Bommier, V., 2020, A&A, 634, A40 https://doi.org/10.1051/0004-6361/201935244

Electron thermal escape in the Sun

- at 0.5 R_{\odot} from \odot center

- electron thermal velocity is 14 times their escape velocity from the star gravity
- electron thermal velocity is 6 times their escape velocity from protons
- \Rightarrow electrons escape, but
 - \succ when their density \searrow , they became retained by protons
 - very slow, quasi-static spreading
- ⇒ higher electron density than expected in surface layers, responsible for
 - higher surface magnetization than expected non negligible
 - electric fields in the star interior ?
- surface magnetic field

FSA l'Observatoire

$$\boldsymbol{B} = \boldsymbol{\mu}_0 \left(\boldsymbol{H} + \boldsymbol{M} \right)$$

what is measured by Zeeman effect is *H* (4 demonstrations in the paper)

➤ the observed non-zero divH (= - divM) revealed the effect (see paper)

Véronique Bommier, <u>V.Bommier@obspm.fr</u>

