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Optical network optimization involves an algorithm and a Physical Layer Model (PLM) to estimate the Quality of 
Transmission (QoT) of connections while examining candidate optimization operations. In particular, the algorithm 
typically calculates intermediate solutions until it reaches the optimum which is then configured to the network. If 
it uses a PLM that was aligned once to reflect the starting network configuration, then the algorithm within its 
intermediate calculations can project the network into states where the PLM suffers from low accuracy, resulting in 
a suboptimal optimization. In this paper, we propose to solve dynamic multivariable optimization problems with an 
iterative closed control loop process, where after certain algorithm steps we configure the intermediate solution so 
that we monitor and realign/retrain the PLM to follow the projected network states. The PLM is used as a Digital 
Twin (DT), a digital representation of the real system which is realigned during the dynamic optimization process. 
Specifically, we study the dynamic launch power optimization problem, where we have a set of established 
connections and we optimize their launch powers while the network operates. We observed substantial 
improvements in the sum and the lowest margin when optimizing the launch powers with the proposed approach 
over optimization using a one-time trained PLM. The proposed approach achieved near to optimum solutions as 
found by optimizing and continuously probing and monitoring the network, but with a substantial lower 
optimization time. 
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1. INTRODUCTION 
An accurate and fast physical layer model (PLM) is required for 

almost every optimization task of an optical network [1], [2]. Today 
most optimization tasks are static, such as network setup and 
upgrading, where calculations are performed in advanced. The PLM 
used includes margins that cover its modeling uncertainties and the 
evolution of the physical layer conditions over the targeted lifespan [3], 
[4]. Moreover, as soon as the connection is provisioned/ established, the 
vendor can measure its quality of transmission (QoT), e.g. the signal to 
noise ratio (SNR), and correct/improve the configuration. Note that 
upgrades that involve dynamic operations such as the establishment of 
new or reconfiguration of established connections were classified as 
static above, since typically they are carried out in maintenance 
windows and not on the operating network. Dynamic reconfigurations 
for resiliency involve protected/restored connections which were 
probed beforehand.  

In any of these optimization tasks the PLM needs to be accurate; 
however, the dynamic operations are not directly applied on the 
network, an indication of lack of certainty for such operations. Recently 
monitoring and machine learning (ML) techniques have been proposed 
to account for the actual network conditions, and improving the 
accuracy of the PLM [5]-[8]. This in turn  improves the efficiency of static 
optimization and paves the way to reduce overprovisioning and realize 
some dynamic optimization use cases [9]-[13].  

Let us consider a network upgrade/incremental planning task which 
involves calculations for new establishments and possible 
reconfigurations of established connections [8], [12]. Traditionally a 
PLM with high margins is used, e.g. considers pessimistic fiber 
coefficient parameters, full spectral load, high modelling inaccuracy etc. 
The optimization will be quite inefficient and result in considerable 
overprovisioning. Using monitoring feedback and e.g. ML  [5]-[8] the 
parameters of the PLM can be fitted so that its estimated SNR values are 
close to those monitored in the network. Essentially, feedback and ML is 
used to understand the current state of the network and increase the 
PLM estimation accuracy. We will refer to this process as the alignment 
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of the PLM to the physical layer of the network. The PLM accuracy is 
even more critical when it is used for dynamic optimization tasks, where 
the target is to achieve high efficiency in an operating network.  

Today, optical networks are moving towards the software defined 
networking (SDN) concept, where a centralized controller handles the 
programmability of all network elements. One of the main advantages 
of SDN is its intrinsic capability to enable dynamic optimization 
operations [14], [15]. In this context, the SDN controller implements the 
optimization logic, interfaces with a PLM, and can be extended to handle 
closed control loops, which entail the use of monitoring data as input or 
feedback to conduct the targeted optimization task [7], [9], [16].  

Similar problems arise in almost every industry. To keep up with the 
rapid advancements of the systems and harvest their improvements in 
terms of productivity, the Digital Twin (DT) concept is gaining a lot of 
attention. The DT is a digital representation of the real / physical system, 
used to understand and optimize the targeted system [17]. According to 
the definition of [18], the DT is more than a model of the system; it 
includes an evolving set of data, and a means of dynamically adjusting 
the model. The DT concept was originally introduced in 2003 [18] and 
first put to public by the NASA [20]. Different industry sectors are taking 
advantage of DT’s ability to simulate real-time working conditions and 
perform autonomous and intelligent decision-making operations. DT 
provides an alternative way in today’s manual interaction-based design, 
operation, and service paradigms, to solve the related challenges 
autonomously and in real-time [17], [19]. Depending on the dynamicity 
of both the system and the optimization process, the DT needs to 
represent the real system with certain accuracy. To do this, the DT is 
integrated and realigned with the physical system. Such a realignment 
mechanism typically involves monitoring and ML schemes.  

Turning our attention back to the optical network, the target is to use 
the PLM as a DT, a model with appropriate set of parameters and a 
mechanism to adjust them to support the optimization task at hand. For 
static optimization tasks, such as incremental planning discussed above, 
the only option is to train the PLM once, just before taking the decisions 
for the entire optimization task. This results in lower margins and 
increased network efficiency. But the main target and benefits of DT 
comes in dynamic optimization. In dynamic optimization, we would like 
to squeeze the margins and achieve higher efficiency, making the 
accuracy of PLM a critical factor. For example, the accuracy of the PLM 
deteriorates as connections are established/ released/ rerouted/ 
change their power. For dynamic optimization tasks that involve few 
such calculations and actions, e.g. the establishment or reconfiguration 
of a single connection, the accuracy of the PLM would be acceptable if it 
was realigned before the calculation. However, realignment of the PLM 
is expensive; it requires one or more control loops, including monitoring 
that can be time consuming and thus it might not be feasible. Moreover, 
for more complex/multivariable dynamic optimization tasks, that 
require multiple reconfigurations the accuracy of the PLM can become 
critical. Algorithms used in such cases are typically iterative, they 
calculate several intermediate solutions and improve over them to find 
the optimum, which is then configured in the network [11]. However, 
the accuracy of the PLM deteriorates after several intermediate 
calculations and after a point it can fail to support the optimization 
calculations. The key advantage is that the network operates and thus 
we can realign the PLM/retrain its parameters, so that it follows the 
projections to states intermediately calculated by the algorithm.  

In particular, we study the dynamic launch power optimization 
problem, where we assume that we have a set of established 
connections and we want to optimize their powers while the network 
operates. The optimum launch powers can be found with a convex 
optimization algorithm that performs several intermediate calculations. 
To solve the problem, three methods are explored: i) having the 
optimization algorithm probe and monitor the network at each 

intermediate iteration, ii) using a one-time trained PLM for all 
optimization iterations, iii) implementing an iterative closed control 
loop process that after a number of intermediate iterations configures 
the network, monitors and retrains the PLM. We will refer to the last 
option, the proposed solution, as optimization with a DT, since it 
includes, apart from the PLM, evolving network conditions, appropriate 
choice of parameters for the PLM and the process to align it to support 
the dynamic optimization at hand [18]. Although we applied our 
proposed solution to the dynamic launch power optimizing problem, 
the proposed iterative closed control loop which includes the 
realignment of the PLM is generic. It can be applied to other dynamic 
multivariable optimization problems such as dynamic resource 
allocation, automatic network reconfiguration, defragmentation, virtual 
network reconfiguration etc. [9], [16], [21]-[25]. It also provides ideas of 
how to realign the PLM in simpler dynamic and even static optimization 
tasks.  

The remainder of this paper is organized as follows. Section 2 
presents an overview of the related work of existing power 
optimizations schemes, dynamic optimization and closed control loops. 
Section 3 presents simulations that expose the optimization mismatch 
when using a one-time trained PLM with respect to the real 
world/optical network. Then in Section 4 we describe the proposed 
(DT) optimization concept. In section 5, we evaluate the performance of 
the proposed scheme. Finally, Section 6 concludes the paper. 

2. RELATED WORK 
Optimization in optical networks is typically classified as 

planning/static and online/dynamic. Dynamic optimization refers to 
making changes while the network operates. Both static and dynamic 
optimization involve algorithms which range from optimal to heuristics 
that are typically iterative. They perform intermediate calculations until 
they find the final solution. At these intermediate calculations they 
generally rely on PLMs to take into account the physical layer. The PLMs 
serve as estimators; they estimate the QoT of unestablished or 
reconfigured connections [7], [8]. The PLM is a model that has several 
input parameters, which are known with certain accuracy, and thus 
needs to use appropriate margins for the optimization task at hand [3]. 
For example, for establishing connections margins are generally used to 
model the inaccuracy of the PLM and also to account for the evolution of 
the physical layer over the lifetime of the connections, increased 
inference of upcoming connections, equipment ageing, etc. Recently ML 
has been used to improve the accuracy of the PLM by implementing it 
with ML models [5] or fitting the parameters of the existing PLM so that 
its estimations match those monitored in the network [6], [8].  

The optimization problems in optical networks are multidimensional 
and combinatorial; a change in one variable affects several others. For 
example, an establishment of a new connection or a change in a single 
transponder launch power results in variations in the QoT of all 
interfered connections. The effect of a few reconfigurations is relatively 
easy to predict. However, in complex/multivariable optimization 
problems, if the algorithm at intermediate steps has assumed several 
reconfigurations, it can project the network into states where the PLM 
suffers from low accuracy. This would mislead the subsequent 
calculations and result in poor optimization.  

Regarding launch power optimization,  several works have appeared 
aiming the minimization of non-linear self- (or intra-channel) and more 
importantly the cross- (or inter-channel) interference effects [2], [26]-
[30]. These cross-channel nonlinearities (XCI) create interdependencies 
among the launch powers of the connections that share a link, making 
the problem more complex, as mentioned in the previous paragraph. 
Authors in [2], [26] presented several approaches targeting the 
optimization of the launch powers of all the channels before 
establishment (static problem), with the objective of maximizing the 



 

 

network spectral efficiency. Specifically, [26] discussed the potential 
network level gains achieved by optimizing the power, constellation 
and route and wavelength allocations, considering the Gaussian Noise 
(GN) model [27] as the PLM. The parameters of the PLM such as fiber 
non-linearity, attenuation, dispersion coefficients, transponder 
mismatch loss, amplifier (flat) gain etc. were assumed to be fixed during 
the optimization task. Also, other previous works were based on a fixed 
parameter PLM, and proposed heuristics to optimize all channels 
launch powers [1], [28]. Note that a fixed parameters PLM works fine 
for few reconfigurations, but when the algorithm decides on extensive 
reconfigurations, and in particular, the adjustment of the launch powers 
of several connections, the accuracy of the PLM can become critical. The 
above works select a different launch power for each connection, 
assumed to be set at each span that the connection crosses. The local 
optimization leads to global optimization (LOGO) method [27] 
maximizes each span’s SNR assuming the same power for all 
connections crossing it. Drawbacks are that LOGO assumed spans with 
full load and cannot transfer margins among the connections.  

The authors of [29] formulated the problem of optimizing the launch 
powers of all connections to maximize the sum or the minimum channel 
margin using a PLM based on the GN model (with fixed parameters) as 
a convex optimization problem. An extension of [29], that improves the 
SNR estimation accuracy from measurements (thus assuming an 
operating network / dynamic optimization) was presented in [30]. The 
authors proposed to probe (change the launch power) and monitor the 
network, and use that to calculate the partial derivatives needed by the 
convex optimization algorithm’s intermediate calculations. The limiting 
factors of that work were the assumption on perfect non-linear 
impairments monitoring, which is generally considered very hard, 
along with the extensive interactions with the network for probing. 
Additionally, the analysis was focused on a single link.  

Similar PLM accuracy issues arise in other multivariable dynamic 
optimization problems such as dynamic resource allocation, automatic 
network reconfiguration, defragmentation, virtual network 
reconfiguration etc. [9], [16], [21]-[25], where the optimization 
algorithm relies on the PLM to perform calculations for candidate 
reconfigurations. The PLM in those related works was assumed to have 
fixed parameters or was aligned before the optimization task and was 
used to take decisions which were afterward configured to the network. 
For the extensive reconfigurations targeted in the above works, the PLM 
can fail since its accuracy drops as the algorithm in its intermediate 
calculations projects the network into new states.  

We here propose to use an iterative closed control loop to solve 
dynamic multivariable optimization problems. A key part of the 
proposed iterative closed control loop is that after a number of 
optimization algorithm intermediate calculations we close the loop, 
configure the network and realign the PLM with the real world, via 
monitoring and ML. By introducing these retraining cycles, the PLM 
represents the real physical system with enough accuracy to perform 
the optimization task at hand. The PLM becomes a digital twin (DT); a 
model of the system with parameters that evolve/adjust, and a means 
of dynamically adjusting it. 

Closed control loops have been extensively studied in control theory 
as discussed in [11], [31]. However, control theory typically targets 
infinite time horizon problems, and considers fast loops with real-time 
feedback. Also, reinforcement learning has received attention on similar 
topics [32]. Reinforcement learning also targets infinite time horizon 
problems and a system described by a Markov Decision Process, which 
is different from the convex optimization problem that we have at hand. 

To the best of our knowledge, the identified issue of the lack of 
accuracy of the PLM in dynamic optimization problems has not been 
studied in the past. Note that, convex optimization algorithms and their 
interaction with a tool that represents reality (in optimization terms this 

is referred to as an ‘oracle’) have been studied [33], including exact and 
inexact oracles with varying inaccuracies models. Our proposed 
solution shares certain ideas from this optimization field. We use convex 
algorithms to solve the launch power optimization problem, following 
[29] and [30], but we avoid heavy monitoring and apply the 
optimization to the network level. We also share ideas with [7], [8], [12] 
on the use of monitoring and ML to train/align the PLM with the 
physical layer conditions. However, we extend those and 
retrain/realign the PLM in a closed control loop, targeting dynamic 
optimization problems.  

Finally, we would also like to note that our study is quite more 
realistic than most previous works that use the same PLM as both the 
estimator and the ground truth, to generate the information to train the 
estimator. In particular, in our simulations we used VPI as the ground 
truth and the GN model as the estimator. VPI is quite more detailed and 
complex and closer to a real system than the GN model. This choice was 
made to capture the mismatch between the real network and the PLM 
that would be used in the optimization process, an additional difficulty 
which is neglected in most previous works.  

3. USE CASE AND MOTIVATION 
In this paper we investigate how the PLM accuracy affects the 

optimization calculations. To do this, we focus on a dynamic version of 
the launch power optimization problem. We assume that a set of 
connections are established, and our goal is to optimize their launch 
power. Thus, no connections are established or released, but the 
existing connections are reconfigured (their launch powers are 
adjusted) as the network operates. To motivate and better understand 
the problem in this section we discuss the optimization of the launch 
powers of 25 channels transmitted over a single link.  

A. Physical Layer Model Training 

We created a single link with 6 identical spans setup in VPI 
Transmission Maker [34] as shown in Fig. 1. On this link we simulated 
the transmission of 25 channels at 32 Gbaud with PM-16QAM and 
assumed SNR threshold of 𝑆𝑁𝑅𝑡ℎ = 13.9dB  for each [1], [6]. Note that 
these simulations were time consuming due to the high computational 
complexity, as VPI uses split-step Fourier propagation simulations to 
model the nonlinear signal propagation of the channels. We considered 
the VPI setup as the ‘real-world’, the actual optical network.  

 

Fig. 1. Simulated single link setup in VPI with 25 x 32Gbaud, PM-16QAM, 
50GHz spaced transmitters and 6 identical spans. 

We also implemented a PLM, and in particular the GN-model [27], 
with a similar setup of 6 identical spans and 25 channels. We found 
approximately 1dB of max. SNR difference between the PLM and VPI, 
when all parameters of the PLM and VPI (dispersion coefficient, slope, 
attenuation coefficient of fiber, non-linearity coefficient etc.) were set 
equal.  Then we aligned the PLM with the real world (VPI). This 
alignment can be done with various methods. In our case, we monitored 
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the channels SNR values (in VPI) and adjusted the PLM parameters so 
that its SNR estimations match with the real world (VPI), using ML.  

To be more specific, we implemented the following alignment 
process for the GN model [5], [6]. We assume a network with N 
connections. The GN PLM is a model that takes as input several 
parameters and calculates the SNR values of the connections.  Let r 
denote the set of GN model fitted parameters: i) fiber attenuation 
coefficients, ii) fiber non-linear coefficients, iii) fiber dispersion 
coefficients, iv) a wavelength dependent penalty term, implemented as 
a 4th order polynomial, to cover transponder loss mismatches, amplifier 
ripple etc., and v) a bias. Also let 𝒑 = [𝑝1, 𝑝2, … 𝑝𝑁] be the launch power 
vector of the N connections, which are the variables that will be 
optimized later, and let z represents the unchanged input parameters 
for our optimization, such as routes, used wavelengths, span lengths etc. 
We denote by 𝑄𝑛(𝒑, 𝒓, 𝒛) the GN model SNR estimation for connection 
n, and with 𝑸𝑵(𝒑, 𝒓, 𝒛) the SNR vector for all connections N. The SNR 
calculation function is non-linear in its parameters r (and also p). Finally, 
let 𝒀𝒏(p) denote the monitored SNR value of connection n and 𝒀𝑵(𝒑) 
denote the vector for all the connections N. In this work such monitoring 
is assumed to be done at the coherent receivers. The training error 
vector is given by 𝑸𝑵(𝒑, 𝒓, 𝒛)  − 𝒀𝑵(p), and the objective of the fitting 
is to identify the parameters r that minimize the squared error. To fit 
this, we relied on the Levenberg- Marquardt (LM) algorithm which is 
suitable for solving nonlinear least squares fitting problems [35]. The 
LM algorithm finds  

 𝒓𝟎 = argmin𝑟(𝑸𝑵(𝒑, 𝒓, 𝒛) − 𝒀𝑵(𝒑))
2                (1) 

When we perform this PLM alignment once, before the optimization 
task, the PLM reflects with good accuracy the starting state of the 
network prior to optimization. We refer to this as one-time trained PLM 
and denote it by 𝑸𝑵(𝒑, 𝒓𝟎, 𝒛). 

We studied two types of erbium doped fiber amplifiers (EDFA): one 
whose gain is perfectly flat/ideal and another with a gain ripple profile 
of a peak to peak (p2p) value of ±0.2dB [6]. Note that the EDFAs were 
assumed to be operated in automatic gain control (AGC) mode with 
average gain equal to the previous span loss. We call the setup with the 
flat span EDFAs as Case 1, and the setup with EDFAs having gain ripple 
as Case 2. Case 1 represents an ideal network with relatively stable 
physical layer conditions. On the other hand, Case 2, with rippled EDFAs, 
represents a more realistic scenario with more volatile/ dynamic 
physical layer conditions. The physical layer dynamicity comes from the 
fact that an EDFA with a gain ripple introduces SNR variations when 
changing the connections powers. These variations are hard to estimate, 
unless we exactly know the gain profile of the EDFA. This profile is hard 
to be found in an operating network and it might change over long time. 

 

Fig. 2. Estimated SNR values from the one-time trained PLM and VPI at 
uniform 0dBm launch power and the related training error for (a) flat 
EDFA, and (b) EDFA with gain ripple. 

 

Fig. 2 (a) and Fig. 2 (b) show the estimated SNR values of the 
connections from the one-time trained PLM 𝑸𝑵(𝒑, 𝒓𝟎, 𝒛) and the real 
network (VPI) 𝒀𝑵(p) at uniform launch power of p=0dBm, for flat and 

rippled EDFAs, respectively. The corresponding training errors are also 
displayed in the same figures. With one-time training, the PLM 
parameters were adjusted quite well and its estimated SNR values 
matched those of the actual optical network/real world at the initial 
state. This is deduced by the very low errors, less than 0.1dB for both, 
Case 1 and Case 2.  

B. Dynamic Launch Power Optimization 

We now turn our attention to the dynamic launch power 
optimization problem. For a generic topology we assume that we have 
a set of N established connections. The objective is to optimize the 
launch powers of the N transponders to maximize  
(i) Objective 1: sum of connections margins 

max  𝑓(𝒑) = ∑ (𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝒑) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛) 
𝑁
𝑛=1              

(ii) Objective 2: minimum margin 

max 𝑓(𝒑) = 𝑚𝑖𝑛𝑛∊[1,𝑁](𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝒑) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛)     

subject to: 

𝑙𝑜𝑔 𝑆𝑁𝑅𝑛(𝒑) − 𝑙𝑜𝑔 𝑆𝑁𝑅𝑡ℎ,𝑛  ≥ 0, ∀𝑛 ∊ [1,𝑁]          

              𝒑𝒎𝒊𝒏  ≤ 𝒑 ≤  𝒑𝒎𝒂𝒙    

where 𝒑 = [𝑝1, 𝑝2, … 𝑝𝑁] is the launch power vector of the N 
connections; 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥  are the lower and upper power limits of 
the transponders’ launch power; 𝑆𝑁𝑅𝑛(𝒑) is the SNR of connection n 
for the corresponding power vector 𝒑; and 𝑆𝑁𝑅𝑡ℎ,𝑛 is the SNR 

threshold required for the modulation format of n. 
The optimization of channels’ launch powers with one of the above 

objectives is known to be convex and of polynomial complexity [29], 
[30]. Hence, we used the interior-point algorithm to solve it. In general, 
a convex optimization algorithm performs intermediate 
calculations/iterations. At each intermediate iteration the algorithm 
decides on new transponders launch powers to move towards the 
optimum. However, these intermediate steps are internal, only the final 
(optimal) will be configured in the network. The algorithm decides 
these steps by using the knowledge of the partial derivatives (first and 
sometimes second order, depending on the algorithm) of the objective 
and constraints with respect to the variables (launch powers 𝒑).  

The first option to calculate such derivatives is to interface the 
optimization algorithm with a PLM. In this case, the 𝑺𝑵𝑹𝒏(𝒑) values in 
the algorithm come from the PLM calculations 𝑸𝒏(𝒑, 𝒓, 𝒛). If the PLM 
has closed form partial derivatives, then the optimization process is 
straightforward. However, typically the PLMs (e.g. GN model) do not 
have closed form derivatives. Then we can use a derivative 
identification subroutine based on finite differences. This subroutine 
makes changes in the launch powers and uses the PLM to calculate the 
outcomes (connections’ new SNR values). In this section we will assume 
that we use a PLM that was aligned/trained once before the 
optimization, as discussed above, so we use the fitted parameters 𝒓 =
𝒓𝟎. We will refer to this as optimization with one-time trained PLM. 

An alternative option is to probe the real network, that is, to interface 
the algorithm and, in particular, the derivative identification subroutine 
with the network, bypassing the PLM. In this case the 𝑺𝑵𝑹𝒏(𝒑) values 
in the algorithm come from the monitors of the network 𝒀𝒏(𝒑). The 
derivative identification process would configure through the control 
plane the launch powers of the transponders, and would monitor the 
outcomes (connections’ SNRs) to calculate the derivatives. This would 
be repeated at each algorithm’s iteration. We will refer to this option as 
optimization with monitoring probes.  

Note that the former option is fast. The PLM is trained once and used 
thereafter to compute the derivatives. Although the PLM is called 
several times, it has low computation complexity (at least the GN 
model), resulting in low overall optimization time. However, this option 
suffers from accuracy issues. Specifically, several parameters such as the 
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amplifier gain ripple, non-linear interference (NLIs), crosstalk at 
switches, etc., change for different network configurations/states. So, 
the one-time trained PLM which is quite accurate at the 
beginning/initial state (Fig. 2(a) and (b)) behaves rather inaccurately as 
the iterative optimization algorithm projects the network into states 
that are away from the initial. The inaccuracy of the PLM results in 
inaccurate estimation of the derivatives which in turn results in 
suboptimal optimization of the launch powers. This accuracy problem 
is expected to be more profound when the network physical layer is 
more dynamic, as in Case 2, where EDFA gain ripples result in SNR 
variations as the launch powers change. 

On the other hand, the latter option, optimization with monitoring 
probes, involves several interactions with the actual network at each 
intermediate step, which typically take long time and is also susceptible 
to monitoring errors. Note that, the term monitoring probes refers to the 
capability of the network to change the launch powers and monitor the 
outcomes. In other optimization problems, e.g. involving 
establishment/ release of connections, such capability will probably not 
be present. Finally, note that in the results presented here and in Section 
5 up to Fig. 12, the monitoring error was assumed to be zero. Thus, the 
results obtained with monitoring probes and zero monitoring error are 
optimal and set as the reference for all other cases. 

 

  

Fig. 3. (a) Optimized launch powers, and (b) corresponding SNR and 
obj#1 value, evaluated in the real network (VPI), for Case 1 (flat EDFAs). 

C. Deviation of Optimizing with the One-Time Trained PLM  

Fig. 3 (a) and (b) show the optimized launch powers for obj#1 with 
the one-time trained PLM and the monitoring probes approaches for 
flat EDFAs (case 1). We see that the one-time trained PLM did not 
support well the optimization, since the algorithm using it identified 
quite different power levels. That is, although the algorithm using the 
one-time trained PLM identified the optimum, this was optimum for the 
PLM and not close to the optimum in the real network (VPI). The reason 
for this is that the PLM could not follow/predict with good accuracy the 
real SNR values at the power levels calculated by the algorithm, 
although the accuracy was very good for the initial state of the network, 
right after the (one time) training. A margin on the PLM could cover this, 
but again would result in suboptimal calculations. The maximized sum 
of SNR margins (obj#1) was optimized to 204.96dB when the algorithm 
used monitoring probes and interacted with the real network, and to 
199.31dB when it interacted with the one-time trained PLM. There 
exists a mismatch of ~5.6dBs in obj#1 value between these two 
optimization approaches. Note that the SNR values and the objective 
(Fig. 3 (b)) were and should be evaluated in the real world (VPI), so that 
we can see the deviation. This also explains the ripples in SNR seen in 
Fig 3(b), since VPI models some wavelength dependent factors not 
covered by GN. Similar behavior was observed for obj#2, not shown 
here for conciseness. Note that optimization with obj#2 results in 
choosing the launch powers that result in almost flat SNR values, since 

maximizing the minimum margin iteratively pushes the lowest SNR 
value and reduces the higher. The maximized minimum margin was 
optimized to 7.64dB with monitoring probes, and to 7.36dB with the 
one-time trained PLM. 

To emulate a more realistic scenario we assigned a gain ripple profile 
to all EDFAs having a p2p ripple value of ~±0.2dBs (case 2). In such a 
scenario when the algorithm used the one-time trained PLM it reached 
an optimization objective (evaluated in the real network - VPI) quite 
worse than when it used monitoring probes and interacted with the 
actual network at intermediate optimization iterations. Fig. 4 (a) and (b) 
shows the optimized launch powers and their corresponding SNR 
values respectively, for obj#1.  A maximum input power difference of 
~1.5dBm was observed, resulting in ~8.4dB of SNR difference for 
obj#1. Similarly, for obj#2, we observed a maximum input power 
difference of ~1.2dBm, resulting in ~0.62dB of SNR difference for 
obj#2. Note that the mismatch is higher than previously (case 1 / flat 
EDFAs). This is because we now have a more volatile physical layer 
(EDFA gain ripples affect the SNRs) and the PLM we use does not cover 
this additional volatility.  

 

Fig. 4. (a) Optimized launch power, and (b) corresponding SNR and 
obj#1 value, evaluated in the real network (VPI), for Case 2 (EDFA with 
gain ripple of ±0.2dB). 

Concluding, for any optimization problem the PLM accuracy is 
important. For planning/static problems, we cover inaccuracy issue 
with margins, while several papers have targeted the reductions of 
margins, by aligning the PLM to the physical layer conditions e.g. 
through monitoring and ML. However, there have been limited 
discussions on dynamic optimization problems; the disadvantage is that 
to justify dynamic optimization we should target to achieve high 
efficiency, making the accuracy of the PLM more critical. For complex / 
multivariable dynamic optimization tasks, such as the dynamic launch 
power optimization problem discussed above, an iterative algorithm is 
typically used that calculates several intermediate solutions. One option 
is to interface the algorithm with the network to probe and monitor it in 
order to carry out the intermediate steps until it achieves the optimum. 
This, however, is cumbersome and very slow. On the other end, we can 
train the PLM before the optimization and use it in all intermediate 
calculations. Since PLM calculations are fast the optimization will finish 
quickly. However, the accuracy of the PLM can deteriorate and result to 
suboptimal optimization as seen in the preliminary results discussed 
above. This motivated us to address the limitations of the optimization 
with one-time trained PLM by exploring the operating network and its 
feedback. Our goal is to appropriately realign the PLM at intermediate 
optimization calculations, so that the difference between the 
optimization objective achieved with monitoring probes (interacting 
with the real-world) and with the retrained PLM is negligible, while the 
whole optimization is much faster. 

(a). (b).
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4. NETWORK DYNAMIC OPTIMIZATION AND PLM RE-
TRAINING 

PLMs, which can be analytical, semi-analytical, ML models, etc., have 
certain accuracy. The modeling assumptions impact the estimation 
accuracy. For example, many PLMs neglect EDFA gain ripples, partially 
model NLIs (e.g. consider full load), filters’ (inside ROADMS) crosstalk, 
residual dispersion, specific parameters of transponders, etc. Note that 
a detailed PLM is slower in the calculations and requires more input 
parameters. Then, a second factor comes in play: the input parameters 
might not be known with good accuracy, which eventually reduces the 
accuracy of a detailed PLM.  

Optimization tasks result in network changes and typically use a PLM 
to estimate the effect of such changes. However, these changes also 
modify the physical layer itself, they move the network to a new state. 
Depending on the PLM, such changes are covered to a certain degree. 
For example, when changing the power of a connection, NLIs, crosstalk, 
but also the penalties due to EDFAs’ gain ripple profiles change. The 
PLM model could for example, cover the effect of NLIs and crosstalk, but 
not the evolution of gain ripples. For these reasons margins are used. 
However, in dynamic use cases the aim is to be more efficient and thus 
the accuracy of the PLM is a crucial factor. To improve that we can take 
advantage of the operating network. 

Hence a basic need for dynamic optimization is to have a PLM that 
follows the network changes.  In the AI/ML era, a way to do this is to 
choose an appropriate set of parameters and retrain the PLM at certain 
points. However, retraining is cumbersome and thus we cannot retrain 
it before every dynamic task. On the other end, training the PLM once 
before a multivariable optimization task can result in suboptimal 
optimization, since the accuracy of the PLM deteriorates after several 
intermediate calculations.  

In this paper we focus on dynamic multivariable optimization 
problems, and, in particular, we study the launch power optimization 
problem of established connections as introduced in the previous 
section. Note, however, that the proposed solution is generic and 
applicable to other dynamic simple or multivariable optimization 
problems as well. We propose to use an iterative closed control loop 
process to solve such dynamic multivariable optimization problems. At 
certain intermediate iterations of the algorithm we close the loop, 
configure the network and monitor to retrain the PLM (with ML) to 
follow the projected network conditions. The target is to make the PLM 
a digital replica, that is, a digital twin (DT), of the optical physical layer 
for the dynamic optimization task at hand. The frequency of the PLM 
retraining depends on the PLM model and on the optimization task. As 
discussed in the previous section alternative options for the algorithm 
are to avoid using a PLM and have the algorithm interact with (probe 
and monitor) the network or use a one-time trained PLM. All three 
options are formally described in the following subsections.  

A. Optimization with Monitoring Probes 

The scheme that is considered in this subsection assumes that the 
optimization algorithm interacts directly with the actual network and 
follows a closed control loop process. The algorithm employs a 
subroutine to specify the probes, the configurations that are applied to 
the network. Then it monitors the outcomes to identify the information 
that it needs for an intermediate optimization step. A representation of 
this scheme is shown in Fig. 5. (a).  

To be more specific, we focus on the dynamic launch power 
optimization problem with a typical objective such as maximizing the 
sum of SNR margins, or min. margin, as discussed in Section 3. This 
problem is known to be convex and of polynomial complexity. The 
convex optimization algorithms, such as (sub)gradient methods, 
interior point, trust-region-reflective etc., are iterative; at each iteration 

they need to calculate Jacobians and/or Hessians for the objective and 
constraint functions [36], [37]. Actually, the related algorithms are 
classified into first or second order depending on the order of the partial 
derivatives they use. For optimization problems that involve PLMs 
without closed form partial derivatives a way to calculate them is to use 
a subroutine that implements finite differences [37].  

For example, for the power optimization problem at hand, to 
calculate the gradient for an objective function f we need to 
find/monitor the changes in the SNR values of all connections, assumed 
to be done through the coherent receivers, with respect to changes in 
the powers of the transponders. To give an example, assuming a 
network with a set of N established connections with a launch power 
vector 𝒑. We denote by 𝜹𝒑𝒏 the vector with all zeros apart from element 
n whose value we set to 𝑝𝑠𝑡𝑒𝑝, what we refer to as the power probe step. 

As a matter of fact, the change in launch power of the single connection 
n results in changes in the SNR values of all interfered connections 
(those that share a common link). So, we denote by 𝑺𝑵𝑹𝑵(𝒑) and 
𝑺𝑵𝑹𝑵(𝒑 + 𝜹𝒑𝒏) the SNR vector of all N connections for the respective 
power vectors. If f is the objective function, then the first order partial 
derivative for n is given by 

 𝑔𝑛 = 𝑓(𝒑) − 𝑓(𝒑 +  𝜹𝒑𝒏)/𝑝𝑠𝑡𝑒𝑝            (2) 

Depending upon the function f this involves certain operations with the 
vectors 𝑺𝑵𝑹𝑵(𝒑) and 𝑺𝑵𝑹𝑵(𝒑 + 𝜹𝒑𝒏). The gradient g is the vector of 
all partial derivatives, that is, 𝑔𝑛 for all n. To calculate the gradient with 
the finite difference method we need to probe with 𝒑 +  𝜹𝒑𝒏 and 
monitor 𝑺𝑵𝑹𝑵(𝒑 +  𝜹𝒑𝒏), and repeat this probe/monitoring process 
for all connections n=1,…,N. 

Generalizing this, the optimization algorithm calculates (first or 
second order) partial derivatives through a finite differences subroutine 
at each intermediate iteration. Let us assume that the algorithm calls the 
finite differences method di times at iteration i. For the above example 
with the gradient, we have 𝑑𝑖 = 𝑁. This is the simplest case; we 
typically have  𝑑𝑖 ≥ 𝑁 depending on the algorithm. Note also that we 
might have different number of probes per iteration, that is different 𝑑𝑖  
per i. However, to simplify our analysis we assume that this is constant, 
𝑑𝑖 = 𝐷, for each iteration i.  

Fig. 6. Pseudo-code for optimization with monitoring probes. 

  
The convex optimization algorithm with monitoring probes 

performs 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏   iterations to find the optimum. We also denote by 

𝑡𝑚𝑜𝑛 the monitoring time, assumed here to monitor simultaneously all 
N established connections. The monitoring time can range from 
minutes to hours, depending upon the network size, the monitoring 
plane, the targeted monitoring error etc. [38]. However, once the 
monitoring information is forwarded to the algorithm, the time 𝑡𝑐𝑎𝑙𝑐  to 
calculate the gradients/ Hessian and also the next launch powers is 

Pseudo-code - 1 

Start with initial launch power vector 𝒑𝟎, iteration number i=-1  
While not converged 

Increase i  
Finite differences process, time: 𝑡𝑚𝑜𝑛 per probe to monitor all 
connections 𝒀𝑵 

Probe di times (configure new launch powers and monitor) 
(e.g. for the first order partial derivative of connection n, probe 
with 𝒑𝒊 + 𝜹𝒑𝒏 and monitor 𝒀𝑵(𝒑𝒊 + 𝜹𝒑𝒏))  

Calculate the derivates and next launch power vector 𝒑𝑖 , time: 
𝑡𝑐𝑎𝑙𝑐   
Evaluate convergence (e.g. compare objective improvement with 
a threshold), when converged: 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 = 𝑖 

Apply the calculated power vector 𝑝𝑖  to the network 



 

 

quite lower (msec range) compared to the monitoring time (𝑡𝑚𝑜𝑛 ≫
𝑡𝑐𝑎𝑙𝑐). So, with the monitoring probes-based approach, under the 
assumption that N connections are monitored in parallel, the total 
optimization time 𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏  is given by: 

𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 = 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ (𝐷 ∙ 𝑡𝑚𝑜𝑛 +  𝑡𝑐𝑎𝑙𝑐) ≈ 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷 ∙

𝑡𝑚𝑜𝑛                      (3) 
Optimizing with monitoring probes is described with pseudo-code 1 in 
Fig. 6.  

In general, the optical monitors have certain measuring accuracy. In 
our proposal we assume that we monitor the SNR from the coherent 
receivers which are quite accurate. Note that higher accuracy can be 
achieved through time averaging; to reduce the effect of short term time 
impairments, e.g. polarization, the monitoring measurements could be 
averaged over time resulting in higher accuracy but also higher 
monitoring time.  Depending on the monitoring error, we might end up 
to a different and worse objective value instead of the optimum. Another 
factor to be accounted for in a real network is that the power probe steps 
(𝑝𝑠𝑡𝑒𝑝) cannot be very small because fine-tuning of the equipment is not 

feasible. Thus, in a real network, there are two factors that hinder the 
monitoring probe optimization process: 
(i) the monitoring errors 
(ii) the minimum power probe step 𝑝𝑠𝑡𝑒𝑝 that can be configured  

We call the SNR vector obtained from monitors with errors as the 
noisy monitored vector, and denote it by 
𝒀̃𝑵(𝒑) =  𝒀𝑵(𝒑) + 𝒗             (4) 

where, 𝒗 is a vector that represents the monitoring error (or noise).  
Stochastic subgradient methods [39] for zero mean errors provably 

find the optimum solution with specific step sizes but might require a 
very large number of iterations. However, in a real network where the 
use of small steps is not supported by the transponders and iterations 
are expensive since they involve several monitoring phases, such 
methods are hardly applicable. 

In this monitoring probes optimization approach the algorithm 
optimizes the launch powers and checks at each step the actual 
conditions of the network. For zero error this approach identifies the 
optimum 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 but requires a high optimization time 

𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . So, we will use this as the reference for all other approaches. 

Also note that the monitoring probes, which are used in this method 
to identify the partial derivatives, is not a universal solution. A 
monitoring probe in the studied use case refers to the configuration of 

new launch power(s) to one (or more) transponders of the established 
connections and monitoring of all connections SNRs at their receivers. 
So, the definition is specific to the problem; different optimization 
problems require different monitoring probes definitions. For some 
tasks, monitoring probes might not be available, e.g. tasks involving the 
establishment/release of connections. For such tasks, we might need 
spare transponders to extract the information required for the 
optimization [12], which imply higher cost and complexity.  

B. Optimization with one-time trained PLM 

In this subsection, we consider the method where the PLM is aligned 
only once, at the beginning of optimization. We perform the alignment 
of the PLM using monitoring information 𝒀𝑵(𝒑𝟎) from the actual 
network, assumed to take time 𝑡𝑚𝑜𝑛 as above. We then use ML to fit the 
parameters r of the PLM 𝑸𝑵(𝒑𝟎, 𝒓, 𝒛) to the physical layer conditions, 
so as to identify 𝒓𝟎. This is assumed to take time 𝑡𝑡𝑟𝑎𝑖𝑛. Then the 
optimization algorithm interacts with this one-time trained PLM, 
𝑸𝑵(𝒑𝟎, 𝒓𝟎, 𝒛), at each intermediate step, to estimate the QoT (SNR) of 
the connections as shown in Fig. 5(b). In particular, since there are no 
closed form derivatives equations for the GN model, we use a similar 
derivatives identification subroutine (finite differences), as in the 
previous method, but this time we interface that with the PLM instead 
of the actual network. We denote by 𝑡𝑃𝐿𝑀 the time that the PLM takes to 
calculate the SNR values of all connections. As before, this subroutine is 
assumed to be called D times at each algorithm intermediate iteration. 
We assume that the time 𝑡𝑐𝑎𝑙𝑐  that the algorithm needs to calculate the 
gradients/Hessian and also the next launch powers is the same as the 
previous method. We also denote by 𝐿𝑃𝐿𝑀 the number of iterations that 
the algorithm performs. With the one-time trained PLM, the total 
optimization time 𝑇𝑃𝐿𝑀  is given by 
𝑇𝑃𝐿𝑀 = 𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑃𝐿𝑀  ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 +  𝑡𝑐𝑎𝑙𝑐)                        (5) 
It stands to reason that the PLM training and estimation calculations 

and the algorithm calculations are substantially faster than monitoring 
(𝑡𝑚𝑜𝑛 ≫ 𝑡𝑡𝑟𝑎𝑖𝑛, 𝑡𝑃𝐿𝑀, 𝑡𝑐𝑎𝑙𝑐). We also expect a similar number of 
iterations (𝐿𝑃𝐿𝑀 ≈ 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏), because the PLM/GN model satisfies 

the convexity properties [29]. So, we have 𝑇𝑃𝐿𝑀 ≈ 𝑡𝑚𝑜𝑛. By comparing 
this to Eq. (3) we can see that the one-time trained PLM based 
optimization approach requires substantially less optimization time 
than the previous approach, 𝑇𝑃𝐿𝑀 ≈ 𝑡𝑚𝑜𝑛 ≪ 𝑇𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ≈

𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷 ∙ 𝑡𝑚𝑜𝑛. In particular, the speedup we obtain is in the 

Fig. 5. Optimization with (a) Actual deployed monitors, (b) One-time trained PLM, and (c) Proposed PLM retraining (digital twin) approach. 
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order of 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷.  This happens because the one-time trained 

PLM provides fast all the necessary information for the optimization 
algorithm at each intermediate step, avoiding monitoring. Optimizing 
with a one-time trained PLM is described with pseudo-code 2 in Fig. 7. 

The optimization algorithm using the one-time trained PLM 

identifies the launch powers that yield the optimum 𝑜𝑏𝑗̃𝑃𝐿𝑀, but this is  

Fig. 7. Pseudo-code for optimization with one-time trained PLM. 

 
viewed through the PLM. However, the PLM has certain accuracy, and 
was trained at initial conditions. So the identified launch powers yield 
the objective 𝑜𝑏𝑗𝑃𝐿𝑀 in the real network, which is worse than the 
objective of the monitoring probe method which is always evaluated in 
the real network, 𝑜𝑏𝑗𝑃𝐿𝑀 ≤ 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . This problem was identified 

in Section 3 and shown in Fig. 3 and 4. 

C. Optimization with a Digital Twin (DT) 

Following the discussions of the two above approaches, and the 
results presented in Section 3, we observe a clear tradeoff between 
optimization time and performance. The monitoring probes-based 
approach (in Fig. 5(a)) implements closed control loops which are not 
fast, due to the complex probing and slow monitoring subroutine. 
However, it achieves the real optimal as it tracks the network evolving 
conditions/states by configuring and monitoring. On the other hand, the 
one-time trained PLM approach (in Fig. 5(b)) is substantially faster since 
it uses the PLM to quickly find the derivatives at intermediate states. 
However, the PLM is trained only once, at the beginning of the 
optimization. So if the algorithm projects the network to substantially 
different physical conditions, then the optimization is suboptimal, since 
the PLM differs from reality, as seen in Fig. 3 and 4. The following 
proposed scheme keeps the benefits of both approaches: it finds a near 
to optimal solution, but with an overall low optimization time.  

We propose to use an iterative closed control loop process to solve 
the dynamic optimization problem. At certain intermediate iterations of 
the algorithm we configure the intermediate solution to the network 
and monitor to realign the PLM (with ML) to follow the projected 
network conditions. As shown in Fig. 5(c). The idea is to make the PLM 
a digital twin (DT), to have a PLM model which is parametric and define 
the method to readjust/realign it to represents the physical system with 
enough accuracy to perform the dynamic optimization calculations at 
hand. For realigning the PLM, many techniques can be used. We here 
use ML training. In this study we used as PLM the GN model [27], which 
considers the launch powers and wavelength occupancy. Thus, it 
models quite accurately linear and NLI transmission impairments. We 

also extended it and added a wavelength dependent penalty on top of 
the GN SNR calculation to cover e.g. the EDFA ripple penalties [6]. The 
GN alignment process was described in Section 3, and extended here to 
be performed iteratively.  

As above, we denote by 𝑸𝑵(𝒑, 𝒓, 𝒛) the calculation of the SNR 
values vector of all N connections by the GN PLM, where  p is the launch 
power vector (optimization variables), r represents the PLM fitted 
parameters, the fiber coefficients and the wavelength dependent ripple 
penalty, and z represents the unchanged input parameters for our 
optimization such as routes, used wavelengths, etc. The dynamic 
optimization process starts with the configured launch power vector 𝒑𝒐 
of the established connections (e.g., all 0dBm). For this initial power 
vector 𝒑𝒐 the PLM is trained with the monitored SNR vector 𝒀𝑵(𝒑𝒐).  
To be more specific, we use ML and in particular the Levenberg-
Marquardt (LM) algorithm to find  
𝒓𝟎 = argmin𝑟(𝑸𝑵(𝒑, 𝒓, 𝒛) − 𝒀𝑵(𝒑))

2. Now, let us assume that at the 
end of the k-th PLM training cycle, the optimization algorithm has 
performs Lk intermediate iterations and identified the launch powers 

𝒑𝑘
𝐿𝑘 . We then start the next cycle k+1 by configuring the network with 

the outcome so 𝒑   = 𝒑𝑘
𝐿𝑘  . To retrain the PLM for the k+1 cycle we 

configure the network with 𝒑    and monitor to obtain 𝒀𝑵(𝒑   ). 
Then ML is used to fit the parameters 𝒓   , that is 𝒓   =
argmin𝑟(𝑸𝑵(𝒑   , 𝒓, 𝒛) − 𝒀𝑵(𝒑   ))

2. This PLM is then used in the 
optimization algorithm iterations of cycle k+1. Note that, at each 
retraining cycle of the PLM, we can make use of the previously 
monitored SNRs, including thus the history, the network evolution 
conditions. This tends to improve the PLM accuracy as the algorithm 
iterates, where the accuracy is more critical. 

 

Fig. 8. Schematic showing the two nested for loops, outer for retraining 
PLM cycles and the inner for the optimization algorithm iterations. 

We assume that in total we retrain Kretrain times the PLM. Although we 
can have different number of algorithm iterations per cycle, to simplify 
our analysis in the following we assume that the algorithm runs Liter 
iterations after each PLM re-training. So, Lk=Liter for all retraining cycles 
k=1…Kretrain. It is easy to visualize the overall concept as two nested for 
loops, as shown in Fig. 8. The outer one pertains to the PLM retraining, 
and the inner to the optimization algorithm intermediate iterations with 
the retrained PLM/DT.  The time for each retraining cycle is equal to 
𝑇𝑃𝐿𝑀  for Liter iterations, that is  𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑖𝑡𝑒𝑟  ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 +
 𝑡𝑐𝑎𝑙𝑐). We denote, the overall optimization time with this DT based 
approach as 𝑇𝐷𝑇 , which is given by: 
𝑇𝐷𝑇 =  𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ (𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑖𝑡𝑒𝑟  ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 +  𝑡𝑐𝑎𝑙𝑐))   (6) 

The proposed method of optimizing with a DT is described with 
pseudo-code 3 in Fig. 9. 

#k retraining cycle
configure pk, monitor 𝑺𝑵𝑹𝑵 𝒑 and fit PLM (Levenberg-
Marquardt algorithm): 𝑺𝑵𝑹𝑵 𝒑 ≈  𝑸𝑵(𝒑 , 𝒓 , 𝒛)

outer loop: k=1,…, Kretrain

after Liter, produce the power 
pk+1 for (k+1)th cycle

cycle#2

cycle#k

cycle#1

Digital Twin

lLiter

kKretrain

optimization algo.
(convex, grad. descent etc. )

optimization probes,
partial derivatives with  

finite difference subroutine

Transponders 
launch power 

adjustment from 
𝒑   to 𝒑 vector 

at cycle k

optical network

𝑺𝑵𝑹𝑵 𝒑 

monitoring

new 
power 
vector

inner loop: l=1,…., Liter iterations

PLM retrained at 
each outer loop 

execution 
(retraining cycle)

1

k
k-1

𝑸𝑵(𝒑 , 𝒓 , 𝒛)

iterative closed control loop

2

Pseudo-code - 2 

Start with initial launch power vector 𝒑𝟎, iteration number i=-1 
Align PLM to initial / prior-to-optimization state (monitor 𝒀𝑵(𝒑𝟎) and 
train the PLM 𝑸𝑵(𝒑𝟎, 𝒓, 𝒛) to find 𝑟0), time: 𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 
While not converged 

Increase i  
Finite differences process, time : 𝑡𝑃𝐿𝑀 per SNR vector calculation by 
the PLM 𝑸𝑵 

Probe di times the PLM: change the launch powers and 
calculate the SNR vector for all connections with the PLM  
(e.g. for the first order partial derivative of connection n, set 
𝒑𝒊 + 𝜹𝒑𝒏 and calculate 𝑸𝑵(𝒑𝒊 + 𝜹𝒑𝒏, 𝒓𝟎, 𝒛)),  

Calculate the derivates and next launch power vector 𝒑𝑖 , time:  𝑡𝑐𝑎𝑙𝑐  
Evaluate convergence (e.g. compare objective improvement with a 
threshold), when converged: 𝐿𝑃𝐿𝑀 = 𝑖 

Apply the last calculated power vector 𝒑𝑖 (= 𝒑 𝑷 𝑴) to the network 

 



 

 

Note that in total the optimization algorithm performs 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙
𝐿𝑖𝑡𝑒𝑟 iterations, and retrains the PLM 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 times. Our target is to 
choose the retraining period 𝐿𝑖𝑡𝑒𝑟 appropriately so that the PLM would 
follow with good accuracy the physical layer in the algorithm’s 
intermediate calculations. If this is achieved the PLM estimated 

objective that is calculated at each iteration and the final one 𝑜𝑏𝑗̃𝐷𝑇 
would be very close to the real value in the real network 𝑜𝑏𝑗𝐷𝑇 . Also, the 
achieved objective would be very close to the optimum, as calculated by 
the monitoring probes method 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . So, we would have 

𝑜𝑏𝑗̃𝐷𝑇 ≈ 𝑜𝑏𝑗𝐷𝑇 ≈ 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . Moreover, for an appropriate 

retraining period the iterations of the optimization algorithm would be 
close to those of the monitoring probes, that is 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ 𝐿𝑖𝑡𝑒𝑟 ≈
𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . Looking at the total optimization times, and assuming that 

𝑡𝑚𝑜𝑛 is the dominant factor, we have 𝑇𝐷𝑇 ≈ 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ 𝑡𝑚𝑜𝑛. Thus we 
obtain a speedup of 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷/𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 𝐿𝑖𝑡𝑒𝑟 ∙ 𝐷 with respect 

to the monitoring probes optimization approach. 

Fig. 9. Pseudo-code for optimization with the proposed PLM retraining/ 
Digital Twin. 

5. RESULTS AND DISCUSSIONS 
To quantify the benefits of the devised DT based power optimization 

approach, we carried out simulations using both VPI Transmission 
Maker and MATLAB. The actual network was implemented in VPI, and 
the PLM (relying on the GN model) and the convex optimization 
algorithm were developed in MATLAB. Note that VPI is quite more 
detailed and complex and closer to a real system than the GN model. 
This choice was made to capture the mismatch between the real 
network and the PLM used in the optimization process. This is a 
considerable improvement in terms of realism compared to many prior 
studies (listed in Section 2), where authors used the same PLM for both 
the real network/ground truth and their proposed solution. 

To be more specific, we implemented in MATLAB the GN model and 
the launch power optimization algorithm to maximize: (obj#1) the sum 
of SNR margins, or (obj#2) the lowest margin, as discussed in Section 3. 
This optimization problem is known to be convex and of polynomial 
complexity. Hence, we implemented an interior-point algorithm to 
solve it. The algorithm was run until it found the optimum (optimality 
tolerance 10-6). The GN model was interfaced with the optimization 
algorithm and both were integrated in an automated system in VPI. For 
each simulation, VPI implements the outer loop (PLM retraining cycle). 

It takes as input the launch powers coming from the algorithm of the 
integrated MATLAB module, performs the detailed transmission 
simulations and calculates the SNRs of the channels. These are passed 
as input to the integrated MATLAB module. With that input the 
integrated PLM gets trained and this trained PLM is then used by the 
convex algorithm for 𝐿𝑖𝑡𝑒𝑟 intermediate iterations. In those iterations 
the algorithm uses the PLM to identify the partial derivatives, using the 
finite differences subroutine, and then the new launch powers. After the 
𝐿𝑖𝑡𝑒𝑟 iterations (inner cycle), a new set of launch powers are 
automatically fed to VPI transponders as a closed control loop for the 
next retraining cycle. Note that, at each retraining cycle of the PLM, we 
retrained with the current and previously monitored SNRs, including 
thus the history, the network evolution conditions.   

 

Fig. 10. (a) VPI setup with (a) Single link of 6 identical spans, (b) 3 nodes 
and 15 connections with different paths/routes, added/dropped points 
to emulate a small network. 

The monitoring probes approach (Fig. 5(a)) was used as reference in 
this work. To implement this, we implemented another (more frequent) 
closed control loop without using a PLM: the monitoring probes from 
the finite differences subroutine (in MATLAB) were carried directly to 
VPI and the SNR values were then passed back to that subroutine. The 
one-time trained PLM approach (Fig. 5(b)) represents the traditional 
optimization scheme via a PLM. For that, we train the PLM only once 
with the SNR data from VPI at the beginning of the simulation and used 
that PLM for the power optimization (involving intermediate iterations 
not configured in the network). Note that in all cases we start by 
assigning 0dBm uniform power to all transponders in VPI.  

For all the optimization schemes, the objective value was calculated 
in VPI, so in the real network. As discussed, there exists a difference 
between the view of the PLM/optimization process that uses it and the 
real objective. Finally note that we evaluated the benefits of our 
proposed scheme for relatively small channel count (=25) and up to two 
links, due to the slow execution time of VPI (split-step Fourier 
simulations). Actually, this can be considered as an indication of the long 
time of interacting with/monitoring the real network.  

To be specific, we made two fully automated setups in VPI: 
(i) single link of 6 identical spans with 25 channels (Fig. 10 (a))  
(ii) two links with 15 channels which were added/dropped at the 

intermediate node (Fig. 10 (b)) 
For the first setup, 25 WDM channels with pol-mux 16QAM 

modulation format at 32Gbaud, leading to 200 Gbps datarate per 
channel were launched. We assumed SNR threshold of 13.9dB [1], [6]. 
The wavelength spacing between the channels was assumed to be 
50GHz. We started with uniform 0dBm of launch powers for all 

1 2
Gain=16dB
NF = 5.5dB

80 km

(a).

Ns = 6

f1 , f2 , …. , f24 , f25

2(b).

Gain=16dB
NF = 5.5dB

drop add

f1 , f2

1 3

Pseudo-code - 3 

Start with initial powers 𝒑𝟎, outer loop iteration number k=0 
While not converged 

Align the PLM to current network state (monitor 𝒀𝑵(𝒑 ) and 
train the PLM 𝑸𝑵(𝒑 , 𝒓, 𝒛) to identify 𝒓 , time: 𝑡𝑚𝑜𝑛 + 𝑡𝑡𝑟𝑎𝑖𝑛 
Increase k,  𝒑 

𝟎 = 𝒑     
For l=0,…, Liter -1(Inner loop iterations) 

Finite differences process, time : 𝑡𝑃𝐿𝑀 per SNR vector 
calculation by the PLM 𝑸𝑵 

Probe di times the PLM: change the launch powers and 
calculate the SNR vector of all connections with the PLM 
(e.g. for the first order partial derivative of connection n, 

set 𝒑 
𝒍 + 𝜹𝒑𝒏 and calculate 𝑸𝑵(𝒑 

𝒍 + 𝜹𝒑𝒏, 𝒓 , 𝒛))  

Calculate the derivates and next power vector 𝒑 
𝒍  , 

time:  𝑡𝑐𝑎𝑙𝑐   
Evaluate convergence (e.g. compare objective 
improvement with a threshold), when converged: 
𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 𝑘 

Apply the calculated power vector 𝒑𝑘
𝐿𝑖𝑡𝑒𝑟  to the network 

 



 

 

channels whose SNR values for each channel were 
measured/monitored by VPI. As stated above, VPI acted as the real-
world/ground truth. Approximately 1dB of maximum SNR difference 
between the untrained PLM and VPI was found, after setting equal the 
fiber parameters (dispersion coefficient, slope, attenuation coefficient of 
fiber, non-linearity coefficient etc.). Then with ML training (using the 
Levenberg-Marquardt algorithm), the SNR mismatch was reduced to 
less than 0.1dB (Fig. 2 of Section 3). This one-time trained PLM was then 
used with the power optimization algorithm. The algorithm converged 
to 199.31dB and 7.34dB for obj#1 and obj#2, depicted with the orange 
circles and dotted lines in Fig. 11(a) and (b), respectively. 

We then optimized with the monitoring probes where the 
optimization algorithm was interfaced with the actual network (VPI). 
Again, the algorithm was run until it found the optimum for the objective 
function at hand. The algorithm converged to 204.96dB and 7.64dB for 
obj#1 and obj#2, depicted with the blue circles and dotted lines in Fig. 
11(a) and (b), respectively. A relatively mismatch of ~5.6dB for obj#1 
and ~0.3dB for obj#2 between the monitoring probes (optimum) and 
the one-time trained PLM was observed. With monitoring probes, the 
algorithm took around 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ≈ 120 iterations to optimize the 

launch powers in both objectives. In case of the one-time trained PLM, 
the algorithm converged a bit faster, after 𝐿𝑃𝐿𝑀 ≈ 90 iterations. 

 

Fig. 11. (a) Obj#1, and (b) Obj#2 values as a function of the proposed DT 
approach retraining cycles (k), for flat EDFAs. 

We then optimized with our proposed PLM retraining/DT approach. 
We examined different PLM retraining periods of 𝐿𝑖𝑡𝑒𝑟= 5, 10 and 50. 
Fig. 11 shows the optimization objective values (evaluated in VPI) as a 
function of the retraining cycles (index k) of our proposed scheme. We 
see that with each training cycle, the objective value moves towards the 
optimum / reference obtained with monitoring probes approach. For 
𝐿𝑖𝑡𝑒𝑟=5, after approximately k=11 iterations for obj#1 and k= 8 
iterations for obj#2, the objective becomes nearly constant indicating 
convergence. For small retraining periods, such as 𝐿𝑖𝑡𝑒𝑟 = 5, 10, the 
objective (both for obj#1 and obj#2) reached exactly that achieved with 
the monitoring probe-based approach, that is, 𝑜𝑏𝑗𝐷𝑇 = 𝑜𝑏𝑗𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 . 

However, for longer retraining periods, such as 𝐿𝑖𝑡𝑒𝑟 = 50, the 
algorithm converged near to the one-time trained PLM scheme. This 
happened because we allowed the optimization algorithm to perform 
long intermediate iterations without retraining the PLM. Within these 
iterations the algorithm converged to an optimum, it could not improve 

its objective function (𝑜𝑏𝑗̃𝐷𝑇) with the used PLM. However, after these 
long intermediate iterations, the PLM was not representing reality with 
good accuracy, and thus the corresponding real network objective 
(𝑜𝑏𝑗𝐷𝑇) was rather suboptimal. 

In reality, EDFA gains are not flat and come with ripples [6].  We 
assigned a gain ripple profile of p2p gain of 0.4dBs (±0.2dBs) to span 
EDFAs. The PLM was then trained at 0dBm of flat launch power and a 
maximum SNR difference of less than ±0.05dBs was observed as shown 
in Fig. 2(b) - Section 3. This led to a mismatch of ~8.5dB (Fig. 4(b)) and 
~0.64dB in SNR margin between monitoring probes and one-time 
trained PLM optimization for obj#1 and obj#2, respectively. The 

mismatch is higher than previous, due to the EDFAs gain ripples that 
make the physical layer more dynamic.  

 

Fig. 12. (a) Launch power (dBm), (b) SNR (dB) per channel as the 
number k of retraining cycles increase, for the proposed DT approach, 
𝐿𝑖𝑡𝑒𝑟= 5, obj#1 and EDFAs having peak to peak gain ripple of 0.4dB . 

Fig. 12 (a) shows the power per channel (in dBm) at different 
retraining cycles k for a retraining period 𝐿𝑖𝑡𝑒𝑟= 5 and for obj#1. Fig. 12 
(b) shows the corresponding SNR (dB) values. For obj#1, with around 
k=20 PLM retraining cycles, the transponders launch power and SNR 
values converged near the optimal values obtained with the monitoring 
probe-based approach (Fig. 4). The algorithm reached obj#1 = 
202.96dBs (black curve in Fig. 13(a)), very close to the monitoring 
probe-based approach. Compared to the one-time trained PLM it 
achieved an improvement of ~8.4dB, which is ~0.34dB of SNR 
improvement per channel.  

Similar behaviour was also observed for obj#2. Fig. 14 (a) and (b) 
show the input power (dBm) and the corresponding SNR (dB) for k 
retraining cycles with 𝐿𝑖𝑡𝑒𝑟= 5 and for obj#2.  From Fig. 13 (b) it can be 
observed that after 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 12 retraining cycles, the algorithm 
reaches obj#2=7.8dB which is very close to that found with the 
monitoring probes approach. Compared to the one-time trained PLM 
we achieved an improvement of ~0.64dB.  

 

Fig. 13. (a) Obj#1, and (b) Obj#2 values as a function of the proposed DT 
approach retraining cycles (k), for EDFAs with peak to peak gain ripple 
of 0.4dB. 

Fig. 13 (a) and (b) show the evolution of obj#1 and obj#2 with the 
proposed approach for different retraining periods of 𝐿𝑖𝑡𝑒𝑟 =5, 10, 50. 
Note that we have comparatively higher savings (~2.8dB) with respect 
to the one-time trained PLM compared to flat EDFAs (Fig. 11), because 
the physical layer is more dynamic with the rippled EDFAs. The small 
drop in the second retraining cycle of Fig. 13(a) can be explained by the 
PLM training process; in that cycle the PLM did not match very well the 
real network and misled the optimization algorithm. This was then 
improved at the next retraining which involved more monitoring 
information from the new / projected network state.  
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Fig. 14. (a) Launch power (dBm), (b) SNR (dB) per channel as the 
number k of retraining cycles increase, for the proposed DT approach, 
𝐿𝑖𝑡𝑒𝑟= 5, obj#2 and EDFAs having peak to peak gain ripple of 0.4dB. 

Monitors are not perfect and yield measurements that include errors, 
as discussed in Section 4. In our optimization we assumed the use of 
SNR values measured from the coherent receivers, which are typically 
assumed to have good accuracy. However, there are some fast-varying 
impairments that result in SNR fluctuations and contribute to 
monitoring errors. A typical method to suppress those is to average the 
SNR measurements over a period longer enough than the frequency of 
such effects. Hence, we modelled these monitoring errors by adding a 
random gaussian noise v with mean = 0 and standard deviation (std) = 
0.1, 0.2 and 0.4 dB, to the SNR values (provided by VPI). These noisy 
monitored SNR values were then fed to the interior point optimization 
algorithm, and were reflected in the algorithm’s derivative calculations.  

The monitoring error results in a degraded optimization operation. 
In theory, the stochastic subgradient method [39] (which is a first order 
method) with specific small steps can find the optimum for the assumed 
zero mean errors after a high number of iterations. However, such 
method might not be applicable in real networks, where finite small 
steps are not feasible, and iterations must be constrained (to avoid 
effects of medium-term varying impairments). Also monitoring small 
SNR differences (due to the small steps) is rather hard (low slope of 
derivatives). So instead of seeking an ideal optimum we focused in a 
more realistic case and in the following results we used the interior 
point algorithm and a minimum power probe step 𝑝𝑠𝑡𝑒𝑝=0.1 dBm.  

Fig. 15(a) shows the achieved objectives using the proposed DT 
approach with 𝐿𝑖𝑡𝑒𝑟=5 for varying monitoring error std (the mean was 
always equal to 0) for the flat EDFA case. Similar results were obtained 
for the monitoring probe optimization. A deterioration of the optimum 
with respect to ideal monitors (no noise, std=0) was observed. For a 
std=0.4dB with flat EDFAs, the objective decreased by 3.6% and 4.5% 
for obj#1 and obj#2, respectively. For EDFAs with gain ripples, the 
related decrease was even higher, ~5% and ~6% for obj#1 and obj#2, 
respectively, as shown in Fig. 15 (b).  

 

Fig. 15. Objective function variation as a function of the monitoring error 
std for (a) Flat EDFA gain (b) EDFA with gain ripple. 

We now turn our attention on the optimization time. As discussed, 
the PLM and the convex (interior-point) optimization algorithm were 

implemented in MATLAB. So, in MATLAB we measured the overall 
computation time, which included the time 𝑡𝑐𝑎𝑙𝑐  that the algorithm 
calculated the gradients/Hessian and also the next launch powers, the 
time 𝑡𝑡𝑟𝑎𝑖𝑛 to train with ML the PLM, and the time 𝑡𝑃𝐿𝑀 for the SNR 
calculations by the PLM. Note that the PLM-related times appear only in 
the schemes that use it (one-time trained PLM, and DT). Also, note that 
the computation time was measured until the algorithm obtained the 
optimum, so it included all retaining cycles, algorithm iterations and 
finite difference subroutine calls. Following the notation of Section 4, for 
the monitoring probes scheme we measured:  𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙   𝑡𝑐𝑎𝑙𝑐 , for 

the one-time trained PLM we measured: 𝑡𝑡𝑟𝑎𝑖𝑛 +  𝐿𝑃𝐿𝑀  ∙ (𝐷 ∙ 𝑡𝑃𝐿𝑀 +
 𝑡𝑐𝑎𝑙𝑐), and for the DT we measured: 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 ∙ (𝑡𝑡𝑟𝑎𝑖𝑛 + 𝐿𝑖𝑡𝑒𝑟  ∙
(𝐷 ∙ 𝑡𝑃𝐿𝑀 +  𝑡𝑐𝑎𝑙𝑐)). To obtain the DT results we used a retraining 
period 𝐿𝑖𝑡𝑒𝑟=5. 

 

Fig. 16. (a) Computational time (sec), (b) Number of monitoring calls 
required, for EDFA with flat and rippled gain cases respectively. 

Fig. 16 (a) shows the overall computational time for obj#1 for EDFA 
with flat and rippled gain (std=0). The computational time for the 
monitoring probe-based approach was the smallest around 2sec for flat 
gain EDFA and ~2.5 sec for EDFA with gain ripples, since it only includes 
𝑡𝑐𝑎𝑙𝑐 . The one-time trained PLM was slightly faster than the DT 
approach (~4 sec compared to ~4.5 for flat EDFA gain case and ~7 sec 
compared to ~7.5 for the case of EDFA with gain ripple), since the PLM 
retraining time, which is their key difference, was quite fast. The 
computation time for the case of EDFAs with gain ripples (shown in Fig. 
16 (a)), was higher for all optimization schemes, since the algorithm 
took more iterations to reach the optimum.  

From the above measurements we excluded the monitoring time 
𝑡𝑚𝑜𝑛. It was excluded since we did not want to use some reference 
monitoring time. However, we expect it to be some orders of magnitude 
higher than the timescales reported in Fig. 16 (a). Today, transponders 
report the SNR/BER every 15 minutes [38]. The reporting time can be 
substantially reduced down to sec with NETCONF/YANG monitoring 
[12] or telemetry based protocols [40], [41]. However, such reporting 
periods target failure recovery use cases, which are substantially 
different from the power optimization use case studied in this paper. 
Moreover, we need to consider that in the monitoring probes scheme, 
the monitoring happens after the probing, that is, after changing the 
launch power of one or more connections. In such case we would have 
to wait for EDFA transient effects to settle [42]. Also, for optimization we 
need to have a low monitoring error. So, we would need to time average 
to suppress the fast-varying impairment effects. Moreover, depending 
on the optimization method, it is required to monitor different times. In 
the one-time trained PLM approach, we monitor only once, at the 
beginning of the optimization. In the DT approach we monitor 𝐾𝑟𝑒𝑡𝑟𝑎𝑖𝑛 
times, once every PLM retraining cycle. In the monitoring probes 
approach we train 𝐿𝑚𝑜𝑛_𝑝𝑟𝑜𝑏 ∙ 𝐷. However, note that D depends on the 

optimization algorithm and the type of partial derivatives it calculates 
(first or second order). So we might have different number of 
probes/monitoring per algorithm iteration.  
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To avoid any confusion with timescales, we show in Fig. 16 (b) the 
number of monitoring calls, which in our simulations were measured as 
the number of times that we set new launch powers in VPI, executed the 
VPI transmission simulation, obtained the SNR values and forwarded 
them in MATLAB. We can clearly see the substantial higher number of 
monitoring calls performed by the monitoring probes approach, which 
would result in substantially higher overall optimization time (the 
addition of computation Fig. 16 (a) and monitoring Fig. 16 (b) times).  

Finally, to study a more network like scenario, we extend the single 
link setup to a two-links setup (Fig. 10 (b)). We established 15 
connections with different add/ drop locations and reused wavelengths 
at the intermediate node. We first focus on Case 1, the flat EDFA gain 
profiles. Fig. 17 (a) and (b) show the evolution of obj#1 and obj#2, 
respectively, as a function of the retraining cycles k for the DT scheme 
with 𝐿𝑖𝑡𝑒𝑟=5. The proposed DT approach improved by ~1.3dBs the 
obj#1 and by ~0.15dB the obj#2, with respect to the one-time trained 
PLM scheme.  

 

Fig. 17. (a) Obj#1 (b) Obj#2 values as a function of the proposed DT 
approach retraining cycles (k), for flat EDFAs in the 2-links setup. 

For Case 2, we assigned a gain ripple profile of ±0.2dB and ±0.1dB to 
link 1-2 and link 2-3, respectively. Fig. 18 (a) and (b) shows the evolution 
of obj#1 and obj#2, respectively, as a function of the retraining cycles k 
for DT with 𝐿𝑖𝑡𝑒𝑟=5 scheme. We obtained a ~1.7dBs and ~0.6dBs of 
improvement for obj#1 and obj#2, respectively, with respect to training 
with a one-time trained PLM based approach.  

 

Fig. 18. (a) Obj#1 (b) Obj#2 values as a function of the DT approach 
retraining cycles (k), for EDFAs with ripples in the 2-links setup. 

Compared to the single link setup, the improvements obtained for the 
two links setup were lower. The low channel load and the relatively 
wider channel separation due to ADD/DROP is one of the main reasons 
for the low value of improvements. Although we did not test bigger 
setups in VPI, since it is quite complicated, we believe that the benefits 
of our proposed solution are higher for a full network with higher load. 

6. CONCLUSION 
Despite the extensive literature on ML based and ML improved PLMs, 

there has been limited discussion on the use of PLMs in dynamic 
optimization. We proposed to use an iterative closed control loop 
process to solve a complex/multivariable dynamic optimization 

problem. In particular, we propose to close the control loop after several 
algorithm intermediate calculations, apply the intermediate calculated 
changes and monitor the outcome so that we realign (retrain) the PLM 
with the real world/ optical network. The PLM is used as a Digital Twin 
(DT), it is applied to a network with evolving conditions, it is parametric 
and is dynamically adjusted so that it replicates with enough accuracy 
the real-world for the optimization at hand. We applied our proposed 
method to solve the dynamic version of the launch power optimization 
problem. With the proposed PLM retraining/DT scheme, we showed an 
improvement of ~8.5dB and ~0.64dB in sum of margins and lowest 
margin, respectively, over optimization with a one-time trained PLM. 
Moreover, the proposed approach achieved near to optimum solutions 
as found by optimizing and continuously probing and monitoring the 
network, but lowered the overall optimization time up to 85% by 
reducing the number of monitoring probes. We limited our study in 25 
channels on a single link and 15 channels on 2 links network topology. 
However, we believe that our proposed solution is more beneficial once 
longer paths with heavy loads are considered. 
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