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Abstract — In Demand Response programs, the 

response of the users to the event request depends on 

several factors. In this paper, a method that examines the 

response of the consumers to a load reduction request, 

defining the context in which the demand response event 

is carrying on and studying how the consumers react, is 

proposed. Statistical methods are used. Then are 

proposed several strategies to optimize the consumers’ 

participation in the load reduction basing the 

optimization on the previous characterization. 
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NOMENCLATURE 

p Performance 

pavg Average performance 

b Baseline value 

a Adjustment values 

c Shedline value 

e Duration of the event 

μ Parameter’s mean 

σ Standard deviation 

Pr%norm Probability in Normal distribution 

Pr%kern Probability in Kernel distribution 

I. INTRODUCTION 

In the last decade, the construction of new renewable 

power plants is grown exponentially; in an IEA [1] report, 

installed renewable-based generation capacity of 1 985 GW 

in 2015 was mentioned, exceeding for the first time the coal 

plants capacity (1 950 GW). Wind capacity was 35% higher 

than the previous year and solar photovoltaic increased by 

almost 25%. IEA estimates the installation of 4 000 GW of 

new renewable capacity until 2040. Moreover, electrical 

consumption will grow up to 34000 TWh, about 70% more 

than now, due to the higher presence of heat pumps, cooking 

induction systems and electric vehicle [1]. 

Electrical grids get updated with sensors and data collector 

appliance to become intelligent systems, defined as Smart 

Grids (SGs), able to reply to the significant challenges to the 

secure operation and planning of power systems [2]. A smart 

grid is an electric grid that can deliver electricity in a 

controlled and smart way from point of generations to 

consumers, who are considered as an integral part of the SG 

[3]. End-use customers become also an active part of the grid 

because they can modify their consumption patterns and 

behaviours according to the information, incentives or 

disincentives communicated by the grid operator. 

Demand Side Management (DSM) includes everything 

that is done in the demand side of an energy system, from an 

improvement in energy efficiency, to the investment in a load 

management system which helps consumers to reduce their 

bills by shifting electricity use to less expensive hours or turn 

off unnecessary appliances during the most expensive 

electricity price hours [2]. A specific concept in DSM is 

Demand Response (DR). As defined in [4], DR refers to 

“changes in electric usage by end-use customers from their 

normal consumption patterns in response to changes in the 

price of electricity over time, or to incentive payments 

designed to induce lower electricity use at times of high 

wholesale market prices or when system reliability is 

jeopardized”. 

Assuming that the answer to a demand response call is not 

mandatory and it is a customers’ decision to participate or 

not, and in which quantity, to a DR event, the prediction of 

the consumers’ participation is not so easy. So, the 

participation cannot follow the operator’s expectations. In [5] 

are reported many consumers barriers which can compromise 

the result of a DR event: 

˗ Consumer knowledge: many people have very little 

knowledge about how the electricity market works and 

about the relation between appliances usage and 

electricity consumption. 

˗ Availability of technology: as electricity users need to 

know the price of the electricity, utility providers need to 

be able to precisely know the real-time consumption of 

their customers to guarantee the right incentives. 

˗ Information feeds: to obtain information about prices and 

consumption could be very hard for the customers, then 

they aren't encouraged to save energy even in the presence 

of money savings because the cost to have this 

information and understand them is higher than the 

economic benefits. 

In general, if costumers have access to additional 

information, as in-home display indicating the current price 

or the amount that can be saved, responses are greater  [6]. 
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To overcome these issues, an Automate Demand Response 

(ADR) approach can be implemented in buildings. The ADR 

doesn’t involve human intervention and it is initiated at a 

home, building or facility through receipt of an external 

communications signal, the receipt of the signal initiates pre-

programmed demand response strategies [7]. Most of the 

fully automated strategies can be split into these categories 

[8]: Heating, ventilation and air conditioning (HVAC); 

Lighting; Other actions are antisweat heater shed, fountain 

pump turnoff and noncritical process shed. 

When an Auto-DR strategy incurs, the homeowner or the 

facility manager should be able to override the DR event if 

the event comes at a time when the reduction of the end-use 

services is not desirable; moreover it’s also important to point 

out that if the appliances normally involved in the Auto-DR 

strategy are already off before the beginning of the event the 

power reduction won’t follow the expectations and the load 

shed could fail for that user.  

The present paper proposes an innovative method that 

allows the grid operator to have a probabilistic determination 

of the consumers’ response in a DR event. Given a set of 

previous events with the respective actual responses of each 

consumer, the performance of the consumer participation in 

the DR event is evaluated and quantified. This allows the 

network operator or an aggregator to more accurately 

schedule the DR resources or consumers, taking into account 

the probability of response of each consumer.   

Section I shows the introduction to the topic. In section II, 

all phases of the proposed model and studied through the case 

of study which is presented in section III are discussed in 

detail. The results of the selected scenario will be analysed in 

section IV. Finally, section V presents the main conclusions. 

II. APPROACH 

This section presents the proposed method; the first part of 

the method aims to define the behaviour of the users in a DR 

program, in different contexts, in order to identify when each 

customer is more useful to the electric system and how much 

it can influence the objective of a DR event. Fig.1. gives a 

basic view of the structure of the proposed method.  

 

Fig. 1. Structure of the method 

The first step is to obtain data about electricity 

consumption through a smart meter. After the data collection, 

it’s necessary to define the load profile of the user; to do that 

the techniques described in [9] and [10] can be used for the 

baseline calculation. The forecasting of a baseline that is very 

similar to the real load profile is fundamental to have a good 

evaluation of the performance that the customer can achieve 

and then it is also very important for the characterization of 

the consumer’s response. To define the results of a DR event 

have been chosen three performance indexes defined in 

[9],[11]. The performance “p” (1) is the difference between 

the adjusted baseline and consumption during the event. 

𝑝 =  ∑(𝑏𝑖 + 𝑎) − 𝑐𝑖

𝑒

𝑖=0

 (1) 

 

The capacity-setting performance “pavg” (2) is given by the 

average performance during all intervals of the DR event. 

𝑝𝑎𝑣𝑔 =  
∑ (𝑏𝑖 + 𝑎) −  𝑐𝑖

𝑒
𝑖=0

𝑒
 (2) 

Then, the last parameter that could be useful is the change in 

total electricity consumption during peak hours (3). 

𝑜𝑟𝑖𝑔. 𝑝𝑒𝑎𝑘. 𝑐𝑜𝑛𝑠𝑢𝑚. −𝑛𝑒𝑤. 𝑝𝑒𝑎𝑘. 𝑐𝑜𝑛𝑠𝑢𝑚.

𝑜𝑟𝑖𝑔. 𝑝𝑒𝑎𝑘. 𝑐𝑜𝑛𝑠𝑢𝑚.
 (3) 

As the method is strutured, the most useful index is the 

performance. Every context has its duration then the 

comparison is always done with events that have the same 

time length. In Fig. 2. the first part of the method is 

represented: from the input data to the density distribution of 

the parameters considered. 



 

 

 
Fig. 2. Definition’s scheme of the parameters’ distribution 

The input file must contain the date of the event, the time 

in which the DR event occurred and the duration of the event 

to define the context in which the event performed then the 

baseline and the shedline are necessary to extract the 

performance indexes previously described. Once that 

parameters and contexts have been linked, two distribution 

methods are applied to these data to understand how all the 

events with the same context are distributed and then, a 

probabilistic value of the answer of the consumer can be 

obtained. The two distributions approaches that have been 

chosen are the Gaussian distribution and the Kernel 

distribution. The Gaussian distribution describes well most of 

the events linked to the probability (4). 

𝑓(𝑥) =  
1

𝜎√2𝜋
 𝑒

−
(𝑥−𝜇)2

2𝜎2  (4) 

Using (4), it is possible to obtain the normal density 

distribution of the parameter considered. However, it may be 

not realistic in the field of demand response assuming 

normality in the distribution flexibility so, as the first 

approach, waiting for enough data for verification of the 

distribution shape, it is proposed to use also the Kernel 

method [12]. This method is interesting because no 

distribution scheme is supposed, the curve is shaped 

depending on the data and the frequency that the values 

appear in different ranges. The Kernel density estimator’s 

formula, for any real values of x, is given by (5). 

𝑓ℎ̂(𝑥) =
1

𝑛ℎ
∑ 𝑲(

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 (5) 

Where x1, x2,..,xn are random samples from an unknown 

distribution, n is the sample size, K (·) is the Kernel 

smoothing function and h the bandwidth [13]. 

Once the parameters’ distributions are calculated, it’s 

possible to define which is the optimal amount of electricity 

that is possible to obtain from each consumer. The objective 

is to know the amount of electricity that each user can reduce 

with a high probability. As the first step, it is necessary to 

define the context in which we are interested to investigate 

and then define the amount of electricity that we would like 

to obtain from that specific user.  

 

Fig. 3. Probability’s shed definition 

In a normal distribution, the probability is defined as (6). 

𝑃𝑟%𝑛𝑜𝑟𝑚 =  ∫ 𝑓(𝑥) 𝜕𝑥
𝑏

𝑎

      × 100 (6) 

Instead in presence of a Kernel distribution, the 

probability is defined as (7). 

𝑃𝑟%𝑘𝑒𝑟𝑛 =  ∫
1

𝑛ℎ
∑ 𝑲(

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

𝑏

𝑎

 𝜕𝑥     × 100 (7) 

Using the procedures described until now it is possible to 

obtain the characterization of the users involved in DR 

programs and to define, for each one of these users, the 

amount of electricity that is available for a DR event in a 

defined context. As in an ADR program the aggregators are 

the ones who sent a signal to activate the DR strategies, these 

pieces of information should be used by them to determine 

who are the consumers that better can perform the load shed 

request. To find the best combination of users that better fit 

the requests of the aggregators; to do that the sum of the 

probability density parameters that have been calculated in 

the previous step is required. In the probabilistic field it is 

well known that the probability distribution of the sum of two 

or more independent variables is the convolution of their 

distribution [14]. This method can be used with both 

probability density function previously illustrated. 

 



 

 

Fig. 4. Convolution strategy for consumers’ managing in DR events 

The users’ order, with which the convolution occurs, 

influences the number and which user is involved in the event 

because when the aggregators’ requests are satisfied the 

convolution stops. There are several ways in which users can 

be ordered. Users’ classification ordered by the standard 

deviation in increasing order, the ratio between average 

performance and standard deviation value and a convolution 

including all the consumers have been tested. After every 

convolution, the power that has to be cut and the probability 

to have this amount of power is compared with the request of 

the aggregators. If the requests are satisfied, the convolution 

process stops and are obtained pieces of information about 

the users that have to be involved, the forecast average shade, 

the probability of the required shed and the standard deviation 

of the convolution, that is an index of the uncertainty of the 

shed level. 

III. USED DATA 

In this section, the case study used to verify the 

functionality of the method is introduced. The data used to 

test this method is the property of the New Thames Valley 

Vision (NTVV) - www.thamesvalleyvision.co.uk . The 

NTVV is a Low Carbon Network Fund Tier 2 project selected 

by Ofgem during the 2011 competitive selection process. 

Focussed on the low voltage network, the NTVV aims to 

demonstrate how electricity distribution networks can better 

serve their customers by understanding, anticipating and 

supporting their energy use as they move towards low carbon 

technologies [15]. One of the projects conducted by the 

NTTV involved the Automated Demand Response. To put in 

practice this project, 30 different types of buildings were 

enrolled, such as commercial, hospitality, leisure, healthcare, 

data centres, educational or public sector buildings with an 

aggregated load reduction of more than 1,1 MW. For each 

ADR event a file with information about the power 

consumption on the day of the DR event and the baseline is 

available. The data refer to three events, for each building, 

carried out during the autumn at 16:00 System Peak with a 

duration of two hours; the buildings involved are two 

educational centres, a local office and a leisure centre. The 

power data are composed by a sample every 15 minutes [12]. 

IV. RESULTS 

Throughout this section, the results of the method test, 

conducted by implementation in RStudio, are presented; the 

purpose of the results reported is to show that the method 

works, how it works and the results that are possible to obtain; 

the data available aren’t enough to determine a real 

characterization of the buildings involved in the trial. 

The first part of the method concerns the analysis of each 

building. The results of the analysis of an educational 

building are reported. 

TABLE I.  CONTEXT OF ANALYSED DATA 

Season Day Day Type Event Time Duration

Autumn Tuesday Weekday 16:00 2 h  

Table I. reports the context in which the analysis has been 

conducted. The summary of the performance indexes 

obtained from the educational building is reported in Table 

II. In the normal distribution, we obtained a performance 

curve with an average performance of 7,78 kWh and a 

standard deviation of 5,50 kWh. The standard deviation 

seems to be very high, mainly compared with the average 

performance and this is due to the great variability of the 

performance measured. To reduce the uncertainty in the 

distribution a quite high number of events on the same 

context is required to have a bigger set of performance values, 

moreover, good quality of the baseline prediction is 

necessary. The baseline is essential for the determination of 

the performance, then, very high variability in the 

performance values could be also due to a not good baseline 

prediction.  

However, though the values analysed show a big 

uncertainty, the shape of the curve with a Kernel distribution 

(Fig. 6.) is comparable with the curve using the Gaussian 

distribution (Fig. 5.). The smoothness of the curve depends 

on the bandwidth h in the equation (5), a bigger value of h 

leads to a smoother curve instead a lower value of h leads to 

a curve in which the single contributes are more visible; in 

this method an optimal value of h is chosen by the 

optimization algorithm implemented in the R’s kernel 

distribution method. 

TABLE II.  SUMMARY OF THE EVENTS IN THE EDUCATIONAL BUILDING 

Date
Performance 

[kWh]

Avg Performance 

[kWh]

Consumption 

change %

04/10/2016 8 4 12,7

25/10/2016 13,16 13,16 21,52

08/11/2016 2,17 1,08 3,38  

 

Fig. 5. Performance’s normal distribution educational building 

http://www.thamesvalleyvision.co.uk/


 

 

 

Fig. 6. Performance’s kernel distribution educational building 

Table III. shows the comparison between the 

probabilities calculated with the two different distribution 

functions, considering several values of saved power. 

TABLE III.  SUMMARY OF DIFFERENT PERFORMANCE PROBABILITIES 

0 5 10 15 20

Normal 92,54 70,78 36,2 10,44 1,46

Kernel 93 69,59 38,12 10,78 0,35

Probability %
Min Performance [kWh]

 

The probabilities calculated using the two methods are 

almost the same and, moreover, the probabilities calculated 

with the Kernel function, that should better represent the real 

distribution of the performance values, seem to be less 

precautionary then the normal distribution; so, at least for this 

user, it is possible to affirm that the Gaussian distribution 

function can be used as a distribution method facilitating all 

the following data processing. The second part of the method 

concerns the different strategies to manage consumers during 

a DR event. To test the methods four different users have 

been considered as participants to the DR program, these 

consumers had these characteristics. 

The performances reported in the Table IV are the mean 

of the performances considered for each building and the 

relative standard deviations. The tests refer to a required 

performance of 10 kWh with a probability at least equal to 

70%. Classifying users on the standard deviation in 

increasing order the convolution of a new consumer follows 

this users’ sequence: 4, 3, 1, 2. To achieve the result of the 

required load shedding it is necessary to involve the first three 

customers of the sequence. Involving these three users in the 

DR event it is possible to obtain a load shed of 10 kWh with 

a 93,9% probability of success. The average performance, i.e. 

the performance with the 50% of probability that can be 

reached or exceeded, is equal to 19 kWh with a standard 

deviation of 6 kWh. 

TABLE IV.  LIST OF THE USERS INVOLVED IN THE METHOD TEST 

User ID Building
Performance 

[kWh]

Standard deviation 

[kWh]

1 Educational 1 7,78 5,5

2 Educational 2 17,55 11,81

3 Office 4,08 3,42

4 Leisure Centre 7,19 1,58
 

Achieving the results of a load reduction of, at least, 10 

kWh with a minimum probability equal to 70% requires the 

involvement of the users 4, 2 and 1. In this case, Educational 

Centre 1 joins the event because the relation between the 

energy that it can reduce, and the uncertainty is better than of 

other consumers. With these three users involved in the DR 

event it is possible to obtain a load shed of 10 kWh with a 

98,4% probability of success. The average performance is 

equal to 32,53 kWh with a standard deviation of 10,84 kWh. 

Then a test in which all the four user performances' 

distributions have been convoluted has been conducted, as in 

Table 5. The result is an average performance of 36,60 kWh 

with a standard deviation of 11 kWh. Despite the involving 

of consumers which have been considered worse in the 

previous strategies, this strategy has the highest ratio 

performance / standard deviation. Looking at the required 

performance of 10 kWh, the probability that it happens is 

equal to 99,31%. In the case of a contribution in power 

reduction that is coming from a larger consumers group than 

the necessary, it could be enough asking for a lower load shed 

than the one plan in the strategy implemented in the ADR, 

with a higher chance of success. 

TABLE V.  SUMMARY OF TESTS RESULTS 

Test case
Users 

involved

Request 

[kWh]

Probablity 

%

Avg 

Shedding 

[kWh]

Std. 

Deviation 

[kWh]

1 3 (4,3,1) 10 93,89 19 6

2 3 (4,2,1) 10 98,97 32,53 10,84

3 4 10 99,32 36,61 11,07  
The grid operator can choose which approach is better to 

use: the lowest uncertainty, i.e. the lowest standard deviation, 

belongs to the method in which the users have been ordered 

following an increase in standard deviation. The method in 

which the users have been ordered following a decrease ratio 

between performance and standard deviation has a higher 

uncertainty, but the request should be satisfied with a higher 

probability. 

V. CONCLUSIONS 

In the next years, our life will depend on electricity more 

than now. The consumers need to become an active part in 

the chain of the electric energy. With a high penetration of 

smart appliances, it could be difficult, also for a well-

educated consumer, managing the use of all the appliances in 

the best way. ADR can constitute a very good way to obtain 

good results. 

The proposed method can be a useful support element for 

the aggregator’s decisions. It also constitutes a good starting 

point for further improvement, additions and studies. Future 

work can include the addition of clustering to the method and 

to verify if consumers with a comparable load profile have 

comparable performances or if the users need to be clustered 

according to their response. 
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