

Quality of Transmission Estimator Retraining for
Dynamic Optimization in Optical Networks

ANKUSH MAHAJAN,1,* KONSTANTINOS (KOSTAS) CHRISTODOULOPOULOS,2

RICARDO MARTÍNEZ,1 RAUL MUÑOZ,1 SALVATORE SPADARO3
1Centre Tecnològic de Telecomunicacions de Catalunya, CTTC/CERCA, Castelldefels, 08860, Spain
2Nokia Bell Labs, Stuttgart, Germany
3Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
*Corresponding author: ankush.mahajan@cttc.cat

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

Optical network optimization involves an algorithm and a Physical Layer Model (PLM) to estimate the Quality of
Transmission (QoT) of connections while examining candidate optimization operations. In particular, the algorithm
typically calculates intermediate solutions until it reaches the optimum which is then configured to the network. If
it uses a PLM that was aligned once to reflect the starting network configuration, then the algorithm within its
intermediate calculations can project the network into states where the PLM suffers from low accuracy, resulting in
a suboptimal optimization. In this paper, we propose to solve dynamic multivariable optimization problems with an
iterative closed control loop process, where after certain algorithm steps we configure the intermediate solution so
that we monitor and realign/retrain the PLM to follow the projected network states. The PLM is used as a Digital
Twin (DT), a digital representation of the real system which is realigned during the dynamic optimization process.
Specifically, we study the dynamic launch power optimization problem, where we have a set of established
connections and we optimize their launch powers while the network operates. We observed substantial
improvements in the sum and the lowest margin when optimizing the launch powers with the proposed approach
over optimization using a one-time trained PLM. The proposed approach achieved near to optimum solutions as
found by optimizing and continuously probing and monitoring the network, but with a substantial lower
optimization time.

© 2019 Optical Society of America

http://dx.doi.org/10.1364/JOCN.99.099999

1. INTRODUCTION
An accurate and fast physical layer model (PLM) is required for

almost every optimization task of an optical network [1], [2]. Today
most optimization tasks are static, such as network setup and
upgrading, where calculations are performed in advanced. The PLM
used includes margins that cover its modeling uncertainties and the
evolution of the physical layer conditions over the targeted lifespan [3],
[4]. Moreover, as soon as the connection is provisioned/ established, the
vendor can measure its quality of transmission (QoT), e.g. the signal to
noise ratio (SNR), and correct/improve the configuration. Note that
upgrades that involve dynamic operations such as the establishment of
new or reconfiguration of established connections were classified as
static above, since typically they are carried out in maintenance
windows and not on the operating network. Dynamic reconfigurations
for resiliency involve protected/restored connections which were
probed beforehand.

In any of these optimization tasks the PLM needs to be accurate;
however, the dynamic operations are not directly applied on the
network, an indication of lack of certainty for such operations. Recently
monitoring and machine learning (ML) techniques have been proposed
to account for the actual network conditions, and improving the
accuracy of the PLM [5]-[8]. This in turn improves the efficiency of static
optimization and paves the way to reduce overprovisioning and realize
some dynamic optimization use cases [9]-[13].

Let us consider a network upgrade/incremental planning task which
involves calculations for new establishments and possible
reconfigurations of established connections [8], [12]. Traditionally a
PLM with high margins is used, e.g. considers pessimistic fiber
coefficient parameters, full spectral load, high modelling inaccuracy etc.
The optimization will be quite inefficient and result in considerable
overprovisioning. Using monitoring feedback and e.g. ML [5]-[8] the
parameters of the PLM can be fitted so that its estimated SNR values are
close to those monitored in the network. Essentially, feedback and ML is
used to understand the current state of the network and increase the
PLM estimation accuracy. We will refer to this process as the alignment

mailto:ankush.mahajan@cttc.cat

of the PLM to the physical layer of the network. The PLM accuracy is
even more critical when it is used for dynamic optimization tasks, where
the target is to achieve high efficiency in an operating network.

Today, optical networks are moving towards the software defined
networking (SDN) concept, where a centralized controller handles the
programmability of all network elements. One of the main advantages
of SDN is its intrinsic capability to enable dynamic optimization
operations [14], [15]. In this context, the SDN controller implements the
optimization logic, interfaces with a PLM, and can be extended to handle
closed control loops, which entail the use of monitoring data as input or
feedback to conduct the targeted optimization task [7], [9], [16].

Similar problems arise in almost every industry. To keep up with the
rapid advancements of the systems and harvest their improvements in
terms of productivity, the Digital Twin (DT) concept is gaining a lot of
attention. The DT is a digital representation of the real / physical system,
used to understand and optimize the targeted system [17]. According to
the definition of [18], the DT is more than a model of the system; it
includes an evolving set of data, and a means of dynamically adjusting
the model. The DT concept was originally introduced in 2003 [18] and
first put to public by the NASA [20]. Different industry sectors are taking
advantage of DT’s ability to simulate real-time working conditions and
perform autonomous and intelligent decision-making operations. DT
provides an alternative way in today’s manual interaction-based design,
operation, and service paradigms, to solve the related challenges
autonomously and in real-time [17], [19]. Depending on the dynamicity
of both the system and the optimization process, the DT needs to
represent the real system with certain accuracy. To do this, the DT is
integrated and realigned with the physical system. Such a realignment
mechanism typically involves monitoring and ML schemes.

Turning our attention back to the optical network, the target is to use
the PLM as a DT, a model with appropriate set of parameters and a
mechanism to adjust them to support the optimization task at hand. For
static optimization tasks, such as incremental planning discussed above,
the only option is to train the PLM once, just before taking the decisions
for the entire optimization task. This results in lower margins and
increased network efficiency. But the main target and benefits of DT
comes in dynamic optimization. In dynamic optimization, we would like
to squeeze the margins and achieve higher efficiency, making the
accuracy of PLM a critical factor. For example, the accuracy of the PLM
deteriorates as connections are established/ released/ rerouted/
change their power. For dynamic optimization tasks that involve few
such calculations and actions, e.g. the establishment or reconfiguration
of a single connection, the accuracy of the PLM would be acceptable if it
was realigned before the calculation. However, realignment of the PLM
is expensive; it requires one or more control loops, including monitoring
that can be time consuming and thus it might not be feasible. Moreover,
for more complex/multivariable dynamic optimization tasks, that
require multiple reconfigurations the accuracy of the PLM can become
critical. Algorithms used in such cases are typically iterative, they
calculate several intermediate solutions and improve over them to find
the optimum, which is then configured in the network [11]. However,
the accuracy of the PLM deteriorates after several intermediate
calculations and after a point it can fail to support the optimization
calculations. The key advantage is that the network operates and thus
we can realign the PLM/retrain its parameters, so that it follows the
projections to states intermediately calculated by the algorithm.

In particular, we study the dynamic launch power optimization
problem, where we assume that we have a set of established
connections and we want to optimize their powers while the network
operates. The optimum launch powers can be found with a convex
optimization algorithm that performs several intermediate calculations.
To solve the problem, three methods are explored: i) having the
optimization algorithm probe and monitor the network at each

intermediate iteration, ii) using a one-time trained PLM for all
optimization iterations, iii) implementing an iterative closed control
loop process that after a number of intermediate iterations configures
the network, monitors and retrains the PLM. We will refer to the last
option, the proposed solution, as optimization with a DT, since it
includes, apart from the PLM, evolving network conditions, appropriate
choice of parameters for the PLM and the process to align it to support
the dynamic optimization at hand [18]. Although we applied our
proposed solution to the dynamic launch power optimizing problem,
the proposed iterative closed control loop which includes the
realignment of the PLM is generic. It can be applied to other dynamic
multivariable optimization problems such as dynamic resource
allocation, automatic network reconfiguration, defragmentation, virtual
network reconfiguration etc. [9], [16], [21]-[25]. It also provides ideas of
how to realign the PLM in simpler dynamic and even static optimization
tasks.

The remainder of this paper is organized as follows. Section 2
presents an overview of the related work of existing power
optimizations schemes, dynamic optimization and closed control loops.
Section 3 presents simulations that expose the optimization mismatch
when using a one-time trained PLM with respect to the real
world/optical network. Then in Section 4 we describe the proposed
(DT) optimization concept. In section 5, we evaluate the performance of
the proposed scheme. Finally, Section 6 concludes the paper.

2. RELATED WORK
Optimization in optical networks is typically classified as

planning/static and online/dynamic. Dynamic optimization refers to
making changes while the network operates. Both static and dynamic
optimization involve algorithms which range from optimal to heuristics
that are typically iterative. They perform intermediate calculations until
they find the final solution. At these intermediate calculations they
generally rely on PLMs to take into account the physical layer. The PLMs
serve as estimators; they estimate the QoT of unestablished or
reconfigured connections [7], [8]. The PLM is a model that has several
input parameters, which are known with certain accuracy, and thus
needs to use appropriate margins for the optimization task at hand [3].
For example, for establishing connections margins are generally used to
model the inaccuracy of the PLM and also to account for the evolution of
the physical layer over the lifetime of the connections, increased
inference of upcoming connections, equipment ageing, etc. Recently ML
has been used to improve the accuracy of the PLM by implementing it
with ML models [5] or fitting the parameters of the existing PLM so that
its estimations match those monitored in the network [6], [8].

The optimization problems in optical networks are multidimensional
and combinatorial; a change in one variable affects several others. For
example, an establishment of a new connection or a change in a single
transponder launch power results in variations in the QoT of all
interfered connections. The effect of a few reconfigurations is relatively
easy to predict. However, in complex/multivariable optimization
problems, if the algorithm at intermediate steps has assumed several
reconfigurations, it can project the network into states where the PLM
suffers from low accuracy. This would mislead the subsequent
calculations and result in poor optimization.

Regarding launch power optimization, several works have appeared
aiming the minimization of non-linear self- (or intra-channel) and more
importantly the cross- (or inter-channel) interference effects [2], [26]-
[30]. These cross-channel nonlinearities (XCI) create interdependencies
among the launch powers of the connections that share a link, making
the problem more complex, as mentioned in the previous paragraph.
Authors in [2], [26] presented several approaches targeting the
optimization of the launch powers of all the channels before
establishment (static problem), with the objective of maximizing the

network spectral efficiency. Specifically, [26] discussed the potential
network level gains achieved by optimizing the power, constellation
and route and wavelength allocations, considering the Gaussian Noise
(GN) model [27] as the PLM. The parameters of the PLM such as fiber
non-linearity, attenuation, dispersion coefficients, transponder
mismatch loss, amplifier (flat) gain etc. were assumed to be fixed during
the optimization task. Also, other previous works were based on a fixed
parameter PLM, and proposed heuristics to optimize all channels
launch powers [1], [28]. Note that a fixed parameters PLM works fine
for few reconfigurations, but when the algorithm decides on extensive
reconfigurations, and in particular, the adjustment of the launch powers
of several connections, the accuracy of the PLM can become critical. The
above works select a different launch power for each connection,
assumed to be set at each span that the connection crosses. The local
optimization leads to global optimization (LOGO) method [27]
maximizes each span’s SNR assuming the same power for all
connections crossing it. Drawbacks are that LOGO assumed spans with
full load and cannot transfer margins among the connections.

The authors of [29] formulated the problem of optimizing the launch
powers of all connections to maximize the sum or the minimum channel
margin using a PLM based on the GN model (with fixed parameters) as
a convex optimization problem. An extension of [29], that improves the
SNR estimation accuracy from measurements (thus assuming an
operating network / dynamic optimization) was presented in [30]. The
authors proposed to probe (change the launch power) and monitor the
network, and use that to calculate the partial derivatives needed by the
convex optimization algorithm’s intermediate calculations. The limiting
factors of that work were the assumption on perfect non-linear
impairments monitoring, which is generally considered very hard,
along with the extensive interactions with the network for probing.
Additionally, the analysis was focused on a single link.

Similar PLM accuracy issues arise in other multivariable dynamic
optimization problems such as dynamic resource allocation, automatic
network reconfiguration, defragmentation, virtual network
reconfiguration etc. [9], [16], [21]-[25], where the optimization
algorithm relies on the PLM to perform calculations for candidate
reconfigurations. The PLM in those related works was assumed to have
fixed parameters or was aligned before the optimization task and was
used to take decisions which were afterward configured to the network.
For the extensive reconfigurations targeted in the above works, the PLM
can fail since its accuracy drops as the algorithm in its intermediate
calculations projects the network into new states.

We here propose to use an iterative closed control loop to solve
dynamic multivariable optimization problems. A key part of the
proposed iterative closed control loop is that after a number of
optimization algorithm intermediate calculations we close the loop,
configure the network and realign the PLM with the real world, via
monitoring and ML. By introducing these retraining cycles, the PLM
represents the real physical system with enough accuracy to perform
the optimization task at hand. The PLM becomes a digital twin (DT); a
model of the system with parameters that evolve/adjust, and a means
of dynamically adjusting it.

Closed control loops have been extensively studied in control theory
as discussed in [11], [31]. However, control theory typically targets
infinite time horizon problems, and considers fast loops with real-time
feedback. Also, reinforcement learning has received attention on similar
topics [32]. Reinforcement learning also targets infinite time horizon
problems and a system described by a Markov Decision Process, which
is different from the convex optimization problem that we have at hand.

To the best of our knowledge, the identified issue of the lack of
accuracy of the PLM in dynamic optimization problems has not been
studied in the past. Note that, convex optimization algorithms and their
interaction with a tool that represents reality (in optimization terms this

is referred to as an ‘oracle’) have been studied [33], including exact and
inexact oracles with varying inaccuracies models. Our proposed
solution shares certain ideas from this optimization field. We use convex
algorithms to solve the launch power optimization problem, following
[29] and [30], but we avoid heavy monitoring and apply the
optimization to the network level. We also share ideas with [7], [8], [12]
on the use of monitoring and ML to train/align the PLM with the
physical layer conditions. However, we extend those and
retrain/realign the PLM in a closed control loop, targeting dynamic
optimization problems.

Finally, we would also like to note that our study is quite more
realistic than most previous works that use the same PLM as both the
estimator and the ground truth, to generate the information to train the
estimator. In particular, in our simulations we used VPI as the ground
truth and the GN model as the estimator. VPI is quite more detailed and
complex and closer to a real system than the GN model. This choice was
made to capture the mismatch between the real network and the PLM
that would be used in the optimization process, an additional difficulty
which is neglected in most previous works.

3. USE CASE AND MOTIVATION
In this paper we investigate how the PLM accuracy affects the

optimization calculations. To do this, we focus on a dynamic version of
the launch power optimization problem. We assume that a set of
connections are established, and our goal is to optimize their launch
power. Thus, no connections are established or released, but the
existing connections are reconfigured (their launch powers are
adjusted) as the network operates. To motivate and better understand
the problem in this section we discuss the optimization of the launch
powers of 25 channels transmitted over a single link.

A. Physical Layer Model Training

We created a single link with 6 identical spans setup in VPI
Transmission Maker [34] as shown in Fig. 1. On this link we simulated
the transmission of 25 channels at 32 Gbaud with PM-16QAM and
assumed SNR threshold of 𝑆𝑁𝑅𝑡ℎ = 13.9dB for each [1], [6]. Note that
these simulations were time consuming due to the high computational
complexity, as VPI uses split-step Fourier propagation simulations to
model the nonlinear signal propagation of the channels. We considered
the VPI setup as the ‘real-world’, the actual optical network.

Fig. 1. Simulated single link setup in VPI with 25 x 32Gbaud, PM-16QAM,
50GHz spaced transmitters and 6 identical spans.

We also implemented a PLM, and in particular the GN-model [27],
with a similar setup of 6 identical spans and 25 channels. We found
approximately 1dB of max. SNR difference between the PLM and VPI,
when all parameters of the PLM and VPI (dispersion coefficient, slope,
attenuation coefficient of fiber, non-linearity coefficient etc.) were set
equal. Then we aligned the PLM with the real world (VPI). This
alignment can be done with various methods. In our case, we monitored

Gain=16dB

NF = 5.5dB

80 km

˟ Ns spans

Independent
receiver blocks with

impairment
compensation

• CD & PMD
compensation

• Clock Phase
recovery

• Carrier frequency
recovery

• Time Domain
equalization etc….

SNR1

SNR2

SNR12

SNR24

SNR25

MUX DEMUX

receiver
band pass

filters bank

span
(fiber+EDFA)

25 pol-mux 16QAM
transmitters

(32Gbaud,
50GHz spaced)

the channels SNR values (in VPI) and adjusted the PLM parameters so
that its SNR estimations match with the real world (VPI), using ML.

To be more specific, we implemented the following alignment
process for the GN model [5], [6]. We assume a network with N
connections. The GN PLM is a model that takes as input several
parameters and calculates the SNR values of the connections. Let r
denote the set of GN model fitted parameters: i) fiber attenuation
coefficients, ii) fiber non-linear coefficients, iii) fiber dispersion
coefficients, iv) a wavelength dependent penalty term, implemented as
a 4th order polynomial, to cover transponder loss mismatches, amplifier
ripple etc., and v) a bias. Also let 𝒑 = [𝑝1, 𝑝2, … 𝑝𝑁] be the launch power
vector of the N connections, which are the variables that will be
optimized later, and let z represents the unchanged input parameters
for our optimization, such as routes, used wavelengths, span lengths etc.
We denote by 𝑄𝑛(𝒑, 𝒓, 𝒛) the GN model SNR estimation for connection
n, and with 𝑸𝑵(𝒑, 𝒓, 𝒛) the SNR vector for all connections N. The SNR
calculation function is non-linear in its parameters r (and also p). Finally,
let 𝒀𝒏(p) denote the monitored SNR value of connection n and 𝒀𝑵(𝒑)
denote the vector for all the connections N. In this work such monitoring
is assumed to be done at the coherent receivers. The training error
vector is given by 𝑸𝑵(𝒑, 𝒓, 𝒛) − 𝒀𝑵(p), and the objective of the fitting
is to identify the parameters r that minimize the squared error. To fit
this, we relied on the Levenberg- Marquardt (LM) algorithm which is
suitable for solving nonlinear least squares fitting problems [35]. The
LM algorithm finds

 𝒓𝟎 = argmin𝑟(𝑸𝑵(𝒑, 𝒓, 𝒛) − 𝒀𝑵(𝒑))
2 (1)

When we perform this PLM alignment once, before the optimization
task, the PLM reflects with good accuracy the starting state of the
network prior to optimization. We refer to this as one-time trained PLM
and denote it by 𝑸𝑵(𝒑, 𝒓𝟎, 𝒛).

We studied two types of erbium doped fiber amplifiers (EDFA): one
whose gain is perfectly flat/ideal and another with a gain ripple profile
of a peak to peak (p2p) value of ±0.2dB [6]. Note that the EDFAs were
assumed to be operated in automatic gain control (AGC) mode with
average gain equal to the previous span loss. We call the setup with the
flat span EDFAs as Case 1, and the setup with EDFAs having gain ripple
as Case 2. Case 1 represents an ideal network with relatively stable
physical layer conditions. On the other hand, Case 2, with rippled EDFAs,
represents a more realistic scenario with more volatile/ dynamic
physical layer conditions. The physical layer dynamicity comes from the
fact that an EDFA with a gain ripple introduces SNR variations when
changing the connections powers. These variations are hard to estimate,
unless we exactly know the gain profile of the EDFA. This profile is hard
to be found in an operating network and it might change over long time.

Fig. 2. Estimated SNR values from the one-time trained PLM and VPI at
uniform 0dBm launch power and the related training error for (a) flat
EDFA, and (b) EDFA with gain ripple.

Fig. 2 (a) and Fig. 2 (b) show the estimated SNR values of the
connections from the one-time trained PLM 𝑸𝑵(𝒑, 𝒓𝟎, 𝒛) and the real
network (VPI) 𝒀𝑵(p) at uniform launch power of p=0dBm, for flat and

rippled EDFAs, respectively. The corresponding training errors are also
displayed in the same figures. With one-time training, the PLM
parameters were adjusted quite well and its estimated SNR values
matched those of the actual optical network/real world at the initial
state. This is deduced by the very low errors, less than 0.1dB for both,
Case 1 and Case 2.

B. Dynamic Launch Power Optimization

We now turn our attention to the dynamic launch power
optimization problem. For a generic topology we assume that we have
a set of N established connections. The objective is to optimize the
launch powers of the N transponders to maximize
(i) Objective 1: sum of connections margins

max 𝑓(𝒑) = ∑ (𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝒑) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛)
𝑁
𝑛=1

(ii) Objective 2: minimum margin

max 𝑓(𝒑) = 𝑚𝑖𝑛𝑛∊[1,𝑁](𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝒑) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛)

subject to:

𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝒑) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛 ≥ 0, ∀𝑛 ∊ [1,𝑁]

 𝒑𝒎𝒊𝒏 ≤ 𝒑 ≤ 𝒑𝒎𝒂𝒙

where 𝒑 = [𝑝1, 𝑝2, … 𝑝𝑁] is the launch power vector of the N
connections; 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 are the lower and upper power limits of
the transponders’ launch power; 𝑆𝑁𝑅𝑛(𝒑) is the SNR of connection n
for the corresponding power vector 𝒑; and 𝑆𝑁𝑅𝑡ℎ,𝑛 is the SNR

threshold required for the modulation format of n.
The optimization of channels’ launch powers with one of the above

objectives is known to be convex and of polynomial complexity [29],
[30]. Hence, we used the interior-point algorithm to solve it. In general,
a convex optimization algorithm performs intermediate
calculations/iterations. At each intermediate iteration the algorithm
decides on new transponders launch powers to move towards the
optimum. However, these intermediate steps are internal, only the final
(optimal) will be configured in the network. The algorithm decides
these steps by using the knowledge of the partial derivatives (first and
sometimes second order, depending on the algorithm) of the objective
and constraints with respect to the variables (launch powers 𝒑).

The first option to calculate such derivatives is to interface the
optimization algorithm with a PLM. In this case, the 𝑺𝑵𝑹𝒏(𝒑) values in
the algorithm come from the PLM calculations 𝑸𝒏(𝒑, 𝒓, 𝒛). If the PLM
has closed form partial derivatives, then the optimization process is
straightforward. However, typically the PLMs (e.g. GN model) do not
have closed form derivatives. Then we can use a derivative
identification subroutine based on finite differences. This subroutine
makes changes in the launch powers and uses the PLM to calculate the
outcomes (connections’ new SNR values). In this section we will assume
that we use a PLM that was aligned/trained once before the
optimization, as discussed above, so we use the fitted parameters 𝒓 =
𝒓𝟎. We will refer to this as optimization with one-time trained PLM.

An alternative option is to probe the real network, that is, to interface
the algorithm and, in particular, the derivative identification subroutine
with the network, bypassing the PLM. In this case the 𝑺𝑵𝑹𝒏(𝒑) values
in the algorithm come from the monitors of the network 𝒀𝒏(𝒑). The
derivative identification process would configure through the control
plane the launch powers of the transponders, and would monitor the
outcomes (connections’ SNRs) to calculate the derivatives. This would
be repeated at each algorithm’s iteration. We will refer to this option as
optimization with monitoring probes.

Note that the former option is fast. The PLM is trained once and used
thereafter to compute the derivatives. Although the PLM is called
several times, it has low computation complexity (at least the GN
model), resulting in low overall optimization time. However, this option
suffers from accuracy issues. Specifically, several parameters such as the

-0.1

-0.05

0

0.05

0.1

21.4

21.6

21.8

22

22.2

22.4

22.6

0 7 14 21 28

S
N

R
(d

B
)

tr
a

in
in

g
 e

rr
o

r

S
N

R
 (

d
B

)

channel ID

real world (VPI)

one time trained PLM

training error

-0.1

-0.05

0

0.05

0.1

20.8

21.2

21.6

22

22.4

22.8

0 7 14 21 28

S
N

R
(d

B
)

tr
a

in
in

g
 e

rr
o

r

S
N

R
 (

d
B

)

channel ID

real world (VPI)

one time trained PLM

training error

(a). (b).

amplifier gain ripple, non-linear interference (NLIs), crosstalk at
switches, etc., change for different network configurations/states. So,
the one-time trained PLM which is quite accurate at the
beginning/initial state (Fig. 2(a) and (b)) behaves rather inaccurately as
the iterative optimization algorithm projects the network into states
that are away from the initial. The inaccuracy of the PLM results in
inaccurate estimation of the derivatives which in turn results in
suboptimal optimization of the launch powers. This accuracy problem
is expected to be more profound when the network physical layer is
more dynamic, as in Case 2, where EDFA gain ripples result in SNR
variations as the launch powers change.

On the other hand, the latter option, optimization with monitoring
probes, involves several interactions with the actual network at each
intermediate step, which typically take long time and is also susceptible
to monitoring errors. Note that, the term monitoring probes refers to the
capability of the network to change the launch powers and monitor the
outcomes. In other optimization problems, e.g. involving
establishment/ release of connections, such capability will probably not
be present. Finally, note that in the results presented here and in Section
5 up to Fig. 12, the monitoring error was assumed to be zero. Thus, the
results obtained with monitoring probes and zero monitoring error are
optimal and set as the reference for all other cases.

Fig. 3. (a) Optimized launch powers, and (b) corresponding SNR and
obj#1 value, evaluated in the real network (VPI), for Case 1 (flat EDFAs).

C. Deviation of Optimizing with the One-Time Trained PLM

Fig. 3 (a) and (b) show the optimized launch powers for obj#1 with
the one-time trained PLM and the monitoring probes approaches for
flat EDFAs (case 1). We see that the one-time trained PLM did not
support well the optimization, since the algorithm using it identified
quite different power levels. That is, although the algorithm using the
one-time trained PLM identified the optimum, this was optimum for the
PLM and not close to the optimum in the real network (VPI). The reason
for this is that the PLM could not follow/predict with good accuracy the
real SNR values at the power levels calculated by the algorithm,
although the accuracy was very good for the initial state of the network,
right after the (one time) training. A margin on the PLM could cover this,
but again would result in suboptimal calculations. The maximized sum
of SNR margins (obj#1) was optimized to 204.96dB when the algorithm
used monitoring probes and interacted with the real network, and to
199.31dB when it interacted with the one-time trained PLM. There
exists a mismatch of ~5.6dBs in obj#1 value between these two
optimization approaches. Note that the SNR values and the objective
(Fig. 3 (b)) were and should be evaluated in the real world (VPI), so that
we can see the deviation. This also explains the ripples in SNR seen in
Fig 3(b), since VPI models some wavelength dependent factors not
covered by GN. Similar behavior was observed for obj#2, not shown
here for conciseness. Note that optimization with obj#2 results in
choosing the launch powers that result in almost flat SNR values, since

maximizing the minimum margin iteratively pushes the lowest SNR
value and reduces the higher. The maximized minimum margin was
optimized to 7.64dB with monitoring probes, and to 7.36dB with the
one-time trained PLM.

To emulate a more realistic scenario we assigned a gain ripple profile
to all EDFAs having a p2p ripple value of ~±0.2dBs (case 2). In such a
scenario when the algorithm used the one-time trained PLM it reached
an optimization objective (evaluated in the real network - VPI) quite
worse than when it used monitoring probes and interacted with the
actual network at intermediate optimization iterations. Fig. 4 (a) and (b)
shows the optimized launch powers and their corresponding SNR
values respectively, for obj#1. A maximum input power difference of
~1.5dBm was observed, resulting in ~8.4dB of SNR difference for
obj#1. Similarly, for obj#2, we observed a maximum input power
difference of ~1.2dBm, resulting in ~0.62dB of SNR difference for
obj#2. Note that the mismatch is higher than previously (case 1 / flat
EDFAs). This is because we now have a more volatile physical layer
(EDFA gain ripples affect the SNRs) and the PLM we use does not cover
this additional volatility.

Fig. 4. (a) Optimized launch power, and (b) corresponding SNR and
obj#1 value, evaluated in the real network (VPI), for Case 2 (EDFA with
gain ripple of ±0.2dB).

Concluding, for any optimization problem the PLM accuracy is
important. For planning/static problems, we cover inaccuracy issue
with margins, while several papers have targeted the reductions of
margins, by aligning the PLM to the physical layer conditions e.g.
through monitoring and ML. However, there have been limited
discussions on dynamic optimization problems; the disadvantage is that
to justify dynamic optimization we should target to achieve high
efficiency, making the accuracy of the PLM more critical. For complex /
multivariable dynamic optimization tasks, such as the dynamic launch
power optimization problem discussed above, an iterative algorithm is
typically used that calculates several intermediate solutions. One option
is to interface the algorithm with the network to probe and monitor it in
order to carry out the intermediate steps until it achieves the optimum.
This, however, is cumbersome and very slow. On the other end, we can
train the PLM before the optimization and use it in all intermediate
calculations. Since PLM calculations are fast the optimization will finish
quickly. However, the accuracy of the PLM can deteriorate and result to
suboptimal optimization as seen in the preliminary results discussed
above. This motivated us to address the limitations of the optimization
with one-time trained PLM by exploring the operating network and its
feedback. Our goal is to appropriately realign the PLM at intermediate
optimization calculations, so that the difference between the
optimization objective achieved with monitoring probes (interacting
with the real-world) and with the retrained PLM is negligible, while the
whole optimization is much faster.

(a). (b).

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 7 14 21 28

o
b

j#
1

 la
u

n
ch

 p
o

w
e

r
(d

B
m

)

channel ID

monitoring probes

one time trained PLM

21.7

21.9

22.1

22.3

22.5

22.7

0 7 14 21 28

S
N

R
 (

d
B

)

channel ID

monitoring probes

one time trained PLM

obj#1 value:
• 204.96dB
• 199.31dB

(a). (b).

21

21.3

21.6

21.9

22.2

22.5

22.8

23.1

0 7 14 21 28

S
N

R
(d

B
)

channel ID

monitoring probes

one time trained PLM

-2.5

-2

-1.5

-1

-0.5

0

0 7 14 21 28

o
b

j#
1

 la
u

n
ch

 p
o

w
e

r
(d

B
m

)

channel ID

monitoring probes
one time trained PLM

obj#1 value:
• 202.97dB
• 194.55dB

4. NETWORK DYNAMIC OPTIMIZATION AND PLM RE-
TRAINING

PLMs, which can be analytical, semi-analytical, ML models, etc., have
certain accuracy. The modeling assumptions impact the estimation
accuracy. For example, many PLMs neglect EDFA gain ripples, partially
model NLIs (e.g. consider full load), filters’ (inside ROADMS) crosstalk,
residual dispersion, specific parameters of transponders, etc. Note that
a detailed PLM is slower in the calculations and requires more input
parameters. Then, a second factor comes in play: the input parameters
might not be known with good accuracy, which eventually reduces the
accuracy of a detailed PLM.

Optimization tasks result in network changes and typically use a PLM
to estimate the effect of such changes. However, these changes also
modify the physical layer itself, they move the network to a new state.
Depending on the PLM, such changes are covered to a certain degree.
For example, when changing the power of a connection, NLIs, crosstalk,
but also the penalties due to EDFAs’ gain ripple profiles change. The
PLM model could for example, cover the effect of NLIs and crosstalk, but
not the evolution of gain ripples. For these reasons margins are used.
However, in dynamic use cases the aim is to be more efficient and thus
the accuracy of the PLM is a crucial factor. To improve that we can take
advantage of the operating network.

Hence a basic need for dynamic optimization is to have a PLM that
follows the network changes. In the AI/ML era, a way to do this is to
choose an appropriate set of parameters and retrain the PLM at certain
points. However, retraining is cumbersome and thus we cannot retrain
it before every dynamic task. On the other end, training the PLM once
before a multivariable optimization task can result in suboptimal
optimization, since the accuracy of the PLM deteriorates after several
intermediate calculations.

In this paper we focus on dynamic multivariable optimization
problems, and, in particular, we study the launch power optimization
problem of established connections as introduced in the previous
section. Note, however, that the proposed solution is generic and
applicable to other dynamic simple or multivariable optimization
problems as well. We propose to use an iterative closed control loop
process to solve such dynamic multivariable optimization problems. At
certain intermediate iterations of the algorithm we close the loop,
configure the network and monitor to retrain the PLM (with ML) to
follow the projected network conditions. The target is to make the PLM
a digital replica, that is, a digital twin (DT), of the optical physical layer
for the dynamic optimization task at hand. The frequency of the PLM
retraining depends on the PLM model and on the optimization task. As
discussed in the previous section alternative options for the algorithm
are to avoid using a PLM and have the algorithm interact with (probe
and monitor) the network or use a one-time trained PLM. All three
options are formally described in the following subsections.

A. Optimization with Monitoring Probes

The scheme that is considered in this subsection assumes that the
optimization algorithm interacts directly with the actual network and
follows a closed control loop process. The algorithm employs a
subroutine to specify the probes, the configurations that are applied to
the network. Then it monitors the outcomes to identify the information
that it needs for an intermediate optimization step. A representation of
this scheme is shown in Fig. 5. (a).

To be more specific, we focus on the dynamic launch power
optimization problem with a typical objective such as maximizing the
sum of SNR margins, or min. margin, as discussed in Section 3. This
problem is known to be convex and of polynomial complexity. The
convex optimization algorithms, such as (sub)gradient methods,
interior point, trust-region-reflective etc., are iterative; at each iteration

they need to calculate Jacobians and/or Hessians for the objective and
constraint functions [36], [37]. Actually, the related algorithms are
classified into first or second order depending on the order of the partial
derivatives they use. For optimization problems that involve PLMs
without closed form partial derivatives a way to calculate them is to use
a subroutine that implements finite differences [37].

For example, for the power optimization problem at hand, to
calculate the gradient for an objective function f we need to
find/monitor the changes in the SNR values of all connections, assumed
to be done through the coherent receivers, with respect to changes in
the powers of the transponders. To give an example, assuming a
network with a set of N established connections with a launch power
vector 𝒑. We denote by 𝜹𝒑𝒏 the vector with all zeros apart from element
n whose value we set to 𝑝𝑠𝑡𝑒𝑝, what we refer to as the power probe step.

As a matter of fact, the change in launch power of the single connection
n results in changes in the SNR values of all interfered connections
(those that share a common link). So, we denote by 𝑺𝑵𝑹𝑵(𝒑) and
𝑺𝑵𝑹𝑵(𝒑 + 𝜹𝒑𝒏) the SNR vector of all N connections for the respective
power vectors. If f is the objective function, then the first order partial
derivative for n is given by

 𝑔𝑛 = 𝑓(𝒑) − 𝑓(𝒑 + 𝜹𝒑𝒏)/𝑝𝑠𝑡𝑒𝑝 (2)

Depending upon the function f this involves certain operations with the
vectors 𝑺𝑵𝑹𝑵(𝒑) and 𝑺𝑵𝑹𝑵(𝒑 + 𝜹𝒑𝒏). The gradient g is the vector of
all partial derivatives, that is, 𝑔𝑛 for all n. To calculate the gradient with
the finite difference method we need to probe with 𝒑 + 𝜹𝒑𝒏 and
monitor 𝑺𝑵𝑹𝑵(𝒑 + 𝜹𝒑𝒏), and repeat this probe/monitoring process
for all connections n=1,…,N.

Generalizing this, the optimization algorithm calculates (first or
second order) partial derivatives through a finite differences subroutine
at each intermediate iteration. Let us assume that the algorithm calls the
finite differences method di times at iteration i. For the above example
with the gradient, we have 𝑑𝑖 = 𝑁. This is the simplest case; we
typically have 𝑑𝑖 ≥ 𝑁 depending on the algorithm. Note also that we
might have different number of probes per iteration, that is different 𝑑𝑖
per i. However, to simplify our analysis we assume that this is constant,
𝑑𝑖 = 𝐷, for each iteration i.

Fig. 6. Pseudo-code for optimization with monitoring probes.

The convex optimization algorithm with monitoring probes

performs 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 iterations to find the optimum. We also denote by

𝑡𝑚𝑜𝑛 the monitoring time, assumed here to monitor simultaneously all
N established connections. The monitoring time can range from
minutes to hours, depending upon the network size, the monitoring
plane, the targeted monitoring error etc. [38]. However, once the
monitoring information is forwarded to the algorithm, the time 𝑡𝑐𝑎𝑙𝑐 to
calculate the gradients/ Hessian and also the next launch powers is

Pseudo-code - 1

Start with initial launch power vector 𝒑𝟎, iteration number i=-1
While not converged

Increase i
Finite differences process, time: 𝑡𝑚𝑜𝑛 per probe to monitor all
connections 𝒀𝑵

Probe di times (configure new launch powers and monitor)
(e.g. for the first order partial derivative of connection n, probe
with 𝒑𝒊 + 𝜹𝒑𝒏 and monitor 𝒀𝑵(𝒑𝒊 + 𝜹𝒑𝒏))

Calculate the derivates and next launch power vector 𝒑𝑖 , time:
𝑡𝑐𝑎𝑙𝑐
Evaluate convergence (e.g. compare objective improvement with
a threshold), when converged: 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 = 𝑖

Apply the calculated power vector 𝑝𝑖 to the network

quite lower (msec range) compared to the monitoring time (𝑡𝑚𝑜𝑛 ≫
𝑡𝑐𝑎𝑙𝑐). So, with the monitoring probes-based approach, under the
assumption that N connections are monitored in parallel, the total
optimization time 𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 is given by:

𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 = 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ (𝐷 ∙ 𝑡𝑚𝑜𝑛 + 𝑡𝑐𝑎𝑙𝑐) ≈ 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷 ∙

𝑡𝑚𝑜𝑛 (3)
Optimizing with monitoring probes is described with pseudo-code 1 in
Fig. 6.

In general, the optical monitors have certain measuring accuracy. In
our proposal we assume that we monitor the SNR from the coherent
receivers which are quite accurate. Note that higher accuracy can be
achieved through time averaging; to reduce the effect of short term time
impairments, e.g. polarization, the monitoring measurements could be
averaged over time resulting in higher accuracy but also higher
monitoring time. Depending on the monitoring error, we might end up
to a different and worse objective value instead of the optimum. Another
factor to be accounted for in a real network is that the power probe steps
(𝑝𝑠𝑡𝑒𝑝) cannot be very small because fine-tuning of the equipment is not

feasible. Thus, in a real network, there are two factors that hinder the
monitoring probe optimization process:
(i) the monitoring errors
(ii) the minimum power probe step 𝑝𝑠𝑡𝑒𝑝 that can be configured

We call the SNR vector obtained from monitors with errors as the
noisy monitored vector, and denote it by
𝒀̃𝑵(𝒑) = 𝒀𝑵(𝒑) + 𝒗 (4)

where, 𝒗 is a vector that represents the monitoring error (or noise).
Stochastic subgradient methods [39] for zero mean errors provably

find the optimum solution with specific step sizes but might require a
very large number of iterations. However, in a real network where the
use of small steps is not supported by the transponders and iterations
are expensive since they involve several monitoring phases, such
methods are hardly applicable.

In this monitoring probes optimization approach the algorithm
optimizes the launch powers and checks at each step the actual
conditions of the network. For zero error this approach identifies the
optimum 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 but requires a high optimization time

𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . So, we will use this as the reference for all other approaches.

Also note that the monitoring probes, which are used in this method
to identify the partial derivatives, is not a universal solution. A
monitoring probe in the studied use case refers to the configuration of

new launch power(s) to one (or more) transponders of the established
connections and monitoring of all connections SNRs at their receivers.
So, the definition is specific to the problem; different optimization
problems require different monitoring probes definitions. For some
tasks, monitoring probes might not be available, e.g. tasks involving the
establishment/release of connections. For such tasks, we might need
spare transponders to extract the information required for the
optimization [12], which imply higher cost and complexity.

B. Optimization with one-time trained PLM

In this subsection, we consider the method where the PLM is aligned
only once, at the beginning of optimization. We perform the alignment
of the PLM using monitoring information 𝒀𝑵(𝒑𝟎) from the actual
network, assumed to take time 𝑡𝑚𝑜𝑛 as above. We then use ML to fit the
parameters r of the PLM 𝑸𝑵(𝒑𝟎, 𝒓, 𝒛) to the physical layer conditions,
so as to identify 𝒓𝟎. This is assumed to take time 𝑡𝑡𝑟𝑎𝑖𝑛. Then the
optimization algorithm interacts with this one-time trained PLM,
𝑸𝑵(𝒑𝟎, 𝒓𝟎, 𝒛), at each intermediate step, to estimate the QoT (SNR) of
the connections as shown in Fig. 5(b). In particular, since there are no
closed form derivatives equations for the GN model, we use a similar
derivatives identification subroutine (finite differences), as in the
previous method, but this time we interface that with the PLM instead
of the actual network. We denote by 𝑡𝑃𝐿𝑀 the time that the PLM takes to
calculate the SNR values of all connections. As before, this subroutine is
assumed to be called D times at each algorithm intermediate iteration.
We assume that the time 𝑡𝑐𝑎𝑙𝑐 that the algorithm needs to calculate the
gradients/Hessian and also the next launch powers is the same as the
previous method. We also denote by 𝐿𝑃𝐿𝑀 the number of iterations that
the algorithm performs. With the one-time trained PLM, the total
optimization time 𝑇𝑃𝐿𝑀 is given by
𝑇𝑃𝐿𝑀 = 𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑃𝐿𝑀 ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 + 𝑡𝑐𝑎𝑙𝑐) (5)
It stands to reason that the PLM training and estimation calculations

and the algorithm calculations are substantially faster than monitoring
(𝑡𝑚𝑜𝑛 ≫ 𝑡𝑡𝑟𝑎𝑖𝑛, 𝑡𝑃𝐿𝑀, 𝑡𝑐𝑎𝑙𝑐). We also expect a similar number of
iterations (𝐿𝑃𝐿𝑀 ≈ 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏), because the PLM/GN model satisfies

the convexity properties [29]. So, we have 𝑇𝑃𝐿𝑀 ≈ 𝑡𝑚𝑜𝑛. By comparing
this to Eq. (3) we can see that the one-time trained PLM based
optimization approach requires substantially less optimization time
than the previous approach, 𝑇𝑃𝐿𝑀 ≈ 𝑡𝑚𝑜𝑛 ≪ 𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ≈

𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷 ∙ 𝑡𝑚𝑜𝑛. In particular, the speedup we obtain is in the

Fig. 5. Optimization with (a) Actual deployed monitors, (b) One-time trained PLM, and (c) Proposed PLM retraining (digital twin) approach.

Digital Twin based Proposed Approach

Optimization Task
(launch power opt.)

optical
network

monitoring

optimization algo.
(convex, grad. descent etc.)

(a). (b). (c).

Monitoring based PLM based

optimization probes,
partial derivatives with

finite difference subroutine

Optimization Task
(launch power opt.)

optical
network

PLM

≈
optical

network

Digital Twin

Monitoring
ML retraining

PLM

parameters adapt with
evolving conditions via
(re) alignment/training

Optimization Task
(launch power opt.)

optimization algo.
(convex, grad. descent etc.)

optimization probes,
partial derivatives with

finite difference subroutine

Lk

optimization
Iterations

𝒑 , = 𝒑

new launch powers
for transponders

k+1
retraining

cycle

optimization algo.
(convex, grad. descent etc.)

optimization probes,
partial derivatives with

finite difference subroutine

order of 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷. This happens because the one-time trained

PLM provides fast all the necessary information for the optimization
algorithm at each intermediate step, avoiding monitoring. Optimizing
with a one-time trained PLM is described with pseudo-code 2 in Fig. 7.

The optimization algorithm using the one-time trained PLM

identifies the launch powers that yield the optimum 𝑜𝑏𝑗̃𝑃𝐿𝑀, but this is

Fig. 7. Pseudo-code for optimization with one-time trained PLM.

viewed through the PLM. However, the PLM has certain accuracy, and
was trained at initial conditions. So the identified launch powers yield
the objective 𝑜𝑏𝑗𝑃𝐿𝑀 in the real network, which is worse than the
objective of the monitoring probe method which is always evaluated in
the real network, 𝑜𝑏𝑗𝑃𝐿𝑀 ≤ 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . This problem was identified

in Section 3 and shown in Fig. 3 and 4.

C. Optimization with a Digital Twin (DT)

Following the discussions of the two above approaches, and the
results presented in Section 3, we observe a clear tradeoff between
optimization time and performance. The monitoring probes-based
approach (in Fig. 5(a)) implements closed control loops which are not
fast, due to the complex probing and slow monitoring subroutine.
However, it achieves the real optimal as it tracks the network evolving
conditions/states by configuring and monitoring. On the other hand, the
one-time trained PLM approach (in Fig. 5(b)) is substantially faster since
it uses the PLM to quickly find the derivatives at intermediate states.
However, the PLM is trained only once, at the beginning of the
optimization. So if the algorithm projects the network to substantially
different physical conditions, then the optimization is suboptimal, since
the PLM differs from reality, as seen in Fig. 3 and 4. The following
proposed scheme keeps the benefits of both approaches: it finds a near
to optimal solution, but with an overall low optimization time.

We propose to use an iterative closed control loop process to solve
the dynamic optimization problem. At certain intermediate iterations of
the algorithm we configure the intermediate solution to the network
and monitor to realign the PLM (with ML) to follow the projected
network conditions. As shown in Fig. 5(c). The idea is to make the PLM
a digital twin (DT), to have a PLM model which is parametric and define
the method to readjust/realign it to represents the physical system with
enough accuracy to perform the dynamic optimization calculations at
hand. For realigning the PLM, many techniques can be used. We here
use ML training. In this study we used as PLM the GN model [27], which
considers the launch powers and wavelength occupancy. Thus, it
models quite accurately linear and NLI transmission impairments. We

also extended it and added a wavelength dependent penalty on top of
the GN SNR calculation to cover e.g. the EDFA ripple penalties [6]. The
GN alignment process was described in Section 3, and extended here to
be performed iteratively.

As above, we denote by 𝑸𝑵(𝒑, 𝒓, 𝒛) the calculation of the SNR
values vector of all N connections by the GN PLM, where p is the launch
power vector (optimization variables), r represents the PLM fitted
parameters, the fiber coefficients and the wavelength dependent ripple
penalty, and z represents the unchanged input parameters for our
optimization such as routes, used wavelengths, etc. The dynamic
optimization process starts with the configured launch power vector 𝒑𝒐
of the established connections (e.g., all 0dBm). For this initial power
vector 𝒑𝒐 the PLM is trained with the monitored SNR vector 𝒀𝑵(𝒑𝒐).
To be more specific, we use ML and in particular the Levenberg-
Marquardt (LM) algorithm to find
𝒓𝟎 = argmin𝑟(𝑸𝑵(𝒑, 𝒓, 𝒛) − 𝒀𝑵(𝒑))

2. Now, let us assume that at the
end of the k-th PLM training cycle, the optimization algorithm has
performs Lk intermediate iterations and identified the launch powers

𝒑𝑘
𝐿𝑘 . We then start the next cycle k+1 by configuring the network with

the outcome so 𝒑 = 𝒑𝑘
𝐿𝑘 . To retrain the PLM for the k+1 cycle we

configure the network with 𝒑 and monitor to obtain 𝒀𝑵(𝒑).
Then ML is used to fit the parameters 𝒓 , that is 𝒓 =
argmin𝑟(𝑸𝑵(𝒑 , 𝒓, 𝒛) − 𝒀𝑵(𝒑))

2. This PLM is then used in the
optimization algorithm iterations of cycle k+1. Note that, at each
retraining cycle of the PLM, we can make use of the previously
monitored SNRs, including thus the history, the network evolution
conditions. This tends to improve the PLM accuracy as the algorithm
iterates, where the accuracy is more critical.

Fig. 8. Schematic showing the two nested for loops, outer for retraining
PLM cycles and the inner for the optimization algorithm iterations.

We assume that in total we retrain Kretrain times the PLM. Although we
can have different number of algorithm iterations per cycle, to simplify
our analysis in the following we assume that the algorithm runs Liter
iterations after each PLM re-training. So, Lk=Liter for all retraining cycles
k=1…Kretrain. It is easy to visualize the overall concept as two nested for
loops, as shown in Fig. 8. The outer one pertains to the PLM retraining,
and the inner to the optimization algorithm intermediate iterations with
the retrained PLM/DT. The time for each retraining cycle is equal to
𝑇𝑃𝐿𝑀 for Liter iterations, that is 𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑖𝑡𝑒𝑟 ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 +
 𝑡𝑐𝑎𝑙𝑐). We denote, the overall optimization time with this DT based
approach as 𝑇𝐷𝑇 , which is given by:
𝑇𝐷𝑇 = 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ (𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑖𝑡𝑒𝑟 ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 + 𝑡𝑐𝑎𝑙𝑐)) (6)

The proposed method of optimizing with a DT is described with
pseudo-code 3 in Fig. 9.

#k retraining cycle
configure pk, monitor 𝑺𝑵𝑹𝑵 𝒑 and fit PLM (Levenberg-
Marquardt algorithm): 𝑺𝑵𝑹𝑵 𝒑 ≈ 𝑸𝑵(𝒑 , 𝒓 , 𝒛)

outer loop: k=1,…, Kretrain

after Liter, produce the power
pk+1 for (k+1)th cycle

cycle#2

cycle#k

cycle#1

Digital Twin

lLiter

kKretrain

optimization algo.
(convex, grad. descent etc.)

optimization probes,
partial derivatives with

finite difference subroutine

Transponders
launch power

adjustment from
𝒑 to 𝒑 vector

at cycle k

optical network

𝑺𝑵𝑹𝑵 𝒑

monitoring

new
power
vector

inner loop: l=1,…., Liter iterations

PLM retrained at
each outer loop

execution
(retraining cycle)

1

k
k-1

𝑸𝑵(𝒑 , 𝒓 , 𝒛)

iterative closed control loop

2

Pseudo-code - 2

Start with initial launch power vector 𝒑𝟎, iteration number i=-1
Align PLM to initial / prior-to-optimization state (monitor 𝒀𝑵(𝒑𝟎) and
train the PLM 𝑸𝑵(𝒑𝟎, 𝒓, 𝒛) to find 𝑟0), time: 𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛
While not converged

Increase i
Finite differences process, time : 𝑡𝑃𝐿𝑀 per SNR vector calculation by
the PLM 𝑸𝑵

Probe di times the PLM: change the launch powers and
calculate the SNR vector for all connections with the PLM
(e.g. for the first order partial derivative of connection n, set
𝒑𝒊 + 𝜹𝒑𝒏 and calculate 𝑸𝑵(𝒑𝒊 + 𝜹𝒑𝒏, 𝒓𝟎, 𝒛)),

Calculate the derivates and next launch power vector 𝒑𝑖 , time: 𝑡𝑐𝑎𝑙𝑐
Evaluate convergence (e.g. compare objective improvement with a
threshold), when converged: 𝐿𝑃𝐿𝑀 = 𝑖

Apply the last calculated power vector 𝒑𝑖 (= 𝒑 𝑷 𝑴) to the network

Note that in total the optimization algorithm performs 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙
𝐿𝑖𝑡𝑒𝑟 iterations, and retrains the PLM 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 times. Our target is to
choose the retraining period 𝐿𝑖𝑡𝑒𝑟 appropriately so that the PLM would
follow with good accuracy the physical layer in the algorithm’s
intermediate calculations. If this is achieved the PLM estimated

objective that is calculated at each iteration and the final one 𝑜𝑏𝑗̃𝐷𝑇
would be very close to the real value in the real network 𝑜𝑏𝑗𝐷𝑇 . Also, the
achieved objective would be very close to the optimum, as calculated by
the monitoring probes method 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . So, we would have

𝑜𝑏𝑗̃𝐷𝑇 ≈ 𝑜𝑏𝑗𝐷𝑇 ≈ 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . Moreover, for an appropriate

retraining period the iterations of the optimization algorithm would be
close to those of the monitoring probes, that is 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ 𝐿𝑖𝑡𝑒𝑟 ≈
𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . Looking at the total optimization times, and assuming that

𝑡𝑚𝑜𝑛 is the dominant factor, we have 𝑇𝐷𝑇 ≈ 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ 𝑡𝑚𝑜𝑛. Thus we
obtain a speedup of 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷/𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 𝐿𝑖𝑡𝑒𝑟 ∙ 𝐷 with respect

to the monitoring probes optimization approach.

Fig. 9. Pseudo-code for optimization with the proposed PLM retraining/
Digital Twin.

5. RESULTS AND DISCUSSIONS
To quantify the benefits of the devised DT based power optimization

approach, we carried out simulations using both VPI Transmission
Maker and MATLAB. The actual network was implemented in VPI, and
the PLM (relying on the GN model) and the convex optimization
algorithm were developed in MATLAB. Note that VPI is quite more
detailed and complex and closer to a real system than the GN model.
This choice was made to capture the mismatch between the real
network and the PLM used in the optimization process. This is a
considerable improvement in terms of realism compared to many prior
studies (listed in Section 2), where authors used the same PLM for both
the real network/ground truth and their proposed solution.

To be more specific, we implemented in MATLAB the GN model and
the launch power optimization algorithm to maximize: (obj#1) the sum
of SNR margins, or (obj#2) the lowest margin, as discussed in Section 3.
This optimization problem is known to be convex and of polynomial
complexity. Hence, we implemented an interior-point algorithm to
solve it. The algorithm was run until it found the optimum (optimality
tolerance 10-6). The GN model was interfaced with the optimization
algorithm and both were integrated in an automated system in VPI. For
each simulation, VPI implements the outer loop (PLM retraining cycle).

It takes as input the launch powers coming from the algorithm of the
integrated MATLAB module, performs the detailed transmission
simulations and calculates the SNRs of the channels. These are passed
as input to the integrated MATLAB module. With that input the
integrated PLM gets trained and this trained PLM is then used by the
convex algorithm for 𝐿𝑖𝑡𝑒𝑟 intermediate iterations. In those iterations
the algorithm uses the PLM to identify the partial derivatives, using the
finite differences subroutine, and then the new launch powers. After the
𝐿𝑖𝑡𝑒𝑟 iterations (inner cycle), a new set of launch powers are
automatically fed to VPI transponders as a closed control loop for the
next retraining cycle. Note that, at each retraining cycle of the PLM, we
retrained with the current and previously monitored SNRs, including
thus the history, the network evolution conditions.

Fig. 10. (a) VPI setup with (a) Single link of 6 identical spans, (b) 3 nodes
and 15 connections with different paths/routes, added/dropped points
to emulate a small network.

The monitoring probes approach (Fig. 5(a)) was used as reference in
this work. To implement this, we implemented another (more frequent)
closed control loop without using a PLM: the monitoring probes from
the finite differences subroutine (in MATLAB) were carried directly to
VPI and the SNR values were then passed back to that subroutine. The
one-time trained PLM approach (Fig. 5(b)) represents the traditional
optimization scheme via a PLM. For that, we train the PLM only once
with the SNR data from VPI at the beginning of the simulation and used
that PLM for the power optimization (involving intermediate iterations
not configured in the network). Note that in all cases we start by
assigning 0dBm uniform power to all transponders in VPI.

For all the optimization schemes, the objective value was calculated
in VPI, so in the real network. As discussed, there exists a difference
between the view of the PLM/optimization process that uses it and the
real objective. Finally note that we evaluated the benefits of our
proposed scheme for relatively small channel count (=25) and up to two
links, due to the slow execution time of VPI (split-step Fourier
simulations). Actually, this can be considered as an indication of the long
time of interacting with/monitoring the real network.

To be specific, we made two fully automated setups in VPI:
(i) single link of 6 identical spans with 25 channels (Fig. 10 (a))
(ii) two links with 15 channels which were added/dropped at the

intermediate node (Fig. 10 (b))
For the first setup, 25 WDM channels with pol-mux 16QAM

modulation format at 32Gbaud, leading to 200 Gbps datarate per
channel were launched. We assumed SNR threshold of 13.9dB [1], [6].
The wavelength spacing between the channels was assumed to be
50GHz. We started with uniform 0dBm of launch powers for all

1 2
Gain=16dB
NF = 5.5dB

80 km

(a).

Ns = 6

f1 , f2 , …. , f24 , f25

2(b).

Gain=16dB
NF = 5.5dB

drop add

f1 , f2

1 3

Pseudo-code - 3

Start with initial powers 𝒑𝟎, outer loop iteration number k=0
While not converged

Align the PLM to current network state (monitor 𝒀𝑵(𝒑) and
train the PLM 𝑸𝑵(𝒑 , 𝒓, 𝒛) to identify 𝒓 , time: 𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛
Increase k, 𝒑

𝟎 = 𝒑
For l=0,…, Liter -1(Inner loop iterations)

Finite differences process, time : 𝑡𝑃𝐿𝑀 per SNR vector
calculation by the PLM 𝑸𝑵

Probe di times the PLM: change the launch powers and
calculate the SNR vector of all connections with the PLM
(e.g. for the first order partial derivative of connection n,

set 𝒑
𝒍 + 𝜹𝒑𝒏 and calculate 𝑸𝑵(𝒑

𝒍 + 𝜹𝒑𝒏, 𝒓 , 𝒛))

Calculate the derivates and next power vector 𝒑
𝒍 ,

time: 𝑡𝑐𝑎𝑙𝑐
Evaluate convergence (e.g. compare objective
improvement with a threshold), when converged:
𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 𝑘

Apply the calculated power vector 𝒑𝑘
𝐿𝑖𝑡𝑒𝑟 to the network

channels whose SNR values for each channel were
measured/monitored by VPI. As stated above, VPI acted as the real-
world/ground truth. Approximately 1dB of maximum SNR difference
between the untrained PLM and VPI was found, after setting equal the
fiber parameters (dispersion coefficient, slope, attenuation coefficient of
fiber, non-linearity coefficient etc.). Then with ML training (using the
Levenberg-Marquardt algorithm), the SNR mismatch was reduced to
less than 0.1dB (Fig. 2 of Section 3). This one-time trained PLM was then
used with the power optimization algorithm. The algorithm converged
to 199.31dB and 7.34dB for obj#1 and obj#2, depicted with the orange
circles and dotted lines in Fig. 11(a) and (b), respectively.

We then optimized with the monitoring probes where the
optimization algorithm was interfaced with the actual network (VPI).
Again, the algorithm was run until it found the optimum for the objective
function at hand. The algorithm converged to 204.96dB and 7.64dB for
obj#1 and obj#2, depicted with the blue circles and dotted lines in Fig.
11(a) and (b), respectively. A relatively mismatch of ~5.6dB for obj#1
and ~0.3dB for obj#2 between the monitoring probes (optimum) and
the one-time trained PLM was observed. With monitoring probes, the
algorithm took around 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ≈ 120 iterations to optimize the

launch powers in both objectives. In case of the one-time trained PLM,
the algorithm converged a bit faster, after 𝐿𝑃𝐿𝑀 ≈ 90 iterations.

Fig. 11. (a) Obj#1, and (b) Obj#2 values as a function of the proposed DT
approach retraining cycles (k), for flat EDFAs.

We then optimized with our proposed PLM retraining/DT approach.
We examined different PLM retraining periods of 𝐿𝑖𝑡𝑒𝑟= 5, 10 and 50.
Fig. 11 shows the optimization objective values (evaluated in VPI) as a
function of the retraining cycles (index k) of our proposed scheme. We
see that with each training cycle, the objective value moves towards the
optimum / reference obtained with monitoring probes approach. For
𝐿𝑖𝑡𝑒𝑟=5, after approximately k=11 iterations for obj#1 and k= 8
iterations for obj#2, the objective becomes nearly constant indicating
convergence. For small retraining periods, such as 𝐿𝑖𝑡𝑒𝑟 = 5, 10, the
objective (both for obj#1 and obj#2) reached exactly that achieved with
the monitoring probe-based approach, that is, 𝑜𝑏𝑗𝐷𝑇 = 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 .

However, for longer retraining periods, such as 𝐿𝑖𝑡𝑒𝑟 = 50, the
algorithm converged near to the one-time trained PLM scheme. This
happened because we allowed the optimization algorithm to perform
long intermediate iterations without retraining the PLM. Within these
iterations the algorithm converged to an optimum, it could not improve

its objective function (𝑜𝑏𝑗̃𝐷𝑇) with the used PLM. However, after these
long intermediate iterations, the PLM was not representing reality with
good accuracy, and thus the corresponding real network objective
(𝑜𝑏𝑗𝐷𝑇) was rather suboptimal.

In reality, EDFA gains are not flat and come with ripples [6]. We
assigned a gain ripple profile of p2p gain of 0.4dBs (±0.2dBs) to span
EDFAs. The PLM was then trained at 0dBm of flat launch power and a
maximum SNR difference of less than ±0.05dBs was observed as shown
in Fig. 2(b) - Section 3. This led to a mismatch of ~8.5dB (Fig. 4(b)) and
~0.64dB in SNR margin between monitoring probes and one-time
trained PLM optimization for obj#1 and obj#2, respectively. The

mismatch is higher than previous, due to the EDFAs gain ripples that
make the physical layer more dynamic.

Fig. 12. (a) Launch power (dBm), (b) SNR (dB) per channel as the
number k of retraining cycles increase, for the proposed DT approach,
𝐿𝑖𝑡𝑒𝑟= 5, obj#1 and EDFAs having peak to peak gain ripple of 0.4dB .

Fig. 12 (a) shows the power per channel (in dBm) at different
retraining cycles k for a retraining period 𝐿𝑖𝑡𝑒𝑟= 5 and for obj#1. Fig. 12
(b) shows the corresponding SNR (dB) values. For obj#1, with around
k=20 PLM retraining cycles, the transponders launch power and SNR
values converged near the optimal values obtained with the monitoring
probe-based approach (Fig. 4). The algorithm reached obj#1 =
202.96dBs (black curve in Fig. 13(a)), very close to the monitoring
probe-based approach. Compared to the one-time trained PLM it
achieved an improvement of ~8.4dB, which is ~0.34dB of SNR
improvement per channel.

Similar behaviour was also observed for obj#2. Fig. 14 (a) and (b)
show the input power (dBm) and the corresponding SNR (dB) for k
retraining cycles with 𝐿𝑖𝑡𝑒𝑟= 5 and for obj#2. From Fig. 13 (b) it can be
observed that after 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 12 retraining cycles, the algorithm
reaches obj#2=7.8dB which is very close to that found with the
monitoring probes approach. Compared to the one-time trained PLM
we achieved an improvement of ~0.64dB.

Fig. 13. (a) Obj#1, and (b) Obj#2 values as a function of the proposed DT
approach retraining cycles (k), for EDFAs with peak to peak gain ripple
of 0.4dB.

Fig. 13 (a) and (b) show the evolution of obj#1 and obj#2 with the
proposed approach for different retraining periods of 𝐿𝑖𝑡𝑒𝑟 =5, 10, 50.
Note that we have comparatively higher savings (~2.8dB) with respect
to the one-time trained PLM compared to flat EDFAs (Fig. 11), because
the physical layer is more dynamic with the rippled EDFAs. The small
drop in the second retraining cycle of Fig. 13(a) can be explained by the
PLM training process; in that cycle the PLM did not match very well the
real network and misled the optimization algorithm. This was then
improved at the next retraining which involved more monitoring
information from the new / projected network state.

(a). (b).

192

194

196

198

200

202

204

206

0 4 8 12 16

o
b

j#
1

: s
u

m
 o

f
m

a
rg

in
s

(d
B

)

retraining cycle k

one-time trained PLM
199.3dB

mon. probe-204.9dB

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50
7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

0 2 4 6 8 10 12 14

o
b

j#
2

: m
in

. m
a

rg
in

 (
d

B
)

retraining cycle k

one-time trained PLM
7.34dB

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50

mon. probe-7.65dB

11.23dB 0.56dB

-2.8

-2.3

-1.8

-1.3

-0.8

-0.3

0.2

0.7

0 7 14 21 28

o
b

j#
1

: l
a

u
n

ch
 p

o
w

e
r

(d
B

m
)

channel ID

20.9

21.3

21.7

22.1

22.5

22.9

23.3

0 7 14 21 28

o
b

j#
1

: S
N

R
 (

d
B

)

channel ID
(a). (b).

0dBm flat k=5 k=10

k=15 k=20

0dBm flat k=5 k=10

k=15 k=20

obj#1 value-
202.97dB

(a). (b).

186

188

190

192

194

196

198

200

202

204

0 3 6 9 12 15 18 21

o
b

j1
#

: s
u

m
 o

f
m

a
rg

in
s

(d
B

)

retraining cycle k

mon. probe-202.9dB

one-time trained PLM

194.58dB

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50
7

7.2

7.4

7.6

7.8

0 3 6 9 12 15

o
b

j#
2

: m
in

. m
a

rg
in

 (
d

B
)

retraining cycle k

mon. probe-7.8dB

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50

Liter=5

Liter=10

Liter=50

one-time trained PLM

7.17dB

13.94dB
0.71dB

Fig. 14. (a) Launch power (dBm), (b) SNR (dB) per channel as the
number k of retraining cycles increase, for the proposed DT approach,
𝐿𝑖𝑡𝑒𝑟= 5, obj#2 and EDFAs having peak to peak gain ripple of 0.4dB.

Monitors are not perfect and yield measurements that include errors,
as discussed in Section 4. In our optimization we assumed the use of
SNR values measured from the coherent receivers, which are typically
assumed to have good accuracy. However, there are some fast-varying
impairments that result in SNR fluctuations and contribute to
monitoring errors. A typical method to suppress those is to average the
SNR measurements over a period longer enough than the frequency of
such effects. Hence, we modelled these monitoring errors by adding a
random gaussian noise v with mean = 0 and standard deviation (std) =
0.1, 0.2 and 0.4 dB, to the SNR values (provided by VPI). These noisy
monitored SNR values were then fed to the interior point optimization
algorithm, and were reflected in the algorithm’s derivative calculations.

The monitoring error results in a degraded optimization operation.
In theory, the stochastic subgradient method [39] (which is a first order
method) with specific small steps can find the optimum for the assumed
zero mean errors after a high number of iterations. However, such
method might not be applicable in real networks, where finite small
steps are not feasible, and iterations must be constrained (to avoid
effects of medium-term varying impairments). Also monitoring small
SNR differences (due to the small steps) is rather hard (low slope of
derivatives). So instead of seeking an ideal optimum we focused in a
more realistic case and in the following results we used the interior
point algorithm and a minimum power probe step 𝑝𝑠𝑡𝑒𝑝=0.1 dBm.

Fig. 15(a) shows the achieved objectives using the proposed DT
approach with 𝐿𝑖𝑡𝑒𝑟=5 for varying monitoring error std (the mean was
always equal to 0) for the flat EDFA case. Similar results were obtained
for the monitoring probe optimization. A deterioration of the optimum
with respect to ideal monitors (no noise, std=0) was observed. For a
std=0.4dB with flat EDFAs, the objective decreased by 3.6% and 4.5%
for obj#1 and obj#2, respectively. For EDFAs with gain ripples, the
related decrease was even higher, ~5% and ~6% for obj#1 and obj#2,
respectively, as shown in Fig. 15 (b).

Fig. 15. Objective function variation as a function of the monitoring error
std for (a) Flat EDFA gain (b) EDFA with gain ripple.

We now turn our attention on the optimization time. As discussed,
the PLM and the convex (interior-point) optimization algorithm were

implemented in MATLAB. So, in MATLAB we measured the overall
computation time, which included the time 𝑡𝑐𝑎𝑙𝑐 that the algorithm
calculated the gradients/Hessian and also the next launch powers, the
time 𝑡𝑡𝑟𝑎𝑖𝑛 to train with ML the PLM, and the time 𝑡𝑃𝐿𝑀 for the SNR
calculations by the PLM. Note that the PLM-related times appear only in
the schemes that use it (one-time trained PLM, and DT). Also, note that
the computation time was measured until the algorithm obtained the
optimum, so it included all retaining cycles, algorithm iterations and
finite difference subroutine calls. Following the notation of Section 4, for
the monitoring probes scheme we measured: 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝑡𝑐𝑎𝑙𝑐 , for

the one-time trained PLM we measured: 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑃𝐿𝑀 ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 +
 𝑡𝑐𝑎𝑙𝑐), and for the DT we measured: 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ (𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑖𝑡𝑒𝑟 ∙
(𝐷 ∙ 𝑡𝑃𝐿𝑀 + 𝑡𝑐𝑎𝑙𝑐)). To obtain the DT results we used a retraining
period 𝐿𝑖𝑡𝑒𝑟=5.

Fig. 16. (a) Computational time (sec), (b) Number of monitoring calls
required, for EDFA with flat and rippled gain cases respectively.

Fig. 16 (a) shows the overall computational time for obj#1 for EDFA
with flat and rippled gain (std=0). The computational time for the
monitoring probe-based approach was the smallest around 2sec for flat
gain EDFA and ~2.5 sec for EDFA with gain ripples, since it only includes
𝑡𝑐𝑎𝑙𝑐 . The one-time trained PLM was slightly faster than the DT
approach (~4 sec compared to ~4.5 for flat EDFA gain case and ~7 sec
compared to ~7.5 for the case of EDFA with gain ripple), since the PLM
retraining time, which is their key difference, was quite fast. The
computation time for the case of EDFAs with gain ripples (shown in Fig.
16 (a)), was higher for all optimization schemes, since the algorithm
took more iterations to reach the optimum.

From the above measurements we excluded the monitoring time
𝑡𝑚𝑜𝑛. It was excluded since we did not want to use some reference
monitoring time. However, we expect it to be some orders of magnitude
higher than the timescales reported in Fig. 16 (a). Today, transponders
report the SNR/BER every 15 minutes [38]. The reporting time can be
substantially reduced down to sec with NETCONF/YANG monitoring
[12] or telemetry based protocols [40], [41]. However, such reporting
periods target failure recovery use cases, which are substantially
different from the power optimization use case studied in this paper.
Moreover, we need to consider that in the monitoring probes scheme,
the monitoring happens after the probing, that is, after changing the
launch power of one or more connections. In such case we would have
to wait for EDFA transient effects to settle [42]. Also, for optimization we
need to have a low monitoring error. So, we would need to time average
to suppress the fast-varying impairment effects. Moreover, depending
on the optimization method, it is required to monitor different times. In
the one-time trained PLM approach, we monitor only once, at the
beginning of the optimization. In the DT approach we monitor 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛
times, once every PLM retraining cycle. In the monitoring probes
approach we train 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷. However, note that D depends on the

optimization algorithm and the type of partial derivatives it calculates
(first or second order). So we might have different number of
probes/monitoring per algorithm iteration.

(a). (b).

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0 7 14 21 28

o
b

j#
2

: l
a

u
n

ch
 p

o
w

e
r

(d
B

m
)

channel ID

20.9

21.2

21.5

21.8

22.1

22.4

0 7 14 21 28

o
b

j#
2

: S
N

R
 (

d
B

)

channel ID

0dBm flat k=3 k=6

k=9 k=12

0dBm flat k=3 k=6

k=9 k=12

obj#2 value-
7.81dB

(a). (b).

0.95

0.97

0.99

1.01

0 0.1 0.2 0.3 0.4 0.5

n
o

rm
a

li
ze

d
 o

b
j.

 v
a

lu
e

monitoring error std (dB)

obj#1

obj#2

0.93

0.95

0.97

0.99

1.01

0 0.1 0.2 0.3 0.4 0.5

n
o

rm
a

li
ze

d
 o

b
j.

 v
a

lu
e

monitoring error std (dB)

obj#1

obj#2

4.5% 3.6%

(obj#1, 2): (204.96, 7.6)dB (obj#1, 2): (202.92, 7.8)dB

4.6%6.1%

(a). (b).

0

2

4

6

8

EDFA with flat
gain

EDFA with gain
ripple

co
m

p
u

ta
ti

o
n

a
l

ti
m

e
 (

se
c)

studied case

mon. probe

one-time trained PLM

DT

0

30

60

90

120

150

180

EDFA with flat
gain

EDFA with gain
ripple

m
o

n
it

o
ri

n
g

 c
a

ll
s

studied case

mon. probe

one-time trained PLM

DT

~85% ~85%

To avoid any confusion with timescales, we show in Fig. 16 (b) the
number of monitoring calls, which in our simulations were measured as
the number of times that we set new launch powers in VPI, executed the
VPI transmission simulation, obtained the SNR values and forwarded
them in MATLAB. We can clearly see the substantial higher number of
monitoring calls performed by the monitoring probes approach, which
would result in substantially higher overall optimization time (the
addition of computation Fig. 16 (a) and monitoring Fig. 16 (b) times).

Finally, to study a more network like scenario, we extend the single
link setup to a two-links setup (Fig. 10 (b)). We established 15
connections with different add/ drop locations and reused wavelengths
at the intermediate node. We first focus on Case 1, the flat EDFA gain
profiles. Fig. 17 (a) and (b) show the evolution of obj#1 and obj#2,
respectively, as a function of the retraining cycles k for the DT scheme
with 𝐿𝑖𝑡𝑒𝑟=5. The proposed DT approach improved by ~1.3dBs the
obj#1 and by ~0.15dB the obj#2, with respect to the one-time trained
PLM scheme.

Fig. 17. (a) Obj#1 (b) Obj#2 values as a function of the proposed DT
approach retraining cycles (k), for flat EDFAs in the 2-links setup.

For Case 2, we assigned a gain ripple profile of ±0.2dB and ±0.1dB to
link 1-2 and link 2-3, respectively. Fig. 18 (a) and (b) shows the evolution
of obj#1 and obj#2, respectively, as a function of the retraining cycles k
for DT with 𝐿𝑖𝑡𝑒𝑟=5 scheme. We obtained a ~1.7dBs and ~0.6dBs of
improvement for obj#1 and obj#2, respectively, with respect to training
with a one-time trained PLM based approach.

Fig. 18. (a) Obj#1 (b) Obj#2 values as a function of the DT approach
retraining cycles (k), for EDFAs with ripples in the 2-links setup.

Compared to the single link setup, the improvements obtained for the
two links setup were lower. The low channel load and the relatively
wider channel separation due to ADD/DROP is one of the main reasons
for the low value of improvements. Although we did not test bigger
setups in VPI, since it is quite complicated, we believe that the benefits
of our proposed solution are higher for a full network with higher load.

6. CONCLUSION
Despite the extensive literature on ML based and ML improved PLMs,

there has been limited discussion on the use of PLMs in dynamic
optimization. We proposed to use an iterative closed control loop
process to solve a complex/multivariable dynamic optimization

problem. In particular, we propose to close the control loop after several
algorithm intermediate calculations, apply the intermediate calculated
changes and monitor the outcome so that we realign (retrain) the PLM
with the real world/ optical network. The PLM is used as a Digital Twin
(DT), it is applied to a network with evolving conditions, it is parametric
and is dynamically adjusted so that it replicates with enough accuracy
the real-world for the optimization at hand. We applied our proposed
method to solve the dynamic version of the launch power optimization
problem. With the proposed PLM retraining/DT scheme, we showed an
improvement of ~8.5dB and ~0.64dB in sum of margins and lowest
margin, respectively, over optimization with a one-time trained PLM.
Moreover, the proposed approach achieved near to optimum solutions
as found by optimizing and continuously probing and monitoring the
network, but lowered the overall optimization time up to 85% by
reducing the number of monitoring probes. We limited our study in 25
channels on a single link and 15 channels on 2 links network topology.
However, we believe that our proposed solution is more beneficial once
longer paths with heavy loads are considered.

Acknowledgment. The authors would like to thank VPI Transmission
Maker’s support team for guidance in the receiver unit and end to end
automation. This work is a part of the Future Optical Networks for
Innovation, Research and Experimentation (ONFIRE) project,
supported by European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant No. 765275.

References
[1] P. Soumplis, K. Christodoulopoulos, M. Quagliotti, A. Pagano and

E. Varvarigos, "Network Planning with Actual Margins," Journal of
Lightwave Technology, vol. 35, no. 23, pp. 5105-5120, 2017

[2] D. J. Ives, P. Bayvel and S. J. Savory, "Adapting Transmitter Power
and Modulation Format to Improve Optical Network Performance
Utilizing the Gaussian Noise Model of Nonlinear
Impairments,"Journal of Lightwave Technology, vol. 32, no. 21, pp.
4087-4096, 2014

[3] Y. Pointurier, "Design of low-margin optical networks," IEEE/OSA
Journal of Optical Communications and Networking, vol. 9, no. 1,
pp. A9-A17, 2017

[4] J. L. Auge, "Can we use Flexible Transponders to Reduce Margins?
," Optical Fiber Communication Conference (OFC), 2013

[5] I. Sartzetakis, K. Christodoulopoulos and E. Varvarigos, "Accurate
Quality of Transmission Estimation with Machine Learning,"
IEEE/OSA Journal of Optical Communications and Networking, vol.
11, no. 3, pp. 140-150, 2019

[6] A. Mahajan, K. Christodoulopoulos, R. Martínez, S. Spadaro and R.
Muñoz, "Modeling EDFA Gain Ripple and Filter Penalties with
Machine Learning for Accurate QoT Estimation," Journal of
Lightwave Technology, vol. 38, no. 9, pp. 2616-2629, 2020

[7] I. Sartzetakis, K. Christodoulopoulos and E. Varvarigos, "Cross-
layer adaptive elastic optical networks," IEEE/OSA Journal of
Optical Communications and Networking, vol. 10, no. 2, pp. A154-
A164, 2018

[8] E. Seve, J. Pesic, C. Delezoide, S. Bigo and Y. Pointurier, "Learning
process for reducing uncertainties on network parameters and
design margins," IEEE/OSA Journal of Optical Communications and
Networking, vol. 10, no. 2, pp. A298-A306, 2018

[9] D. Rafique and L. Velasco, "Machine learning for network
automation: overview, architecture, and applications [Invited
Tutorial]," IEEE/OSA Journal of Optical Communications and
Networking, vol. 10, no. 10, pp. D126-D143, 2018

[10] S. Shahkarami, F. Musumeci, F. Cugini and M. Tornatore,
"Machine-Learning-Based Soft-Failure Detection and

129.2

129.6

130

130.4

130.8

0 2 4 6 8 10

o
b

j1
#

:
su

m
 o

f
m

a
rg

in
s

(d
B

)

retraining cycle k

6.12

6.16

6.2

6.24

6.28

0 3 6 9 12 15

o
b

j#
2

:
m

in
. m

a
rg

in
 (

d
B

)

retraining cycle k

(a). (b).

~1.3dB

mon. probe -130.4dB

~0.15dB

mon. probe-6.26dB

129.4dB 6.23dB

one-time trained PLMone-time trained PLM

129.2

129.6

130

130.4

130.8

131.2

131.6

0 3 6 9 12 15

o
b

j1
#

:
su

m
 o

f
m

a
rg

in
s

(d
B

)

retraining cycle k

5.4

5.6

5.8

6

6.2

0 3 6 9 12 15

o
b

j#
2

:
m

in
. m

a
rg

in
 (

d
B

)

retraining cycle k
(a). (b).

mon. probe-131.2dB

~0.6dB

mon. probe-6.1dB

130.5dB 5.56dB

one-time trained PLMone-time trained PLM

~1.71dB

Identification in Optical Networks," 2018 Optical Fiber
Communications Conference and Exposition (OFC), 2018

[11] M. Hadi and E. Agrell, "Iterative Configuration in Elastic Optical
Networks: (Invited Paper)," International Conference on Optical
Network Design and Modeling (ONDM), 2020

[12] K. Christodoulopoulos, C. Delezoide, N. Sambo, A. Kretsis, I.
Sartzetakis, A. Sgambelluri, N. Argyris, G. Kanakis, P. Giardina, G.
Bernini, D. Roccato, A. Percelsi, R. Morro, H. Avramopoulos, P.
Castoldi, P. Layec, and S. Bigo, "Toward efficient, reliable, and
autonomous optical networks: the ORCHESTRA solution [Invited],"
IEEE/OSA Journal of Optical Communications and Networking, vol.
11, no. 9, pp. C10-C24, 2019

[13] M. J. Neely, "Stochastic network optimization with application to
communication and queueing systems," Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[14] M. Channegowda, R. Nejabati and D. Simeonidou, "Software-
defined optical networks technology and infrastructure: Enabling
software-defined optical network operations [invited]," IEEE/OSA
Journal of Optical Communications and Networking, vol. 5, no. 10,
pp. A274-A282, 2013

[15] S. Yan, F. N. Khan, A. Mavromatis, D. Gkounis, Q. Fan, F. Ntavou,
K. Nikolovgenis, F. Meng, E. H. Salas, C. Guo, C. Lu, A. P. T. Lau,R.
Nejabati, and D. Simeonidou, "Field trial of Machine-Learning-
assisted and SDN-based Optical Network Planning with Network-
Scale Monitoring Database," European Conference on Optical
Communication (ECOC), 2017

[16] L. Velasco, A. C. Piat, O. Gonzlez, A. Lord, A. Napoli, P. Layec, D.
Rafique, A. D'Errico, D. King, M. Ruiz, F. Cugini, and R. Casellas,
"Monitoring and Data Analytics for Optical Networking: Benefits,
Architectures, and Use Cases," IEEE Network, vol. 33, no. 6, pp.
100-108, 2019

[17] N. Stojanovic, and D. Milenovic, "Data-driven Digital Twin
approach for process optimization: an industry use case," IEEE
International Conference on Big Data (Big Data), 2018

[18] L.Wright, and S. Davidson, "How to tell the difference between a
model and a digital twin," Springer, Advanced Modeling and
Simulation in Engineering Sciences, vol. 7, no. 13, 2020

[19] M. Grieves, "Digital twin: Manufacturing excellence through
virtual factory replication," White paper, 2014.

[20] E. Glaessgen and D. Stargel, "The digital twin paradigm for future
NASA and US air force vehicles," 53rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, 20th
AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012

[21] K. D. R. Assis, S. Peng, R. C. Almeida, H. Waldman, A. Hammad, A.
F. Santos, and D. Simeonidou, "Network virtualization over elastic
optical networks with different protection schemes," IEEE/OSA
Journal of Optical Communications and Networking, vol. 8, no. 4,
pp. 272-281, 2016

[22] J. Cho, S. Chandrasekhar, E. Sula, S. Olsson, E. Burrows, G. Raybon,
R. Ryf, N. Fontaine, J. Antona, S. Grubb, P. Winzer, and A.
Chraplyvy, "Maximizing fiber cable capacity under a supply power
constraint using deep neural networks," Optical Fiber
Communications Conference and Exhibition (OFC), 2020

[23] P. Soumplis, K. Christodoulopoulos and E. Varvarigos, "Dynamic
connection establishment and network re-optimization in flexible
optical networks," Springer, Photonic Network Communications,
vol. 29, pp. 307-321, 2015

[24] A. Castro, L. Velasco, M. Ruiz, M. Klinkowski, J. P. Fernández-
Palacios, and D. Careglio, "Dynamic routing and spectrum
(re)allocation in future flexgrid optical networks," Elsevier,
Computer Networks, vol. 56, no. 12, pp. 2869-2883, 2012

[25] P. Papanikolaou, K. Christodoulopoulos and E. Varvarigos,
"Incremental planning of multi-layer elastic optical networks,"
International Conference on Optical Network Design and
Modeling (ONDM), 2017

[26] D. J. Ives and S. J. Savory, "Transmitter optimized optical
networks," Optical Fiber Communication Conference (OFC), 2013

[27] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang and F. Forghieri,
"The GN-Model of Fiber Non-Linear Propagation and its
Applications," Journal of Lightwave Technology, vol. 32, no. 4, pp.
694-721, 2014

[28] H. Rabbani, L. Beygi, S. Ghoshooni, H. Rabbani, and E. Agrell,
"Quality of Transmission Aware Optical Networking Using
Enhanced Gaussian Noise Model," Journal of Lightwave
Technology, vol. 37, no. 3, pp. 831-838, 2019

[29] I. Roberts, J.M. Kahn, and D. Boertjes, "Convex channel power
optimization in nonlinear WDM systems using Gaussian noise
model," Journal of Lightwave Technology, vol. 34, no. 13, pp.
3212–3222, 2016

[30] I. Roberts and J. M. Kahn, "Measurement-Based Optimization of
Channel Powers with Non-Gaussian Nonlinear Interference
Noise," Journal of Lightwave Technology, vol. 36, no. 13, pp. 2746-
2756, 2018

[31] D. Bertsekas, "Dynamic Programming and Stochastic Control (1st.
ed.)," Elsevier, Academic Press Inc., 1976

[32] R. S. Sutton, A. G. Barto, "Introduction to Reinforcement Learning
(1st. ed.)," MIT Press, Cambridge, MA, USA, 1998

[33] O. Devolder, F. Glineur, and Y. Nesterov, "First-order methods of
smooth convex optimization with inexact oracle," Springer, Math.
Program., vol. 146, pp. 37–75, 2014

[34] https://www.vpiphotonics.com/index.php

[35] H. P. Gavin, "The Levenberg-Marquardt Algorithm for Non-Linear
Least Squares Curve-Fitting Problems," Notes CE281, Duke
university, North Carolina, 2020
(http://people.duke.edu/~hpgavin/ce281/lm.pdf)

[36] S. Boyd and J. Park, "Subgradient Methods," Notes EE364b,
Stanford, CA, USA: Stanford Univ., 2014
(https://stanford.edu/class/ee364b/lectures/subgrad_method_n
otes.pdf)

[37] M. S. Gockenbach, "Computing Derivatives by Finite Differences,"
Notes MA5630, MTU, Houghton, Michigan, 2013

(https://pages.mtu.edu/~msgocken/ma5630spring2003/lectures
/diff/diff/diff.html)

[38] https://metro-haul.eu/deliverables/

[39] S. Boyd, A. Mutapcic and J. Duchi, "Stochastic Subgradient
Methods," Notes EE364b, Stanford, CA, USA: Stanford Univ., 2014
(https://web.stanford.edu/class/ee364b/lectures/stoch_subgrad
_notes.pdf)

[40] R. Vilalta, N. Yoshikane, R. Casellas, R. Martínez, S. Beppu, D. Soma,
S. Sumita, T. Tsuritani, I. Morita, and R. Muñoz, "GRPC-based SDN
control and telemetry for soft-failure detection of spectral/spacial
superchannels," European Conference on Optical Communication
(ECOC), 2019

[41] F. Paolucci, A. Sgambelluri, F. Cugini and P. Castoldi, "Network
Telemetry Streaming Services in SDN-Based Disaggregated Optical
Networks," Journal of Lightwave Technology, vol. 36, no. 15, pp.
3142-3149, 2018

[42] C. Tian and S. Kinoshita, "Analysis and control of transient
dynamics of EDFA pumped by 1480- and 980-nm lasers," Journal
of Lightwave Technology, vol. 21, no. 8, pp. 1728-1734, 2003

https://www.vpiphotonics.com/index.php
https://stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf
https://stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf
https://pages.mtu.edu/~msgocken/ma5630spring2003/lectures/diff/diff/diff.html
https://pages.mtu.edu/~msgocken/ma5630spring2003/lectures/diff/diff/diff.html
https://metro-haul.eu/deliverables/
https://web.stanford.edu/class/ee364b/lectures/stoch_subgrad_notes.pdf
https://web.stanford.edu/class/ee364b/lectures/stoch_subgrad_notes.pdf

