

Are weather and climate extremes in mid-latitudes caused by the rapid warming of the Arctic?

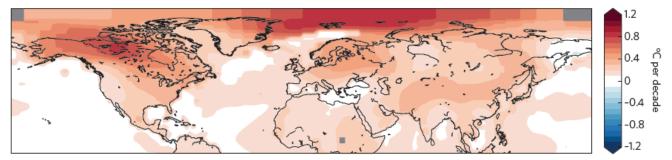
Thomas Jung

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

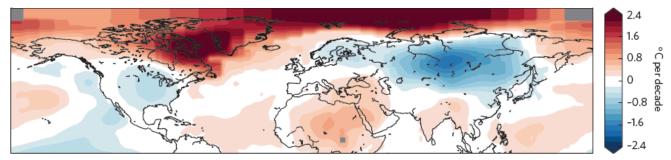
Weather, News

Meteorologists believe yesterday was Montreal's coldest snowstorm in nearly a century

Tyler Jadah Jan 21, 2019 6:54 am 🔥 139

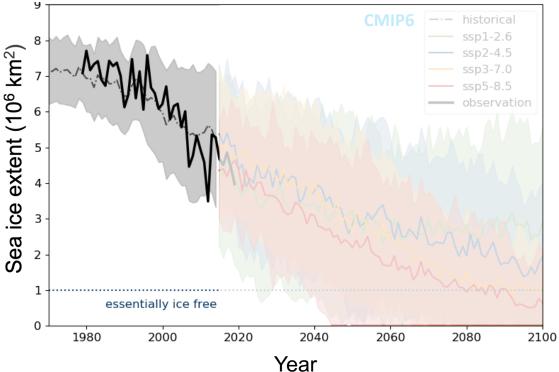


APPLICATE.eu Advanced prediction in polar regions and beyond


Northern Hemisphere temperature change

Winters 1960–2013

Winters 1990-2013



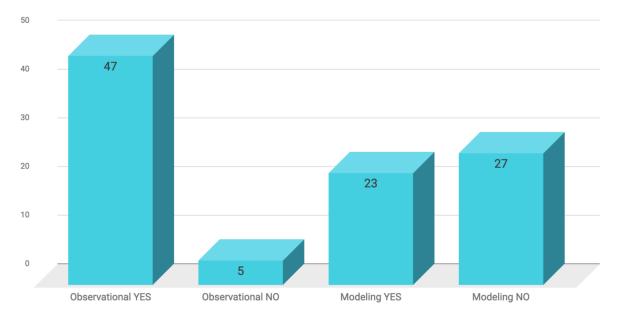
Cohen et al., Nature Geoscience (2014)

Sea ice extent (September)

European heat waves

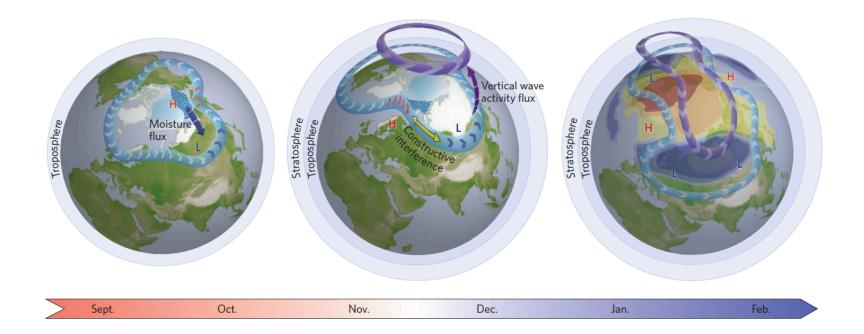
"Changes in Arctic sea ice have the potential to influence mid-latitude weather" (*medium confidence*), but "there is *low confidence* in the detection of this influence for specific weather types."

Summary for policy makers: IPPC Special Report on the Ocean and Cryosphere in a Changing Climate (2019)



Divergent consensuses...

Link between AA and severe winter weather?


Cohen et al., Nature Climate Change (2020)

A possible mechanisms

Cohen et al., Nature Geoscience (2014)

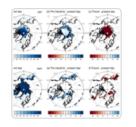
Results from different modelling groups differ:

- > Different experimental protocols
- Response to reduced sea ice in models is weak

PAMIP – A coordinated modelling approach

Geosci. Model Dev., 12, 1139-1164, 2019 https://doi.org/10.5194/gmd-12-1139-2019 @ Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

	Article	Assets	Peer review	Metrics	Related articles
--	---------	--------	-------------	---------	------------------

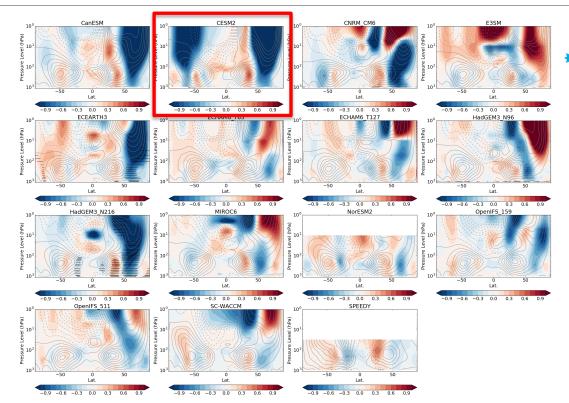

Model experiment description paper

The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification

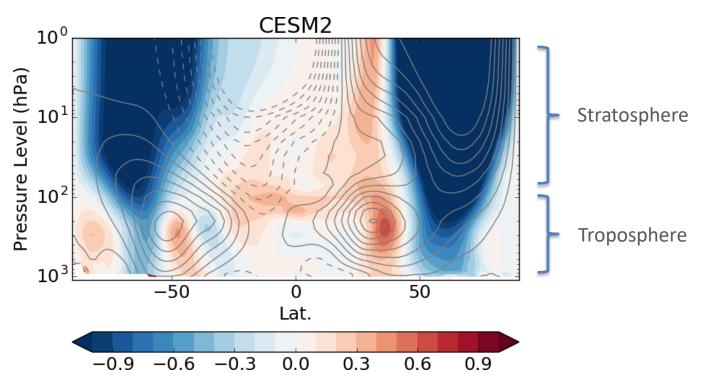
Doug M. Smith¹, James A. Screen^{®2}, Clara Deser³, Judah Cohen^{®4}, John C. Fyfe⁵, Javier García-Serrano^{6,7}, Thomas Jung^{8,9}, Vladimir Kattsov¹⁰, Daniela Matei¹¹, Rym Msadek¹², Yannick Peings¹³, Michael Sigmond⁵, Jinro Ukita¹⁴,

Jin-Ho Yoon¹⁵, and Xiangdong Zhang¹⁶ ¹Met Office Hadley Centre, Exeter, UK ²College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK ³Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, USA ⁴Atmospheric and Environmental Research, Lexington, MA, USA ⁵Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada ⁶Barcelona Supercomputing Center (BSC), Barcelona, Spain ⁷Group of Meteorology, Universitat de Barcelona, Barcelona, Spain ⁸Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany ⁹Institute of Environmental Physics, University of Bremen, Bremen, Germany ¹⁰Voeikov Main Geophysical Observatory, Roshydromet, St. Petersburg, Russia ¹¹Max-Planck-Institut für Meteorologie, Hamburg, Germany ¹²CERFACS/CNRS, UMR 5318, Toulouse, France ¹³Department of Earth System Science, University of California Irvine, Irvine, CA, USA ¹⁴Institute of Science and Technology, Niigata University, Niigata, Japan ¹⁵Gwangju Institute of Science and Technology, School of Earth Sciences and Environmental Engineering, Gwangju, South Korea

25 Mar 2019

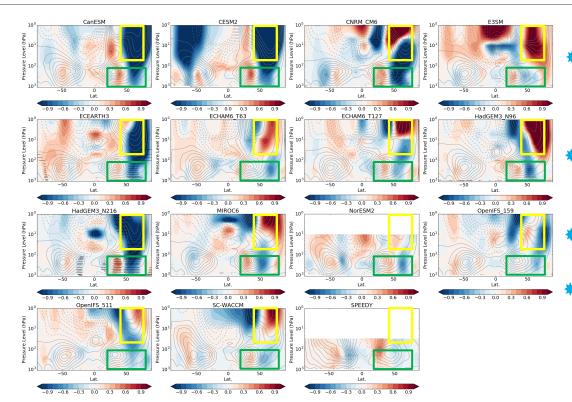

GMD | Articles | Volume 12, issue 3

Response to future sea ice loss


Atmosphere simulations completed by 15 models from APPLICATE and international community

Doug Smith and Rosie Eade (pers. comm.)

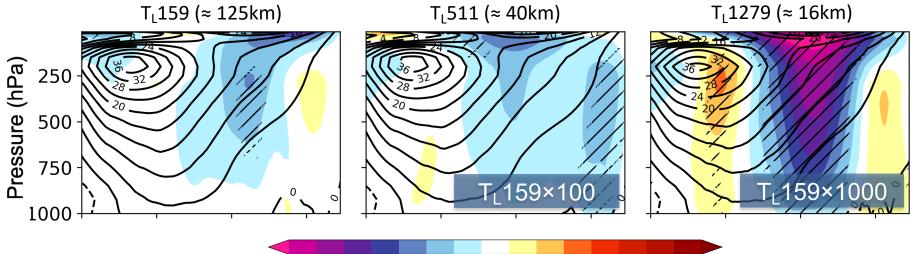
Response to future sea ice loss in models



Doug Smith and Rosie Eade (pers. comm.)

Response to future sea ice loss

- Atmosphere simulations completed by 15 models from APPLICATE and international community
- Robust weakening and equatorward shift of the tropospheric jet
- Stratosphere response not robust
- Model response not overly strong


Doug Smith and Rosie Eade (pers. comm.)

Response to future sea ice loss

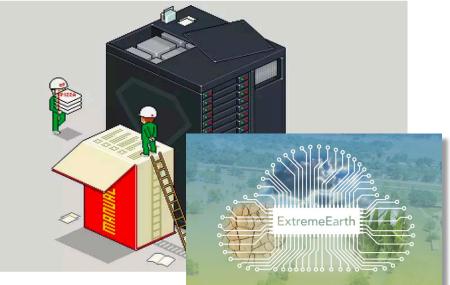
The role of spatial resolution

-1.5-1.3-1.1-0.9-0.7-0.5-0.3-0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

Latitude [°N]

Streffing et al., J. Climate (submitted)

Exascale computing



Opportunity and challenge

FEATURE 10 October 2018

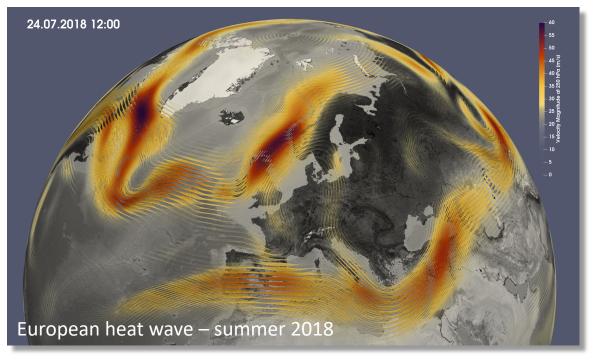
Could the world's mightiest computers be too complicated to use?

China, Japan and the US are racing to build the first exascale computer – but devising programmes clever enough to run on them is a different story

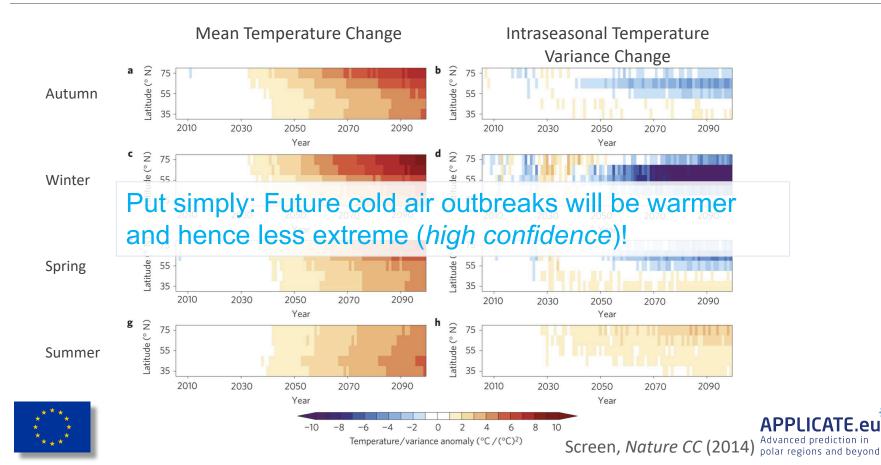
→ End of Moore's law

- → End of Dennard scaling
- → New and heterogeneous architectures
- → Truly "big data"

Dynamic vs **thermodynamic** changes



Dynamic vs thermodynamic changes



Dynamic vs **thermodynamic** changes

Conclusions

James Screen @polar_james · 23m Yet another model study suggests fairly limited impact of Arctic sea-ice loss on mid-latitude climate. The gulf between obs and model studies on this topic is huge. Big questions remain: do models underestimate the response? Is causality

> Little influence of Arctic amplification on mid-lati...

> > 仚

Tweet from 13 February 2020

"Big questions remain"

- > True for the **dynamic** response (jet stream)
- > Conjecture:
 - The response from observations is overestimated
 - Models underestimate the response (model shortcomings)
 - New class of high-resolution models could make all the difference (computational challenge)
- Quantitative knowledge within reach

