 

nm, corresponding to blue, green, and yellow. The portion corresponding to the red col-

our, as well as the near-infrared region (NIR), is negative. Loading 2 is negative in the 

visible range (except for the violet/blue part) and in the narrow part of the NIR range (up 

to 800 nm). The third loading exhibits a similar trend to the second loading in the blue 

range, but an opposite trend at higher wavelengths.  
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Figure 2. Results of principal component analysis (PCA) for images taken in the VIS–NIR spectral 

range. Note: The percentages in parentheses explain the variances of all the individual principal 

components. 

Figure 3 shows the results of PCA analysis of the hyperspectral cubes taken with the 

FX17 camera in the 900−1700 nm range. PC1 highlights all parts of the panel that were 

damaged, clearly showing the uncoated wood. Both PC2 and PC3 highlight the contours 

of the paintings. The first loading has negative values between 950 and 1400 nm, corre-

sponding to the third and second overtone ranges. The detected positive values for 

1400−1700 nm are partially covered by the first and second overtone regions. The colour 

determining property contained in the visible spectrum is often sufficient for the identifi-

cation of different pigments. However, some paint components (including pigments and 

binders) have spectral features that become visible only at longer wavelengths [55]. Im-

ages acquired in the SWIR and MWIR regions therefore provide information about the 

chemical composition rather than the colour appearance on the CH object surface. In this 

range, the spatial resolution is reduced from 1024 (FX10 camera) to 384 and 640 pixels for 

SWIR and MWIR, respectively. Nevertheless, the analysis of the scores and loadings high-

lights certain similarities of some parts of the image. 
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Figure 3. Results of PCA for images taken in the NIR spectral range. Note: The percentages in pa-

rentheses explain the variances of all the individual principal components. 

Reflectance spectroscopy in SWIR provides information on vibrational transitions, 

which are mostly overtones and combination bands of fundamental transitions occurring 

in the mid-IR. This spectral range could be extremely useful for the conservation field, as 

it allows the identification of a large number of inorganic and organic materials that do 

not exhibit discriminating features in the VNIR part of the electromagnetic spectrum 

[11,56,57]. The absorption features of organic materials such as the paint binding media, 

including the amide groups of proteins and lipid bands of oils and waxes, can be observed 

[58–60].  

The first principal component of the SWIR spectra (Figure 4) highlights the headgear 

of the soldier, the woman’s dress, and the external border of the panel. The loading has 

positive values at 1400−2550 nm, corresponding to the first overtone and the combination 

band region. Spectral features detected at 1940 nm and 2300 nm might be related to the 

first overtone of the ester carbonyl stretching mode related to the antisymmetric/symmet-

ric stretching and bending of the methylene CH2 groups in the drying oils, respectively 

[61]. According to Gabrieli et al. [19], the wavelength position of this lipid band can be 

used to discriminate between a drying oil (2304 nm), egg yolk (2309 nm), or wax (2312 

 

-0,1

0

0,1

0,2

900 1000 1100 1200 1300 1400 1500 1600 1700

-0,1

0,1

0,3

0,5

900 1000 1100 1200 1300 1400 1500 1600 1700

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

900 1000 1100 1200 1300 1400 1500 1600 1700



Coatings 2021, 11, 244 8 of 15 
 

 

nm). Close bands at 1910 nm and 2330 nm were also identified as kaolin and calcite by 

Brocchieri et al. [62], who performed SWIR mapping in parallel with XRF measurement. 

Analogous bands are also evident in Loadings 2 and 3. PC2 highlights the soldier’s hat, 

sword, and shoes, and the frame of the mirror on the wall. It also shows the border on the 

painting, which appears to have a similar composition to the objects mentioned. The dark 

green colour used for the above-mentioned part was identified as emerald green by Ra-

man spectroscopy [63]. PC3 highlights a similar picture feature appearance as PC2.  

 

Figure 4. Results of PCA for images taken in the SWIR spectral range. Note: The percentages in 

parentheses explain the variances of all the individual principal components. 

Mid-infrared spectroscopy in reflection mode is widely used to characterise inor-

ganic and organic coating materials. Similarly, MWIR hyperspectral imaging has been re-

ported to have great potential for the characterisation and spatial mapping of paints [64]. 

However, the proper implementation of such a hyperspectral imaging system is challeng-

ing in terms of both instrumental set-up and illumination. Infrared radiation was pro-

vided in the experimental system by two heating bars, each located in a quarter cylindrical 

mirror to concentrate the radiation as a line covering the field of view of the HSI camera. 

Scanning was performed in a few seconds to minimise potential damage to the sample 
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due to extensive heat exposure. The results of PCA of the MWIR spectra are shown in 

Figure 5. The first principal component shows the damage to the soldier’s jacket as well 

as some other parts of the panel (e.g., its borders). PC1 has a strong negative value in the 

spectral range of 3500−5500 nm and a positive value in the range of 1500−3500 nm. PC2 

highlights the soldier’s headgear and boots, which most likely contain similar pigments. 

It is well evident that the woman’s dress (left part of the panel) differs in chemical com-

position, even though visually it appears to be a similar colour to the soldier’s headgear. 

The dress is composed of Prussian blue (iron (II, III) hexacyanoferrate (II, III)) [63]. The 

loading of PC2 contains relevant information in the range of 2300–2700 nm, where its 

value is negative. In the other part of the spectrum, the loading value oscillates around 0, 

which describes a negligible association with the spectral variables. The analysis of PC3 

proves that the compositions of the colours used for painting the human figures and part 

of the wall are relatively similar. The central part of the loading (2700−4200 nm) contains 

several negative and positive peaks. The remaining parts oscillate relatively close to the 

neutral level.  

 

Figure 5. Results of PCA for images taken in the MWIR spectral range. Note: The percentages in 

parentheses explain the variances of all the individual principal components. 
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As stated previously by Delaney et al., the identification of pigments from reflectance 

spectroscopy alone is often difficult [60]. Hyperspectral imaging was therefore performed 

in parallel with other spectroscopic methods, such as Raman and FTIR spectroscopy, to 

identify the pigments and binders of the investigated objects [63]. Both techniques were 

used to measure a limited number of panel locations with the intention of providing qual-

itative information about their composition. Noninvasive Raman spectroscopy was used 

to detect different pigments, such as carbon-based black (Location 1), lead white (Location 

1 and Location 2), and iron oxides (Location 1). Lipids and triterpenoid resin were identi-

fied at all three beehive panel locations by total reflection FTIR spectroscopy. The lipidic 

medium was also identified in the SWIR spectra of all three locations of the beehive panel, 

based on the typical doublet at 2347 and 2311 nm [65]. Conversely, HSI allows scanning 

of the entire panel surface, enabling the monitoring of artworks and possible restoration 

interventions over time at relatively low cost compared to other analytical methods 

[57,66]. An additional advantage of the HSI system used in this research was that four 

complementary cameras provided complete spectral information from visible to mid-

wavelength infrared. Detailed analysis of the spectra can therefore be supported using the 

abovementioned reference methods. An example of the combined hyperspectral imaging 

spectra is presented in Figure 6 for three specific regions of interest (ROIs) with different 

appearances. The most noticeable differences are observed in the visible range of the spec-

trum, expressing a variation in colour appearance in each ROI. However, deviation of the 

spectrum shape is also evident in near-infrared bands, especially in the MWIR. As ex-

pected, the spectra provided by the FX17 and SWIR cameras seem to overlap. This con-

firms the high repeatability and reliability of all spectroscopic systems investigated, re-

sulting in a similar spectroscopic representation regardless of the camera type. 

 

Figure 6. The specific regions of interest (ROIs) and the corresponding (average) spectra collected 

using the investigated hyperspectral cameras. 
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Detailed analysis of the hyperspectral images, including both raw spectrum studies 

and visualisation of higher-degree principal components, led to the discovery of several 

features that were not apparent by simple panel observations, such as underdrawings, 

retouching, and/or pentimenti. An example is presented in Figure 7, where hidden under-

drawings can be detected in the inner layer of the studied beehive panel painting. The 

specific spectral marking was detected at 1500 nm on images taken with the FX17 and 

SWIR hyperspectral cameras. In addition to the handwritten text, several other pencil-like 

elements of the sketch are noticeable. 

 

Figure 7. The hidden underdrawings in the inner layer of the studied beehive panel painting de-

tected using the FX17 and SWIR hyperspectral cameras (NIR wavelength: 1500 nm). 

NIR photography was used to detect underdrawings in the late 1930s when Ian 

Rawlins used an NIR camera to improve the visual assessment of paintings [20]. Due to 

the ability of NIR to penetrate some pigments and the selective absorption by some pig-

ments in the NIR range, it is possible to differentiate carbon-based from organic-based 

compounds. Moreover, NIR photography might also help in distinguishing paintings by 

different artists, as some of them are known to make preparatory sketches [13,14]. Fur-

thermore, such information is very valuable to discovering the intentions of artist altera-

tions and the way they work, and, thus, to better understanding the creation process [2]. 

The reported results show a high potential of multirange hyperspectral imaging for 

the assessment of cultural heritage objects, especially wooden panels covered with organic 

coatings. However, it is not a simple task to interpret hyperspectral images directly with-

out an extensive database of reference measurements. Such reference data are indispen-

sable for the proper calibration of chemometric models and automated interpretation of 

hyperspectral images. In parallel with the laboratory work, an extensive literature review 

was performed with a focus on summarising the state of the art in spectral band assess-

ment as reported by other authors. Unfortunately, due to the very complex nature of the 

coating systems used in studied cultural heritage objects, a straightforward and complete 

interpretation of the spectra was limited. For this reason, an extensive experimental cam-

paign is currently underway to form reference datasets using IR microscopy and Raman 

spectroscopy. The analysis is specifically focused on the beehive panels as Slovenian her-

itage and will be integrated to further improve the results reported in this manuscript. An 

innovative algorithm for multisensor data fusion is also being developed. It will enable 

combination of the hyperspectral information, both spectrally and spatially resolved, ac-

quired in all the investigated spectral ranges. 

4. Conclusions 

Nondestructive techniques are commonly used for rapid screening or detailed exam-

ination of artworks. They are particularly suitable when sampling of the artwork is not 

permitted and other destructive or semidestructive methods are ruled out. X-ray tech-

niques penetrate most materials with little interaction and are well suited for taking ab-
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sorption distribution images of paintings in a nondestructive manner. Hyperspectral im-

aging, however, is much faster in acquiring data and is therefore better suited for screen-

ing a large collection of works. Both techniques are highly complementary as they are 

sensitive to different characteristics of the pigments, either chemical structure or elemental 

composition. Hyperspectral imaging combines spectroscopy and imaging, which allows 

the simultaneous acquisition of spectral and spatial information. The extensive character-

isation of a panel painting in different spectral ranges performed in this study provided 

detailed information on colour tonality distribution and enabled chemical mapping of the 

investigated sample. Traces of lead white, emerald green, Prussian blue, and carbon-based 

black were identified as pigments used by the artist. In addition, lipid and triterpenoid 

resins were detected in the spectra as binders. The analysis of the results allowed the iden-

tification of damaged areas of the studied beehive panel painting, as well as hidden un-

derdrawings in the inner layer. 

In the case of art objects, analytical identification is difficult due to the inhomogeneity 

of their surface and the complex composition of the source materials. Nevertheless, pre-

cise and fast methods such as hyperspectral imaging not only provide information on 

specific pigments and binders used, but also allow their mapping to the entire object. Op-

timally, hyperspectral data should be combined with other nondestructive analyses to 

provide a more complete evaluation of art objects. Merging the results obtained with da-

tabases created by other reference methods allows the identification of the materials orig-

inally used by the artist. These can be contrasted with other additions that were later in-

troduced into the painting as part of past conservation campaigns. 
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