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Abstract—As renewable energy sources penetration is increas-
ing in the power distribution network, an energy aggregator can
provide a highly flexible generation and demand as required
by the smart grid paradigm. However, this energy aggregator
entity needs adequate decision support tools to overcome the
complex challenges and deal with a number of energy resources.
So, the energy resource management is crucial for the aggregator,
to increase the profits, reduce the operation costs, reduce the
carbon footprint and also to improve the system stability. Thus,
this paper proposes a model for a large-scale energy resource
scheduling problem of aggregators in a smart grid. Also, it is
compared the performance of five evolutionary algorithms to
solve this kind of problem. A realistic case study is performed
using a real distribution network in Zaragoza, Spain. The results
show that load flexibility can contribute to the profitability
improvement of the aggregators’ entities.

Index Terms—Demand response, differential evolution, distri-
bution network, electric vehicle, evolutionary computation, load
flexibility, smart grid.

I. INTRODUCTION

The future power systems will require to deal with an
even higher number of distributed energy resources (DER)
under market conditions. But some issues emerge from this in-
evitability. Several DER units are not able to participate in the
current electricity markets due to their small size; their vari-
ability nature (wind and solar units), where the contribution to
the grid operation may result in economic penalties as a result
of unexpected unbalances; and different ownerships restrains
the cooperation and communication between neighbouring
units. To mitigate the issues associated with the DER units
penetration, the aggregation of those units can be considered.
Such aggregation enables the same visibility, controllability,

This work has received funding from Portugal 2020 under SPEAR project
(NORTE-01-0247-FEDER-040224) and from National Funds through the
FCT Portuguese Foundation for Science and Technology, under Project
UIDB/00760/2020. João Soares is supported by FCT CEECIND/02814/2017
grant.

and market functionality as conventional generation [1]. A
virtual power player (VPP) can be an entity that aggregates
several types of energy sources, namely distributed generators
(DG) units, and it is responsible for managing them using a
set of advanced tools to raise their value and competitiveness.
However, VPPs require complex optimization models, control,
and secure communications to run properly [2].

To allow efficient and cost-effective operation, energy ag-
gregators, i.e., the VPPs require proper energy resource man-
agement (ERM) tools to deal with the increasing number of
resources [3]. The day-ahead energy scheduling is an essential
part of an ERM system to obtain the expected operation cost
(or profit) while providing adequate decisions one day in
advance. However, energy scheduling is quite challenging due
to the high number of resources. Adopting advanced energy
management models is critical for successful implementation
of smart grids (SG).

New players as well as energy resources are emerging:
large penetration of renewable based generation [4]; demand
flexibility [5]; electric vehicles (EV) [6]; energy efficiency
measures [7]; building energy management parties [8], among
others. The complexity to manage and operate the transmission
and distribution power networks, as well as the interactions
between the traditional and the new players, has increased
due to this new paradigm in the electric power systems. Now,
rather than look to the overall picture of overall consumption
and generation, the operators of the electric power systems
must consider the small resources of new players. Thus, the
problem to solve in this domain is now a complex task. So,
new approaches have been proposed in the research field to
address this complexity. One of the proposed solutions is
to consider hierarchical management with the inclusion of
increased intelligence at each level of the hierarchical control
[9]. To deal with the increased complexity, the development
of new algorithms using advanced optimization techniques and
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artificial intelligence are being proposed and tested [10].
In this paper, we have chosen the differential evolution (DE)

[11], [12] and two of its variants HyDE and HyDE-DF (due
to its success in many applications and easy implementation
[13], an improved version of the well-known particle swarm
optimization (PSO) [14], and the vortex search (VS) [15] to
solve the large-scale scheduling problem in smart grids.

This paper is organized as follows: after this introduction,
Section II presents the proposed problem formulation. The
case study to show the application of the proposed problem
formulation is shown in Section III. The results and its
discussion are presented in Section IV. Finally, Section V
presents the most relevant conclusions.

II. PROBLEM FORMULATION

A detailed description of the adopted methodology for the
day-ahead energy resource management scheduling problem
is presented in this section.

The objective function OC (1), represents the expected
day-ahead operation costs in monetary units (m.u.), and is
minimized over the scheduling horizon T. The scheduling time
horizon covers the 24 hours of the next day.

Minimize OC =

T∑
t=1



∑
i∈Ωd

DG

pDG(i,t) × CDG(i,t)+

Ns∑
s=1

pSupplier(s,t) × CSupplier(s,t)+∑
i∈Ωnd

DG

pDG(i,t) × CDG(i,t)+

Nl∑
l=1

pLoadDR(l,t) × CLoadDR(l,t)+

Ne∑
e=1

pDischarge(e,t) × CDischarge(e,t)+

Nv∑
v=1

EVDischarge(v,t) × EV CDischarge(v,t)+

Nl∑
l=1

pNSD(l,t) × CNSD(l,t)+

Ni∑
i=1

pGCP (i,t) × CGCP (i,t)+

Nm∑
m=1

(
pBuy(m,t) − pSell(m,t)

)
·MP(m,t)



×∆t

(1)
where:

ΩdDG is the set of dispatchable DG units; ΩndDG is the set
of non-dispatchable DG units; i is the index of DG units; s
is the index of external suppliers (main); NS is the number
of external electricity suppliers; pSupplier(s,t) is the active
power scheduled for external supplier s in period t (MW);
CSupplier(s,t) is the costs of the energy supplier s in period t
(m.u./MWh); pDG(i,t) is the forecasted non-dispatchable DG
unit i in period t (MW); CDG(i,t) is the generation cost of
DG unit i in period t (m.u./MWh); pLoadDR(l,t) is the active
power reduction of load l in period t (MW); CLoadDR(l,t) is
the demand flexibility cost of load l in period t (m.u./MWh);

pDischarge(e,t) is the active power discharge of energy stor-
age system (ESS) e in period t (MW); CDischarge(e,t) is
the discharging cost of ESS e in period t (m.u./MWh);
EVDischarge(v,t) is the active power discharge of EV v in
period t (MW); EV CDischarge(v,t) is the discharging cost
of EV v in period t (m.u./MWh); pNSD(l,t) is the active
power of non-supplied demand of load l in period t (MW);
CNSD(l,t) is the non-supplied demand cost of load l in period t
(m.u./MWh); pGCP (i,t) is the generation curtailment power of
DG unit i in period t (MW); CGCP (i,t) is the curtailment cost
of DG unit i in period t (m.u./MWh); pBuy(m,t) is the active
power bought in market m in period t (MW); pSell(m,t) is the
active power sold in market m in period t (MW); MP(m,t)

is the market energy price (m.u./MWh); Ns is the number of
external suppliers; Nl is the number of loads; Ne is the number
of ESS units; Nv is the number of EV; Ni is the number of
generation units; Nm is the number of markets.

The power balance constraint (2) is present in the proposed
model. The amount of generated energy should equal the
amount of consumed energy at every instant t.

∑
i∈Ωd

DG

pDG(i,t) +
Ns∑
s=1

pSupplier(s,t)
+∑

i∈Ωnd
DG

(
pDG(i,t) − pGCP (i,t)

)
+

Nl∑
l=1

(pNSD(l,t) + pLoadDR(l,t) − pLoad(l,t))+

Nv∑
v=1

(EV Discharge(v,t)
− EV Charge(v,t))+

Ne∑
e=1

(pDischarge(e,t)
− pCharge(e,t))−

Nm∑
m=1

(
PPurchase(m,t) − pSell(m,t)

)
−
∑
i∈ΩB

PInj(i,t) = 0 ∀t

(2)
Constraint (3) guarantees the reactive power balance in each

distribution network bus.

Ns∑
s=1

QSupplier(s,t)
+

∑
i∈Ωd

DG

QDG(i,t) −
∑
i∈Ωb

L

QLoad(i,t)−∑
i∈ΩB

QInj(i,t) = 0 ∀t

(3)
This equation (4) represents the injected active power in

each bus of the network.

PInj(i,t) = V(i,t)

∑
j∈ΩB

V(j,t)

(
G(i,j) · cos θ(i,j,t)+

B(i,j) · sin θ(i,j,t) ∀i ∈ ΩB ,∀(i, j) ∈ Ωl
(4)

The injected reactive power in each bus is represented by
the equation (5).

QInj(i,t) = V(i,t)

∑
j∈ΩB

V(j,t)

(
G(i,j) · sin θ(i,j,t)−

B(i,j) · cos θ(i,j,t) ∀i ∈ ΩB ,∀(i, j) ∈ Ωl
(5)
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The active power flow for each network line is given
by the equation (6).

P(i,j,t) = (V 2
(i,t) − V(i,t) · V(j,t) · cos θ(i,j,t)) ·G(i,j,t)−

(V(i,t) · V(j,t) · senθ(i,j,t)) ·B(i,j)

∀i ∈ ΩB ,∀j ∈ ΩB ,∀(i, j) ∈ Ωl
(6)

Equation (7) gives the reactive power flow for each line.

Q(i,j,t) = −(V 2
(i,t) − V(i,t) · V(j,t) · cos θ(i,j,t)) ·B(i,j)−

(V(i,t) · V(j,t) · senθ(i,j,t)) ·G(i,j)

∀i ∈ ΩB ,∀j ∈ ΩB ,∀(i, j) ∈ Ωl
(7)

The apparent power flow equation, as can be seen in
equation (8), is given by the square root of the active power
flow and reactive power flow squares.

S(i,j,t) =
√
P(i,j,t)

2 +Q(i,j,t)
2 ∀(i, j) ∈ Ωl (8)

The maximum power flow in each line is constrained by
(9).

0 ≤ S(i,j,t) ≤ S(i,j)
max ∀(i, j) ∈ Ωl (9)

The voltage magnitude of each bus is constrained by a
maximum and minimum deviation (10).

V min(i) ≤ V(i,t) ≤ V max(i) ∀i ∈ ΩB (10)

The maximum and minimum angle deviation is constrained
by (11).

θmin(i) ≤ θ(i,t) ≤ θmax(i) ∀i ∈ ΩB (11)

where:
ΩB is the set of buses; Ωl is the set of lines; PInj(i,t) is the
active injected power in bus i for the period t (MW); QInj(i,t)
is the reactive injected power in bus i for the period t (Mvar);
QSupplier(s,t) is the reactive power supplied by substation s in
period t (Mvar); QDG(i,t) is the reactive power supplied by DG
i in period t (Mvar); QLoad(i,t) is the reactive power demand
in bus i for the period t (Mvar); P(i,j,t) is the active power
flow in the i,j line for period t (MW); Q(i,j,t) is the reactive
power flow in the i,j line for period t (Mvar); S(i,j,t) is the
apparent power flow in the i,j line for period t (MVA);V(i,t) is
the voltage magnitude in the bus i for period t (V); θ(i) is the
voltage angle in the bus i for period t (rad); G(i,j) is the real
term of the element i,j in the bus admittance matrix; B(i,j) is
the imaginary term of the element i,j in the bus admittance
matrix; V min(i) is the minimum voltage magnitude limit in the
bus i (V); V max(i) is the maximum voltage magnitude limit in
the bus i (V); θmin(i) is the minimum voltage angle limit in the
bus i (rad); θmax(i) is the maximum voltage angle limit in the
bus i (rad); S(i,j)

max is the maximum admissible line flow
between bus i and bus j (MW).

A. Power generation

A binary variable represents the commitment status of
dispatchable DG units. 1 means that the unit is connected
and 0 means that the unit is not connected. Maximum and

minimum limits for active and reactive power in each period
t ((12) and (13), respectively) can be formulated as:

XDG(i,t) · PDGMinLimit(i,t) ≤
PDG(i,t) ≤ XDG(i,t) · PDGMaxLimit(i,t)

∀t,∀i ∈ ΩdDG

(12)

XDG(i,t) ·QDGMinLimit(i,t) ≤
QDG(i,t) ≤ XDG(i,t) ·QDGMaxLimit(i,t)

∀t,∀i ∈ ΩdDG

(13)

The upstream supplier (external supplier / main) maximum
limit in each period t regarding active power (14) and reactive
power (15) can be formulated as:

XSupplier(t) · PSMinLimit(t) ≤ PSupplier(t) ≤
XSupplier(t) · PSMaxLimit(t) ∀t (14)

XSupplier(t) ·QSMinLimit(t) ≤ QSupplier(t) ≤
XSupplier(t) ·QSMaxLimit(t) ∀t (15)

where:
XDG(i,t) is the binary variable of state of DG unit i in
period t; PDGMinLimit(i,t) is the minimum active power of
dispatchable DG unit i in period t (MW); PDGMaxLimit(i,t)

is the maximum active power of dispatchable DG unit i in
period t (kW).

B. Energy storage systems

The ESS constraints are shown below. The ESS charge
and discharge cannot be simultaneous (16). So, two binary
variables guarantee this condition for each ESS:

XESS(e,t) + YESS(e,t) ≤ 1 ∀t,∀e (16)

The maximum battery balance for each ESS can be write
as (17):

EStored(e,t) = EStored(e,t−1) + η
c(e)
· PCharge(e,t) ·∆t

− 1
ηd(e)

· PDischarge(e,t) ·∆t ∀t,∀e
(17)

The maximum and minimum discharge limit for each ESS
can be write as (18), (19):

PDischarge(e,t) ≤ PDischargeLimit(e,t) ·XESS(e,t)

∀t,∀e (18)

PDischarge(e,t) ≥ 0 ∀t,∀e (19)

The maximum and minimum charge limit for each ESS can
be formulated as (20), (21):

PCharge(e,t) ≤ PChargeLimit(e,t) · YESS(e,t) ∀t,∀e
(20)

PCharge(e,t) ≥ 0 ∀t,∀e (21)
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The maximum battery capacity limit for each ESS is write
as (22):

EStored(e,t) ≤ EBatCap(e) ∀t, ∀e (22)

Minimum stored energy to be guaranteed at the end of
period t can be formulated as (23):

EStored(e,t) ≥ EMinCharge(e,t) ∀t, ∀e (23)

where:
XESS(e,t) is the binary variable representing discharging state
of ESS e in period t; YESS(e,t) is the binary variable repre-
senting charging state of ESS e in period t; EStored(e,t) is
the energy stored in ESS e in period t (MWh); η

c(e)
charging

efficiency of ESS e (%); ηd(e) discharging efficiency of ESS
e (%);PDischargeLimit(e,t) maximum active discharge rate of
ESS e in period t (MWh); PChargeLimit(e,t) maximum active
charge rate of ESS e in period t (MWh); EBatCap(e) maximum
energy stored allowed by ESS e (MWh); EMinCharge(e,t)
minimum energy stored required in ESS e in period t (MWh).

C. Electric vehicles

The charge and discharge of each EV is not simultaneous.
So, two binary variables are needed for each EV and can be
represented by (24):

xEV (v,t) + yEV (v,t) ≤ 1 ∀t,∀v (24)

Battery balance for each EV is represented by (25). The
energy consumption for period t travel has to be considered
jointly with the energy remaining from the previous period
and the charge/discharge occurred in the period:

EStored(v,t) = EStored(v,t−1) − ETrip(v,t)+

ηc(v) · EVCharge(v,t) ·∆t−
1

ηd(v)
· EVDischarge(v,t) ·∆t

∀t,∀v
(25)

When connected to the grid an EV cannot discharge to the
grid more than the admissible discharge rate. The discharge
limit for each EV considering battery discharge rate can be
formulated as (26), (27):

EVDischarge(v,t) ≤ EVDischargeLimit(v,t) · xEV (v,t) ∀t,∀v
(26)

EVDischarge(v,t) ≥ 0 ∀t,∀v (27)

When connected to the grid the vehicle cannot charge more
than the admissible charge rate. The charge limit for each EV
considering battery charge rate can be formulated as (28), (29):

EVCharge(v,t) ≤ EVChargeLimit(v,t) · yEV (v,t) ∀t,∀v
(28)

EVCharge(v,t) ≥ 0 ∀t,∀v (29)

The maximum battery capacity limit for each EV can be
formulated as (31):

EStored(v,t) ≤ EBatCap(v) ∀t,∀v (30)

The minimum stored energy must be be guaranteed at the
end of period t and is represented by (31):

EStored(v,t) ≥ EMinCharge(v,t) ∀t,∀v (31)

where:
XEV (v,t) is the binary variable representing discharging state
of EV v in period t; YEV (v,t) is the binary variable repre-
senting charging state of EV v in period t; EStored(v,t) is
the energy stored in EV v in period t (MWh); η

c(v)
charging

efficiency of EV v (%); ηd(v) discharging efficiency of EV v
(%);EVDischargeLimit(v,t) maximum active discharge rate of
EV v in period t (MWh); EVChargeLimit(v,t) maximum active
charge rate of EV v in period t (MWh); EBatCap(v) maximum
energy stored allowed by EV v (MWh); EMinCharge(v,t)
minimum energy stored required in EV v in period t (MWh).

D. Demand flexibility
Equation 32 formulates a demand response model, namely

direct load control, in which the consumer receives an incen-
tive if their load is reduced. The maximum amount that each
load l can be reduced in each period t is repreented by (32):

pLoadDR(l,t) ≤ PLoadDRMaxLimit(l,t) ∀t,∀l (32)

where:
PLoadDRMaxLimit is the maximum limit of active power
reduction of load l in period t (MW).

E. Electricity market
The market offers and bids are limited through (33)-(37),

namely maximum and minimum energy sale and purchase,
respectively. A market bid cannot coexist with a market offer
(sale) at the same time in the same marketplace (37).

PSell(m,t) ≤ PMarketOfferMax(m,t) ·XMarket(m,t)

∀t,∀m (33)

PSell(m,t) ≥ PMarketOfferMin(m,t) ·XMarket(m,t) ∀t,∀m
(34)

PPurchase(m,t) ≤ PMarketBuyMax(m,t) · YMarket(m,t)

∀t,∀m
(35)

PBuy(m,t) ≥ PMarketBuyMin(m,t) · YMarket(m,t)

∀t,∀m (36)

XMarket(m,t) + YMarket(m,t) ≤ 1 (37)

where:
PMarketOfferMax(m,t) is the maximum energy sale allowed
in market m in period t (MW); PMarketOfferMin(m,t) is
the minimum energy sale allowed in market m in period t
(MW); PMarketBuyMax(m,t) is the maximum energy purchase
allowed in market m in period t (MW); PMarketBuyMin(m,t)

is the minimum energy purchase allowed in market m in period
t (MW); XMarket(m,t) is the binary variable that represents
an offer in market m in period t; YMarket(m,t) is the binary
variable that represents a bid in market m in period t.
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III. CASE STUDY

The developed model is tested using a case study based on a
real distribution network with 201 buses, located in Zaragoza,
Spain (Fig. 1) [16]. The original data is slightly modified to
include high penetration of DG units, corresponding around
70% of the total installed capacity power. The installed ca-
pacity of cogeneration units represents 33%, the photovoltaic
represents about 30%, wind power represents 22 %, small
hydro represents and biomass units represent 11% and 4%,
respectively. Additionally, 4000 EVs has been considered.

The energy aggregator in this case study is capable of
managing 118 DG units, the energy bought from external
supplier, 6 ESS units (the charging and discharging efficiency
considered for the ESS units is 90%), 4000 EVs, 168 loads
points aggregated by bus and 89 aggregated consumers with
DR programs (direct load control). In this case study, it is
assumed that the aggregator manages the customers in the
area, with the goal to minimize the total operation costs. Table
I shows the energy data and respective prices. The information
of price is shown in monetary units per kWh (m.u./kWh) and
the capacity in MW. The prices have been designed according
to [17].

TABLE I: Energy resources characterization of the distribution
network.

Energy resources
Prices

(m.u./MWh)
Min-max

Capacity
(MW)

Min-max

Forecast
(MW)

Min-max
Units #

Biomass - 120-120 0.00-1.45 - 1
CHP - 80-100 0.00-4.00 - 4

Small hydro - 100-100 0.12-0.35 - 1
Photovoltaic - 160-160 - 0.00-1.76 82

Wind - 100-100 - 0.52-1.65 30
External
Supplier - 100 - 100 0.00-7.30 - 1

Storage Charge 120-120 0.00-1.50 - 6
Discharge 180-180 0.00-1.50 -

Electric
Vehicle

Charge 130-130 0.00-24.80 - 4000
Discharge 150-150 0.00-23.12 -

Demand
Response

Reduce
program 70 -70 0.27-0.62 - 89

Load - 90-150 - 3.94-90.9 168
Market - 80-100 0.00-4.00 - 1

Fig. 2, Fig. 3, and Fig. 4 shows the power generation
by DG, the demand forecast, and the energy market prices,
respectively.

A. Algorithm settings

In this work, it is compared the performance of five EAs to
solve the ERM scheduling optimization problem proposed in
Section II, namely the DE [18], the more recently proposed
HyDE and HyDE-DF [12], [19], an improved PSO [14],
and the Vortex [15]. DE, HyDE, HyDE-DF, and PSO are
population-based approaches with very similar mechanisms,
performing a number of evaluation functions (EF) equal to the
size of the population in each iteration. Vortex is not strictly
speaking a population-based method but evaluates for each
iteration a given number of neighbour solutions. Thus, results
in the same number of EF per iteration as the other algorithms.

1) Particle swarm optimization: Particle swarm optimiza-
tion belongs to the swarm intelligence class, where the parti-
cles (problem solutions) coordinate their actions by modifying
their position towards the optimum value. A fitness function
improve their position in each iteration [14].

2) Differential evolution: Differential evolution uses a pop-
ulation of individuals to optimize a function. In the initial-
ization stage, solutions are generated randomly within the
lower and upper ranges. Differential evolution follows the
general iterative of evolutionary algorithm by creating new
solutions, applying a mutation and recombination operator, and
performing elitist selection, i.e., the better solutions survive for
the next generation in each iteration.

3) Vortex search: Vortex search is classified as a single-
solution based metaheuristic. Although, its framework is anal-
ogous to the evolutionary algorithms. In each iteration, the
number of neighbor solutions are generated using a multi-
variate Gaussian distribution around the initial solution. The
solutions are evaluated in the fitness function, and the single-
solution is updated with the best solution found. The iterative
process is repeated until a stop criterion is reached [15].

4) HyDE and HyDE-DF: The hybrid-adaptive differen-
tial evolution is a self-adaptive version of DE proposed in
[12]. The HyDE uses an operator known as “DE/target-to-
perturbedbest/1” that modifies the DE/target-to-best/1 strat-
egy [13], with a perturbation of the best individual, and
the self-adaptive mechanism. The hybrid-adaptive differential
evolution with decay function [19] is an improved version
of HyDE. This new version incorporates a decay function to
perform a transition in the iteration process from the main
operator of HyDE to the basic operator of DE. Thus, it will
be allowed an enhance phase of exploration in the early stage
of evolution and stress the exploitation in later stages of the
optimization process.

For more detailed explanations of the selected EA, the
reader can consult the cited references for further information.

The size of population/neighbour solutions has been set
to 5 with 2000 iterations for all the algorithms. For DE,
the mutation factor and recombination constant (F and Cr)
were set to the recommended values 0.5 and 0.9 respectively
[18]. HyDE and HyDE-DF [12] are a self-adaptive parameter
versions but initial values for F i and Cr where set to 0.5.
Vortex search algorithm does not have any parameter to
configure [15]. The five algorithms were run for 30 trials each,
and the results correspond to the mean value of those 30 trials.

B. Algorithms implementation

The decision variables of this ERM optimization problem
are coded into vector space. The variables for active and
reactive power generated by an external supplier and DG are
between the limits of the respective generators. Regarding
the EV and ESS variables, they are positive if they are
charging or negative if they are discharging. For demand
flexibility variables, they are coded between the maximum and
minimum possible demand reduction (normally the minimum
is considered 0). The considered binary variables are coded
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Fig. 1: 201-bus medium voltage distribution network (adapted from [16]).

Fig. 2: Distributed power generation forecast.

as continuous but using a rounding mechanism (continuous
variable between 0 and 1 is rounded to unity).

Additionally, a heuristic mechanism is implemented to pre-
dispatch the DG resources with lower prices to improve the
metaheuristics’ efficiency and effectiveness. With the excep-
tion of not dispatchable DGs, the generation units are sorted by
merit order according to their costs. The developed heuristic
will pre-schedule the DGs units and external supplier acquisi-
tion and at the same time balance the generation and the de-
mand in each period, taken into account the generation/demand
values for EVs, ESS and demand flexibility variables, which
are sought by the metaheuristics internal mechanism.

Fig. 3: Load demand forecast.

After this process, a power flow algorithm (based on [20])
is run before the final evaluation (in each iteration) by the
metaheuristics process to check the network conditions. Thus,
the metaheuristics will have the information to evaluate the
technical power network constraints, namely the voltage mag-
nitude and angle limits and thermal limits of the power lines.
The identified violations are handled through penalties in the
fitness function, and also using direct repair, i.e., the solutions
is corrected by changing the variable value, whenever possible,
and re-evaluating the objective function without adding further
penalties. For instance, if an ESS charged a value that causes a
higher amount than the ESS’s capacity in a given period, that
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Fig. 4: Market prices.

variable can be directly reduced without causing violation in
the capacity.

IV. RESULTS AND DISCUSSION

The work was developed in a computer with one Intel Xeon
E5-2620 v2 processor with 16 GB of RAM running Windows
10 Pro using the MATLAB R2018a. The average values of
total operation cost considering and not considering demand
flexibility (reference case), the improvement for the aggregator
of using the demand flexibility, and the CPU times to perform
the 2000 iterations are presented in Table II. It can be seen
in this table that the HyDE and HyDE-Df present the best
overall costs for the aggregator, which also corresponds to
the lower fitness. The differences between these algorithms
are small in terms of costs and CPU time. The convergence
behaviour of the algorithms in terms of their fitness value
evolution considering the demand flexibility and the reference
case are depicted in Fig. 5 and Fig. 6, respectively.

TABLE II: Achieved results by the tested evolutionary algo-
rithms.

Evolutionary
Algorithm

Overall Costs
(m.u.) Improvement CPU time

(s)

With DR Without
DR (m.u.) (%) With DR Without

DR
DE 33 072.01 33 172.31 100.29 0.30 270.71 276.29

PSO 16 800.36 16 874.59 74.23 0.44 280.99 288.92
Vortex 24 589.61 24 617.24 27.63 0.11 335.42 315.93
HyDE 16 705.84 16 866.14 160.30 0.95 500.69 527.70

HyDE-DF 16 721.07 16 866.14 145.07 0.86 326.79 312.33

It is possible to see that the curves have practically the
same shape for both cases, only that in the reference case
(without demand flexibility), the fitness achieved is worst
for all the algorithms when compared with the case where
demand flexibility is considered. It is also shown that the
Vortex algorithm has a slower convergence on the first stage of
evolution than the other algorithms. It can also be interesting
to check that PSO presents good performance for solving this
complex problem of ERM.

The variants HyDE and HyDE-DF present the best perfor-
mance in terms of overall costs. The reason is that HyDE

Fig. 5: Average convergence considering demand flexibility.

Fig. 6: Average convergence not considering demand flexibil-
ity.

and HyDE-DF combine different characteristics (observed and
demonstrated in other studies), which give them the ability of
self-tuning of parameters, and fast convergence capabilities
(exploitation) in the first phase of the evolutionary process,
while gradually switching to a local search phase (exploration)
in the final steps of the evolutionary process. Due to best
overall cost obtained by these two approaches the authors
took one of them to show the ERM results. The HyDE-DF
algorithm considering demand flexibility was chosen.

The energy resource management results (in terms of gen-
eration) is presented in Fig. 7. The total scheduled energy
resources are 179.75 MWh. For the total external supplier
acquisition (main), the amount is 109.57 MWh, while PV,
Wind, CHP, and Small Hydro are 12.21 MWh, 26.23 MWh,
24.93 MWh and 1.10 MWh, respectively. Regarding Fig. 8 it
presents the energy resource management results (in terms of
consumption). The total ESS discharge is 0.00105 MWh, the
EV discharge is 0.106 MWh, while the total scheduled demand
flexibilty is 5.59 MWh. The total market purchase, the non-
supplied demand and the generation curtailment power are 0
MWh.The results for ESS charge, market sale, EV charge and
power losses are 0.0051 MWh, 14.14 MWh, 8.24 MWh, and
0.2716 MWh, respectively.
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Fig. 7: Energy resource management - generation.

Fig. 8: Energy resource management - consumption.

V. CONCLUSIONS

This paper discusses the application of evolutionary algo-
rithms to solve the large-scale energy resource management
problem of aggregators in a smart grid. This problem is a
combinatorial problem of large-scale nature when many dis-
tributed energy resources are considered. Due to non-linearity
features of the problem, it is usually classified as MINLP.
MINLP techniques require significant computer resources. To
mitigate this, the evolutionary algorithm can play an important
role. For this propose, a comparison between five evolutionary
algorithms to solve the energy resource management problem
was performed. The results suggest that the two variants of
differential evolutionary algorithm, HyDE and HyDE-DF, can
provide better results for the aggregator, i.e. lower operation
costs (with a small advantage for HyDE - around 15 m.u.). It
was also verified the advantage for the aggregator of using de-
mand flexibility, reaching 0.95% and 0.86% of operation cost
improvement with HyDE and HyDE-DF algorithms, respec-
tively. As future work, the model will be adapted to include
a competitive environment, where exist several aggregators
and different business models for distribution system operator
considering network technical constraints independent from
the aggregators.
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Calixto. Portfolio optimization of renewable energy assets: Hydro, wind,
and photovoltaic energy in the regulated market in Brazil. Energy
Economics, 64:238–250, 5 2017.

[5] Pedro Faria, Joao Spinola, and Zita Vale. Aggregation and Remuneration
of Electricity Consumers and Producers for the Definition of Demand-
Response Programs. IEEE Transactions on Industrial Informatics,
12(3):952–961, 6 2016.

[6] Kang Miao Tan, Vigna K. Ramachandaramurthy, and Jia Ying Yong.
Integration of electric vehicles in smart grid: A review on vehicle to grid
technologies and optimization techniques. Renewable and Sustainable
Energy Reviews, 53:720–732, 1 2016.

[7] Bin Zhou, Wentao Li, Ka Wing Chan, Yijia Cao, Yonghong Kuang,
Xi Liu, and Xiong Wang. Smart home energy management systems:
Concept, configurations, and scheduling strategies. Renewable and
Sustainable Energy Reviews, 61:30–40, 8 2016.

[8] European commisssion. Accelerating Clean Energy in Buildings. Tech-
nical report, 2016.

[9] Thomas Strasser, Filip Andren, Johannes Kathan, Carlo Cecati, Con-
cettina Buccella, Pierluigi Siano, Paulo Leitao, Gulnara Zhabelova,
Valeriy Vyatkin, Pavel Vrba, and Vladimir Marik. A Review of
Architectures and Concepts for Intelligence in Future Electric Energy
Systems. IEEE Transactions on Industrial Electronics, 62(4):2424–
2438, 4 2015.

[10] João Soares, Tiago Pinto, Fernando Lezama, and Hugo Morais. Survey
on Complex Optimization and Simulation for the New Power Systems
Paradigm. Complexity, 2018:1–32, 8 2018.

[11] Swagatam Das, Ajith Abraham, Uday K. Chakraborty, and Amit Konar.
Differential Evolution Using a Neighborhood-Based Mutation Operator.
IEEE Transactions on Evolutionary Computation, 13(3):526–553, 2009.

[12] Fernando Lezama, Joao Soares, Ricardo Faia, Tiago Pinto, and Zita
Vale. A New Hybrid-Adaptive Differential Evolution for a Smart Grid
Application Under Uncertainty. In 2018 IEEE Congress on Evolutionary
Computation (CEC), pages 1–8. IEEE, 7 2018.

[13] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential
Evolution: A Survey of the State-of-the-Art. IEEE Transactions on
Evolutionary Computation, 15(1):4–31, 2 2011.

[14] João Soares, Mohammad Ali Fotouhi Ghazvini, Marco Silva, and
Zita Vale. Multi-dimensional signaling method for population-based
metaheuristics: Solving the large-scale scheduling problem in smart
grids. Swarm and Evolutionary Computation, 29:13–32, 8 2016.
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