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Abstract
The basic requirements in neuroimaging research are changing rapidly due to the growing size

of datasets and multimodal approaches with increasingly complex, time-consuming, diverse and fast-
moving standards. Neuromodulation And Multimodal NeuroImaging software (NAMNIs) offers a
ready-to-use, open-source pipeline for pre- and post-processing of multimodal neuroimaging and neu-
romodulation data. A strong focus is maintained on reproducibility and support for multi-platform
parallelization. Computations are performed in both native volume and surface spaces as well as in
MNI standard space. Input and output data of these calculations conform to the international Brain
Imaging Data Structure (BIDS) format. The software is intended to enable users to better interpret
results using MRI-based modalities and to calculate simulations based on this data that can later
be compared with the results of neuromodulation pilot or clinical studies. The simple integration
into a high-performance computing (HPC) environment allows the calculation of large datasets or
retrospectively combined samples in a feasible period of time.

version 0.3 (status: prototype) contact:
 check for updates namnis.team@protonmail.com

1 Introduction
State of research and functionality Multivariate analysis methods of MRI brain imaging have
become into efficient tools of applied and basic neuroscience in the last decade. A large variety of
tools for the analysis of multimodal MRI neuroimaging has been developed in recent years. Often,
these software solutions specialize in one modality, for example structural neuroimaging (e.g. MRtrix3
[1]) or functional connectivity (e.g. fmriprep [2]). In addition, there are generally large toolboxes (e.g.
AFNI [3], FSL [4], SPM [5]) that are suitable for analysis and statistical evaluation of a variety of
modalities, but often the steps have to be compiled manually by the user. The program code varies in
the analysis tools from mainly Python and R in AFNI, bash and Python in FSL and Matlab in SPM.

NAMNIs consists of a processing pipeline for multimodal magnetic resonance imaging (MRI)
data analysis using parallel processing. It performs various pre-processing steps with the aforemen-
tioned data, calculating relevant metrics such as the number of activated voxels (spatial extent),
within regions of interest (ROIs) effects, ROI-to-whole-brain calculations, probabilistic values, motion
parameters, connectivity strength values (standardized in z scores), and more. This is implemented in
native space, standard MNI space, and surface space for structural T1-, T2-weighted data. In addition,
structural T1- and T2-data are used for the simulation of non-invasive brain stimulation. Calculation
steps are performed in parallel with different topologies to allow processing of large datasets in rea-
sonable time. It is applicable to HPC and is provided as research software that is free and open-source
software (FOSS). Already in the proof-of-concept and prototype phase, the project was published as
abstracts of international conferences [6] [7].
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Key features Key features of NAMNIs are displayed below.

 Implementation
Fully implemented in Python 3
Dependencies are open-source software tools only
Local, container, and HPC environments are supported

 Multimodality
Apply same atlases with multiple ROIs to all modalities
T1 and T2 (VBM) calculations (more available soon)
Head mesh and surface reconstruction for neuromodulation

 Calculations
Run surface-based and volumetric pre-processing
Run post-processing including ICV-corrections
Output values for the whole sample size as CSV files

 Reproducibility
All steps can be reproduced using a single config file
Reusable input and output data format
Built-in dependency verification for reproducible calculations

2 Implementation Details
Design choices In order to reduce reproducibility issues across different operating systems, a design
choice was made to support only Linux-based operating systems and the 64-bit system architecture.
This design choice is important to achieve reproducibility goals using containerization solutions, as
explained in subsection 3.2. The latest LTS version of Ubuntu (20.04) has been used as the base
image for the Dockerfile that is distributed with NAMNIs, though it is possible to use NAMNIs with
any other 64-bit Linux distribution as well.

In order to offer NAMNIs completely as free and open source software (FOSS), a design choice
was made to exclusively use FOSS as dependencies of NAMNIs, regardless of whether these are
functionality dependencies or platform dependencies. This provides a key advantage for users and
developers who wish to base their platform exclusively on FOSS to achieve maximum transparency as
open-science best practice [8]. There are several research software approaches in the literature that
are FOSS, but depend on proprietary software packages, making it impossible to use these software
packages in a fully open source research environment. It was preferred that NAMNIs has no such
limitations and can be used in accordance with best practices in open-science research.

Functionality dependencies NAMNIs code makes extensive use of third-party dependencies to pro-
vide core functionality (i.e. functionality dependencies). The most important third-party dependencies
of NAMNIs are listed below.

• ciftify [9]
• freesurfer [10]
• FSL [4]
• gmsh [11]
• numpy [12]
• octave [13]
• pandas [14]
• pybids [15]
• SIMNIBS (only in combination with the provided patch file) [16]
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Platform dependencies NAMNIs codebase was programmed exclusively in Python 3 [17]. There-
fore, Python 3 (version 3.7 or higher) and a Linux-based operating system are the main platform
dependencies of NAMNIs. Despite cross-platform support of Python [17], a design choice was made
not to support any of the earlier versions of Python in order to take advantage of the new features
offered by Python 3.7 such as dataclasses, f-strings, ordered dictionaries by default, and more [17]
without having to rely on fallbacks, backports or self-implementations for older versions. This allows
a cleaner code-base that is more intuitive and less error-prone. Optional platform dependencies of
NAMNIs are listed below.

• Docker [18] for containerized installation
• SLURM [19] for high-performance computing (HPC) parallelization support

Status of development The current status of development is prototype. NAMNIs is actively main-
tained and we intend to continue extensive development in the future as well. The current version
is developed and internally verified to the best of our knowledge. However we acknowledge that it
is possible that errors or bugs of any kind may exist in the code. Please take this into consideration
if you wish to use the software or publish results generated with the software. We would appreciate
if you contact us regarding problems, bug reports, and any other comments. Please use the e-mail
address above if you would like to contact us.

3 Methods and Results
3.1 Reproducibility-optimized Workflow
A combination of raw data and configuration data is defined as a NAMNIs workflow. The aim is to
enable standardization at all levels of user input to ensure better reusability and reproducibility. This
workflow is fully BIDS compatible and utilizes rawdata/ and code/ components in the specification
[20]. Each NAMNIs workflow produces reusable output that is also BIDS compatible.

Raw data BIDS [20] is the only compatible input raw data format. Any BIDS compatible dataset
is valid as raw data for NAMNIs, though a comprehensive example has been made freely available in
a recent publication [22].

As of this version, NAMNIs uses only anat data, as defined in the BIDS specification version 1.3.0
[20] (structural imaging such as T1, T2, etc.). It is planned to support more data types in future
versions, as mentioned in section 5. Using this raw data, a NAMNIs workflow can be configured to
perform processing tasks. A default workflow function is pre-defined for each of these tasks, though
in a modular design it is possible for software developers to create their own workflow functions, if
preferred.

Configuration data A common framework for parsing configuration files provides the capacity for
a configuration file to define all relevant variables of a certain run on a given dataset. Configuration
input is also standardized using JSON files, an example of which is elaborated in section 4. This input
will be further formalized for robustness in the future versions, as mentioned in section 5.

Output data In order to increase reproducibility and enable reusability of output data, it has been
constructed in accordance with the BIDS Derivatives specification, as defined in the BIDS specification
version 1.3.0-dev5. This provides a standardized structure of the output data, which comes useful
especially in further automatised analyses of the output data. As of this version, under derivatives/
subdirectory, the following outputs are generated ({modality} noting the name of modality as defined
in the BIDS specification version 1.3.0 [20]).

• namnis_{modality}_intermediate contains the intermediate files that are only generated in
the steps leading to the generation of the actual output files.

• namnis_{modality}_results contains binary- (such as .nii.gz) and text-format pre-processing
outputs.

• namnis_post contains all post-processing outputs.
5https://bids-specification.readthedocs.io/en/derivatives/
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• derivatives contains all other outputs that are generated by the third-party dependencies and
are not BIDS compatible

Since the derivatives branch of the BIDS specification is still in the draft phase (as of version 1.3.0-
dev)6, the exact structure of the output files may change in the future versions, in order to adapt
to changing specification and possibly to better follow the recommendations in the specification.
Regardless, thanks to the standardization of the derivatives files, individual modules of NAMNIs and
other BIDS-compatible software (such as [15]) will continue to work with BIDS Derivatives compatible
data.

3.2 Containerization and Run-time Dependency Verification
Containerization Achieving reproducibility has been one of the most significant motivations behind
NAMNIs. In order to achieve maximum reproducibility, we implement containerization, as recom-
mended in the current literature [26]. On par with other solutions in the literature [21] that enable
creating containers with versioned dependencies, NAMNIs also provides a Dockerfile, with which
a reproducible environment including all third party dependencies can be built independently by the
user. Assuming that same NAMNIs container is deployed across different systems, it is possible to
reproduce the same results in this way, apart from the variance caused by different operating system
kernels and different hardware. The operating system kernel factor could be eliminated by deploying
NAMNIs in a virtual machine, however it would require substantially more effort on the user side to
set up, and would only be possible with a performance downgrade. The hardware factor cannot be
realistically eliminated; therefore it is recommended that some hardware details about the system(s)
used for analyses are mentioned in publications.

Run-time dependency verification Comparing the version number of a software instance to another
is insufficient to prove that both instances are identical, given that differences can be found —or
even expected— depending on the build process of the software code. In order to address this
challenge, NAMNIs features a run-time dependency verification mechanism. This mechanism is based
on validating SHA256 hashes of software packages in a way that is agnostic of the package manager
used. The concrete steps of the verification process are enumerated below.

1. During the container build process (equivalent to compile-time), a namnis/ folder at the root
directory is created (i.e. /namnis/). During the installation of each dependency, SHA256 hashes
are generated and saved into a plain text files in this directory. The verification method used for
each package manager is listed below.

apt First the package is installed using apt-get, then the SHA256 hash of the installed
package is obtained using apt-cache.

pip Given that pip offers a built-in mechanism to ensure repeatability7, this mechanism
is used. Simply the SHA256 hash values that have been used for the hash checking mode are
copied.

opt For packages that are installed without using a package manager, SHA256 hash of the
archive file containing the binary distribution is calculated using sha256sum.

2. During run-time, hash values stored in the namnis.common.dependency module are compared
to the values that have been collected and stored in /namnis/ directory.

3. If all hash values are identical, a note indicating thereof is added to dataset_description.json.

3.3 Parallelization
Two topologies are available for parallelization: simple parallelization using python multiprocessing
pools [17] and complex parallelization by incorporating a job scheduler (SLURM [19]) in high perfor-
mance clustered environments.

Job scheduler The main advantage of using a job scheduler is to enable collaboration between
different machines, thereby enabling the use of large amounts of computing resources, especially for
calculations with large sample sizes. This requires a clustered HPC environment to be available. This
parallelization approach is implemented by incorporating two key features of SLURM [19] into NAMNIs
framework, namely job arrays and job dependencies.

6https://bids-specification.readthedocs.io/en/derivatives/
7https://pip.pypa.io/en/stable/user_guide/#repeatability
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multiprocessing pools The simpler parallelization approach (i.e. parallelization at the subject-
level based on a fixed multiprocessing pool) is particularly useful on single-machine systems.

Even though the simpler parallelization approach does not support all the advanced features of the
complex parallelization approach, it was crucial that the calculations could be performed in a similar
way regardless of the parallelization approach available. In order to achieve this, core functionality
of namnis.common.starter module had to be platform-abstracted. The table below elaborates the
solution approaches to implementing this core functionality in a platform-abstract manner.

Support for varying input data Managing nested parallel job
structures

multiprocessing pools starmap() method of
multiprocessing.Pool

join() on Sequence of
multiprocessing.Pool
objects

Job scheduler job arrays job dependencies

The code snippet below demonstrates how the aforementioned features are implemented indepen-
dently of the parallelization approach.

def _start(self, is_distributed: bool, **kwargs):
"""
Platform abstraction (local or SLURM) of job starter

:param is_distributed: Whether the code is running using SLURM
"""

if is_distributed:
log.debug("Using sbatch")

# set dependencies if all dependencies are SLURM job IDs
try:
dependencies = "afterok:" + ",".join(self.dependency)
kwargs.update({'dependency': dependencies})

except TypeError:
pass

# set executable path
executable = [kwargs.pop('script')]

# set environment variables
kwargs.update({
'export': ','.join(f"{k}={v}" for k, v in kwargs['export'].items())})

job = run(["sbatch"] +
list(sum(({f'--{k}': (str(v) if v is not None else '') for k, v

in kwargs.items()}.items()), ())) +
executable, silent=True,
return_output=lambda x: re.match(
r'Submitted batch job (\d+)', x).groups()[0])

log.info(f"Submitted batch job {job}")
return job

else:
# join `multiprocessing.pool.Pool` dependencies, if any
try:
for pool in self.dependency:
pool.join()

5



except TypeError:
pass

with multiprocessing.Pool() as pool:
pool.starmap(
_run_single_job,
[(self.job_script, self.job_data_file, i) for i in range(
len(self.job_list))]

if self.job_list != [Ellipsis] else [
(self.job_script, self.job_data_file)])

pool.close()
return pool

Note that self.dependency is of Union type.

dependency: Union[None, Sequence[str], Sequence[multiprocessing.Pool]]

3.4 Overview of the Pipeline Steps
A non-exhaustive list of the pipeline steps for each modality is summarized in the corresponding
subsections.

3.4.1 imaging  anat

Pre-processing
1. In the first step, fslreorient2standard [4] is called to correctly orient all MR MPRAGE

imaging data to match the orientation of the MNI152 standard template.
2. The re-oriented MPRAGE images are brain extracted using bet [4] with the specific parameters

as outlined below (note that these parameters may vary depending on scanner type and MPRAGE
scan MR acquisition settings).

-R enable robust brain centre estimation (multiple iterations)
-f 0.45 fractional intensity threshold. This parameter might change or be adjusted in the

future in order to accomodate any dataset.
-g 0

3. Afterwards, a binary mask is created using fslmaths [4].
4. With the help of fast (FMRIB’s Automated Segmentation Tool) [4], the brain is segmented

into the tissue groups CSF (0), gray matter (1), and white matter (2). This fully-automated tool
is based on a hidden Markov random field model and an associated expectation-maximization
algorithm.

5. Both linear and non-linear registrations (using flirt, FMRIB’s Linear Image Registration Tool
[23] and fnirt, FMRIB’s Nonlinear Image Registration Tool [24], respectively) are used to
register the atlas on the individual MPRAGE images. By default, 12 degrees of freedom (DOF)
are used.

6. The transformation/deformation field is inverted.
7. The total volume for the tissue CSF (0), GM (1) and WM (2) is calculated for each subject.

The intracranial volume (ICV) is also calculated for all subjects.
8. Individual MPRAGE brain atlases are generated using applywarp [4]. The atlases are read

from the fourth dimension of the atlas file using fslval tool [4]. The native subject T1 space
is normalized to the MNI standard space with affine registration and nonlinear registration.
The individual parcelling of the brain is performed according to the atlases used. All regions are
extracted individually for GM and WM for the volume (in mm³) and number of voxels; fslmaths
-mas [4] and fslstats -V [4] are used for this step.

As input data for both surface-based and non-surface-based calculations either T1-MPRAGE data
(BIDS suffix: T1w) or additionally T2 weighted data (FLAIR/T2 SPACE, BIDS suffix: T2w)
can be used. The use of T2 weighted structural data is optional. An evaluation of the results between
MPRAGE and T2-FLAIR datasets can be found in a recent publication [25].
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Post-processing As of this version, anat post-processing only includes the generation of combined
tables with ICV-corrected volumes.

1. First, subject-specific CSV files under namnis_anat_results are merged into combined CSV
files with multi-indexes.

2. Then, ICV corrected volumes are calculated. Each volume value of each region of each subject
is divided by the sum of the total tissue values CSF,GM,WM of each subject. This value
is then multiplied by the arithmetic mean of the sum of the total CSF,GM,WM values of
the whole sample. With a sample size of n, each ICV-corrected volume is calculated using the
following function.

f(r, s) =
volumer, s

totalCSFs + totalGMs + totalWMs
∗
∑n

i=0(totalCSFi + totalGMi + totalWMi)
n

Where r is the region index and s the subject index. This calculation is carried out analogously
for each gm and wm volume from T1w and T2w data, depending on availability.

3.4.2 modulation  surface

As of this version, this module consists of using freesurfer [10] for the reconstruction of the surface
space. Afterwards the reconstructed surfaces are converted and represented into a quality-control
view using ciftify [9].

3.4.3 modulation  mesh

Pre-processing As of this version, this module consists of using octave [13], gmsh [11], and
headreco [16] to generate a head mesh model. In the future versions, the neuromodulation steps for
tDCS and TMS simulations will be included within this module, as mentioned in section 5.

Post-processing Based on the head mesh that has been generated during pre-processing, a ROI
analysis using user-provided MNI coordinates is conducted.

1. First, gray matter is extracted from the head mesh.
2. Afterwards, given MNI coordinates are cast onto subject coordinates using SIMNIBS [16].
3. Element field of the ROI is determined and added onto gray matter that has been extracted.
4. Weighted mean of gray matter fields are calculated.
5. Finally, a combined CSV file with multi-indexes is generated.

4 Usage Example
Suppose one would like to generate all pre-processing outputs of the referenced example dataset
[22] using NAMNIs, and nothing else. After downloading EX.tar.gz, it can be extracted using the
following command. The following command also creates a code/ subdirectory in the root directory
of the dataset, which can be used to store configuration-related files and the configuration file itself.

tar -xf EX.tar.gz && mkdir -p EX/code/

In this way, raw data is available to be used with NAMNIs. The next step is to prepare the
configuration data, as described in subsection 3.1. It is easy to notice if every top-level object in the
configuration file except globals were to be collapsed into a single on-off switch, the configuration
file would look like the code snippet below.
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{
"globals": {},
"imaging": {

"anat": {
"enabled": true

}
},
"modulation": {

"mesh": {
"enabled": true

},
"surface": {

"enabled": true
}

}
}

An actual configuration file is merely an elaboration of the basic structure above, since modules
are exactly what constitutes the core of a NAMNIs configuration file. A module is defined as either
a modality or a reconstruction procedure. To enhance readability, these are split into corresponding
categories imaging and modulation. It is also easy to notice that all boolean values are preset to
false by default when parsed, meaning that the only values that had to be changed for this example
are those listed above.

Note that there are other parameters that must be set outside of globals:
• fsl_config_file path in anat section. Here, the path for a FSL configuration file [4] that is

compatible with the standard template of choice must be provided.
• post_processing object in each section. For this example, this will be an object that contains

only one boolean {enabled: false} value.
At this point, only globals section is not set. In accordance with the previous code snippet,

represented below is a simplified globals section, with all of its subsections as empty objects and
boolean values as false.

{
"globals": {

"atlases": {},
"standard_template_file": {}

}
}

standard_template_file must be a valid path to the standard template of choice. Objects in
the atlases section must contain a path to the atlas file, and a list of regions. The list of regions can
be provided either as a JSON list or in a separate plain text file, whose path must be specified in place
of the JSON list above. Ideally, this text file should list the name of each region in each line. In the
following configuration file example, two atlas definitions (as defined by each of the aforementioned
methods for listing regions) are used.

Below the previous code snippets are extended into a complete configuration file.
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{
"globals": {

"atlases": {
"atlas0": {

"file": {
"__relative_path__": "code/atlas/atlas0.nii.gz"

},
"regions": {

"__relative_path__": "code/atlas/atlas0.txt"
}

},
"atlas1": {

"file": {
"__relative_path__": "code/atlas/atlas1.nii.gz"

},
"regions": [

"region0",
"region1"

]
}

},
"standard_template_file": {

"__relative_path__": "code/standard_template.nii.gz"
}

},
"imaging": {

"anat": {
"enabled": true,
"fsl_config_file": {

"__relative_path__": "code/standard_template.cfg"
},
"post_processing": {

"enabled": false
}

}
},
"modulation": {

"mesh": {
"enabled": true,
"post_processing": {

"coordinates": {},
"enabled": false,
"radius": 0

}
},
"surface": {

"enabled": true
}

}
}

Assuming a working NAMNIs installation is present, if the configuration above is stored in a file
located under, e.g. ~/EX/code/config_1.json, starting the NAMNIs workflow is as simple as running
the command below.

namnis_starter --config ~/EX/code/config_1.json

Additional parameters may be provided with the namnis_starter command. A complete list of
these parameters can be obtained using the following command.
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namnis_starter --help

Once the NAMNIs workflows are completed, the results can be found under ~/EX/derivatives/.

5 Future Perspectives
NAMNIs is expected to undergo extensive further development, including changes at the technical
level of software implementation. It goes beyond the scope of this section to provide an exhaustive
list of all future prospects of this project. The following is a summary of some of the key features
that we expect to be provide as part of NAMNIs.

• Introduce pipeline steps for dwi, func, fmap, and beh modalities, as defined in the BIDS speci-
fication as of version 1.3.0 [20].

• Formalize the processing of configuration data using a specific JSON schema.
• Add support for tDCS and rTMS neuromodulation simulation tasks.

6 Conclusion
The reproducibility crisis in scientific papers [27] and constantly growing requirements in computational
resources show that reproducible workflows with strong parallelization support will be a prerequisite
for any neuroimaging lab in the future. NAMNIs offers a ready-made, cost-free, and open source
alternative. It is planned to publish NAMNIs also in the form of a ”peer-reviewed” publication.
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