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Abstract

The tutorial HETDRIV is one of a series of tutorials on the practical application of nu-
merical path-continuation methods for problems in soft matter and pattern formation. It
is part of the “Münsteranian Torturials on Nonlinear Science”. The tutorial explores steady
drops on a substrate with spatially varying wettability under the additional influence of
lateral driving. You will calculate these steady states as a function of the main con-
trol parameters domain size, heterogeneity contrast and driving strength. The employed
code package is auto07p. It is recommended to consider this tutorial after the tutorial
HETDROP [1].

1 Model
The tutorial HETDRIV is part of the “Münsteranian Torturials on Nonlinear Science”, a series of
hands-on tutorials that shall facilitate the practical application of numerical path-continuation
methods [2, 3, 4] for problems in soft matter and pattern formation by lowering the entrance
threshold for systems where side conditions as, e.g., conservation laws and translational invari-
ance have to be taken into account. The present tutorial is based on the code package auto07p
[5]. An overview of all available tutorials in the series and a description of a recommended
sequence of working through them is given in Ref. [6].
HETDRIV illustrates the calculation of pinned steady drop states that solve the dimensionless
thin-film equation

∂t h = −∂x
{
Q(h) ∂x

[
∂xxh− ∂hf(h, x)︸ ︷︷ ︸

pressure

]
+ χ(h)

}
6 (1)

For an explanation of the basic structure of the equation see tutorial SLIDROP [7]. The impor-
tant difference to the tutorial SLIDROP is that the Derjaguin pressure −∂hf(h, x) now explicitly
depends on the position x, i.e., we have a substrate with nonuniform wettability, i.e., the trans-
lational invariance is broken. Such a system was studied in [8, 9].
The technique introduced here was used in studies of droplets on heterogeneous inclined sub-
strates [8, 9], and drops on the outside of rotating cylinders [10]. Related experiments and
computer simulations are found in [11, 12].
Further, similar 1d codes were employed in [13] where also 2d results obtained with other con-
tinuation codes are presented.

For the case without lateral driving see tutorial HETDROP [1]. Here we assume a sinusoidal
modulation of the long range contribution to the Derjaguin pressure:

∂hf(h, x) = −Π(h) =
1

h3
[1 + ρ sin(2πx/P )] − 1

h6
. (2)

where ρ and P are the relative strength and period of the heterogeneity. Note that the domain
size L and the period of the heterogeneity are normally not identical. In a periodic setting one
has L = nP where n > 0 is an integer. Physically, the given form results in a modulation of
equilibrium contact angle and adsorption layer (precursor film) thickness.
To study steady solutions, i.e., resting drops or modulated films, we set ∂th = 0 and integrate
Eq. (1) once to obtain

0 = Q(h) ∂x [∂xxh− ∂hf(h, x)] + χ(h) − C0. (3)
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Here the constant C0 stands for the mean flux that is constant for a steady solution. When
writing Eq. (3) as a system of first-order ordinary differential equations on the interval [0, 1]
(introducing ξ = x

L
u1 = h−h0, u2 = dh/dx and u3 = d2h/dx2), and using χ(h) = αQ(h), then

one obtains the non-autonomous system (r.h.s depends explicitly on x)

u̇1 = Lu2
u̇2 = Lu3

u̇3 = L
[
u2fu1u1(u1 + h0, x) + fu1x(u1 + h0, x) − α + C0

Q(u1+h0)

]
.

(4)

where L is the physical domain size, dots indicate derivatives with respect to ξ, and subscripts of
f indicate partial derivatives. Such a non-autonomous system can not be handled by auto07p
[5, 2, 14], therefore we transform it into an autonomous one. This is done by defining the
position variable x to be another independent variable, i.e. u4 = x that as the other ui depends
on the independent variable ξ. One obtains the 4d dynamical system (NDIM = 4)

u̇1 = L(u2 − εfu1(u1 + h0, u4))
u̇2 = L(u3 − εu2)

u̇3 = L
[
u2fu1u1(u1 + h0, u4) + fu1u4(u1 + h0, u4) − α + C0

Q(u1+h0)

]
u̇4 = L.

(5)

Note that we have also introduced the unfolding parameter ε as in tutorial SITDROP [15], it is
needed for the first runs that use a horizontal substrate. We use periodic boundary conditions
for u1, u2 and u3 that take the form

u1(0) = u1(1), (6)
u2(0) = u2(1), (7)
u3(0) = u3(1). (8)

As 4th BC we ’pin’ the physical position u4 = x to the computational position ξ by

u4(0) = 0, (9)

(i.e., NBC = 4). We also use an integral condition for mass conservation that takes the form∫ 1

0

u1 dξ = 0; (10)

and four integral conditions that measure various energies (see f.90 file; these could be removed
and the code would still work, they are normalised w.r.t. the flat film starting solution). In
the very first run that starts from a state which is invariant with respect to translation we also
employ an integral condition that breaks this invariance, (see tutorial SITDROP [15]).
As starting solution we use a slightly sinusoidally perturbed flat film of height h0 at zero driving
(α = 0), fix the domain size to its critical value L = Lc and set u4 = Lξ. Here Lc = 2π/kc where
kc =

√
−f ′′(h0) is the critical wavenumber for the linear instability of a flat film of thickness

h0 on the homogeneous substrate (see tutorial SITDROP [15]). The starting value for C0 is zero
as well as ε = 0.
The number of free (continuation) parameters is given by

NCONT︸ ︷︷ ︸
no. of continuation par.

= NBC︸ ︷︷ ︸
boundary conditions

+ NINT︸ ︷︷ ︸
integral conditions

− NDIM︸ ︷︷ ︸
dimensionality

+1 (11)

and is here equal to 7 or 6.
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2 Runs:
The diagrams in Figs. 1-7 are determined through the continuation runs presented in the
following table. The white fields describe what the individual runs do and mention important
parameter settings including necessary changes. The grey fields give the auto07 commands on
the left when using the (modern) Python interface and on the right when using the more classic
command line approach.

Python interface command line Terminal command line

auto

run 1: Compute the branch of periodic solutions for h0 = 3, continue in domain size.
Continuation parameters: L (PAR(5)), C0 (PAR(6)), ε (PAR(2)) and energies (PARs 36-38,
40), NINT= 6;
Settings: IPS= 4, ISP= 2, ISW= 1, ICP= [5, 6, 2, 40, 35, 36, 37],
Start data from initial solution (IRS= 0) and check that ANZ= 1 in *.f90 file
Save output-files as b.h1, s.h1, d.h1. Plot continuation results for analysis.
r1 = run(e = 'hetdriv', c = 'hetdriv.1', sv =

'h1')
plot(r1)

@@R hetdriv 1
@sv h1
@pp h1

run 11: Compute branch of periodic solutions for h0 = 3, L = 50 and continue in
heterogeneity strength (ρ positive), starting from previous solution h1.
Continuation parameters: ρ (PAR(3)), C0 (PAR(6)) , ε (PAR(2)) and energies (PARs 36-
38, 40), NINT= 6;
Settings: IPS= 4, ISP= 2, ISW= 1, ICP= [3, 6, 2, 40, 35, 36, 37].
Start data from LAB3 of run 1. Save output-files as b.h11, s.h11, d.h11.
Plot continuation results for analysis.
r11 = run(e = 'hetdriv', c = 'hetdriv.11', s =

'h1', sv = 'h11')
plot(r11)

@@R hetdriv 11 h1
@sv h11
@pp h11

run 111: Compute periodic solutions for h0 = 3, L = 50, ρ = 0.75, continue in lateral driving
α.
Continuation parameters: α (PAR(7)), C0 (PAR(6)) and energies (PARs 36-38, 40), NINT=
5;
Settings: IPS= 4, ISP= 2, ISW= 1, ICP= [7, 6, 40, 35, 36, 37].
start data from LAB18 of run 11. Save output-files as b.h111, s.h111, d.h111 and plot
results.
r111 = run(e ='hetdriv',c = 'hetdriv.111',s =

'h11',sv = 'h111')
plot(r111)

@@R hetdriv 111 h11
@sv h111
@pp h111

clean() @cl

Table 1: Commands for running tutorial HETDRIV.
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Run 1 Starting with a flat film on a homogeneous substrate (ρ = 0) without driving (α = 0),
determine steady solutions as a function of domain size L. Mean thickness h0 = 3. We
start at Lc ≈ 33 and obtain profiles at domain sizes that are multiples of the heterogeneity
period P = 50 (but heterogeneity remains switched off). (see fig.1,2.)
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Figure 1: Graphic representation of
the continuation of steady states with
varying domain length L (PAR(5)).
Shown is the Plot of the L2-norm vs
domain length (run h1).
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Figure 2: Shown are selected steady
film profiles corresponding to the bi-
furcation curve in fig (1). (run h1).

Run 11 Starting with the drop solution at L = 50 on a homogeneous substrate (ρ = 0) without driving
(α = 0), determine steady solutions as a function of heterogeneity strength ρ (heterogeneity
period P = 50). Mean thickness h0 = 3 and domain size L is fixed.
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Figure 3: Plot of L2-Norm vs. hetero-
geneity strength ρ.
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Figure 4: Selected Steady-state solutions
corresponding to fig.(8).
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Run 11b As run 11, but going towards negative heterogeneity strength ρ. The following graphic shows
the combination of run 11 and 11b.
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Figure 5: Combined results of run 11 and 11b.

Run 111 Starting with the drop solution at L = 50 on the heterogeneous substrate (ρ = 0.75) without
driving (α = 0), determine steady solutions as a function of lateral driving strength α (P = L =
50, h0 = 3 and ρ = 0.75 fixed).
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Figure 6: Graphical representation of
L2-Norm vs. driving strength α. A dis-
tinct film flattening can be observed for
increased lateral driving strength (run
111).
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Figure 7: Selected profiles corresponding
to the bifurcation curve of fig. (6)(run
111).
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3 Remarks:
• Screen output and command line commands are also provided in README file, more info on

continuation parameter in table. All runs also measure 4 energies.

• run 1 is in principle identical to run 1 in the tutorial SITDROP [15] but is here performed within
a more complicated system of equations, which also describes heterogeneity and driving.

• The hetdriv.f90 file provides another 4 integral conditions that are used in all runs of the tu-
torial. They allow for a determination of the total energy of the obtained steady state solu-
tions(PAR(40)), as well as of its components (surface energy(PAR(35)), wetting energy(PAR(36))
and potential energy(PAR(37))).

• The constant C0 corresponds to the flow. (you may, for example, plot C0 against the measured
Energies with @pp h111 )
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Figure 8: Plot of surface flow (C0) vs. lateral driving parameter α.

4 Tasks:
After running the examples, you should try to implement your own adaptations, e.g.:

• Redo the runs for other values of h0. What do you observe? (compare fig. 9)

• Deactivate the integral conditions that measures the energy of the solutions. (within subroutine
ICND in .f90 file)

• Modulate the entire Derjaguin pressure instead of the long-range part (see eq.(1)). This corre-
sponds to a modulation of the contact angle at fixed precursor film height.

• Replace the used Derjaguin pressure by a different one that you get from the literature (See
tasks of tutorial SITDROP [15]).

• Look at two periods of the heterogeneity and get a full picture that shows what happens with
all the solutions found in tutorial HETDROP [1] under lateral driving (you may have to vary the
period length, -number and the domain size in the .f90 file.)
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Figure 9: Plot of heterogeneity parameter ρ vs. L2-Norm of steady state solution with
different average film thicknesses H (h0: 3.0 (red), 3.25 (blue), 3.5 (green), 3.75 (pink)).
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