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 12 

Key Findings: 13 

 14 

• Top-down and bottom-up models agree each region has an annual terrestrial carbon sink 15 

from 2000-2017.  16 

• Inversion models suggest the 2000-2017 increase in high-latitude CO2 seasonal 17 

amplitude is a result of increased respiration from Oct-Dec. 18 

• Models do not show a statistically significant NEE, RE, or GPP trend at any TransCom 19 

regions from 2000-2017. 20 

 21 

Abstract 22 

 23 

Carbon cycle-climate feedback involving terrestrial carbon exchanges with the atmosphere is a 24 

major contributor to uncertainties in climate projections. To provide a comprehensive 25 

perspective of the terrestrial carbon cycle and potential changes that could influence the 26 

climate system, we combine and analyze various “bottom-up” terrestrial process-based models 27 

and “top-down” atmospheric inverse models between 2000-2017. All models and data products 28 

estimate the global terrestrial surface to be an annual net sink of CO2, yet none produces 29 

statistically significant carbon flux trends on continental scales. Inverse models suggest that 30 

the CO2 seasonal cycle amplitude enhancement at boreal latitudes results from increased 31 

carbon respiration during early winter (Oct-Dec) that exceeds uptake rates during summer 32 

months (Jun-Aug). As more data becomes available over time, these models are useful tools for 33 

evaluating and narrowing the uncertainties associated with the process representation of the 34 

terrestrial carbon cycle. 35 

 36 
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1       Introduction 37 

 38 

Earth System Models (ESMs) participating in the 5th Coupled Model Intercomparison Project 39 

(CMIP5) (Taylor et al., 2012) have shown that large variability in twenty-first century CO2 40 

projections are mainly due to uncertainties in terrestrial carbon cycle processes (Friedlingstein 41 

et al., 2013). These terrestrial carbon cycle uncertainties are found to be mostly due to 42 

differences in how ESMs represent their own physical climate system and global biosphere 43 

modeling (Lovenduski and Bonan, 2017). In this study, we focus on a better understanding of 44 

the global biospheric structure.  45 

 46 

Increased observational coverage over 50 years has provided important insights into how carbon 47 

is exchanged between the biosphere and the atmosphere around the globe. However, it is still 48 

uncertain how it exchanges of carbon between the atmosphere and the biosphere will respond 49 

to increasing CO2 emissions. Global biospheric carbon fluxes can be estimated using a "bottom-50 

up" or "top-down" approach. A "bottom-up" scaling approach involves extrapolating 51 

measurements of carbon variability and processes from very local scales (of about 100 m2) to 52 

larger regional scales using ancillary datasets (e.g., vegetation and soil maps, environmental 53 

data). Terrestrial biosphere models (TBM)s can also be considered a bottom-up approach 54 

because they simulate carbon exchanges in detail globally. Important locally-scaled 55 

measurements include surface-based biomass inventory and a global multidecadal FLUXNET 56 

network of hundreds of site-level eddy covariance flux towers with the most significant 57 

observational coverage in temperate North America, Europe, and Japan. This approach provides 58 

local-scale carbon cycle processes and variability, but its disadvantage is not knowing how 59 

representative these measurements are over a broader region. TBMs are often accompanied by 60 

space-based observing systems that expand observational coverage in areas of limited surface 61 

measurements, albeit with validation challenges. Multidecadal remote sensing records have 62 

monitored "greening" trends at high latitudes, ecosystem disturbances, and land-use changes 63 

that alter the carbon sources and sinks over short- and long-time scales. Taken together, 64 

bottom-up TBMs are capable of providing local-scale carbon cycle processes and variability.  65 

 66 

The "top-down" approach we consider in this study is inverse modeling, which employs 67 

numerical optimization techniques to estimate carbon sources and sinks using spatial and 68 

temporal variability from atmospheric CO2 observations. The advantage of this approach is that 69 

it provides an independent estimate of carbon fluxes over a larger region while capturing the 70 



 

observed variability from globally distributed atmospheric CO2 observations. The disadvantage 71 

is that it provides little information about underlying processes that cause net carbon sources 72 

and sinks at smaller scales. In essence, inverse modeling can only infer a cause (surface carbon 73 

sources and sinks) to an observed effect (actual changes in atmospheric CO2 concentration). As 74 

more observations are collected over time, inverse modeling can provide an estimate of how 75 

and where regional carbon fluxes may be changing. 76 

 77 

Bottom-up and top-down approaches often produce conflicting results. For example, at high 78 

northern latitudes, atmospheric CO2 observations suggest increased carbon uptake by the 79 

terrestrial biosphere and "greening" trends detected by satellite-remote sensing may indicate 80 

increased carbon uptake by CO2 fertilization or warming at high northern latitudes (Mao et al., 81 

2016). However, the FLUXNET network does not appear to show uptake due to CO2 fertilization 82 

and instead shows increased carbon loss from plants and soils sensitive to warming 83 

temperatures (Kaushik et al., 2020). In this study we combine these complementary "bottom-84 

up" and "top-down" modeling approaches, also known as a multiple-constraint approach, to 85 

better quantify the global terrestrial carbon sources and sinks over the recent past. 86 

 87 

We examine three different types of TBMs: the Carnegie-Ames-Stanford Approach model (CASA; 88 

Potter et al., 1993), the SiBCASA model, which combines biogeochemistry from CASA with 89 

biophysical processes from the Simple Biosphere model (Schaefer et al., 2008), and a newly 90 

developed predictive phenology strategy implemented in the Simple Biosphere Model, version 91 

4.2 (SiB4; Haynes et al., 2019a; 2019b). The first two methods to calculate global carbon fluxes 92 

are diagnostic because they depend on available satellite-based Normalized Difference 93 

Vegetation Index (NDVI) to track plant phenology, whereas the latter is prognostic and predicts 94 

phenology. 95 

 96 

Another bottom-up approach used to understand the present-day land carbon cycle is upscaling 97 

in-situ site-level observations to estimate the global Net Ecosystem Exchange (NEE). The 98 

FLUXCOM data product upscales the global FLUXNET network to regional and global scales using 99 

machine learning methods that incorporate satellite remote sensing and meteorological data 100 

(Tramontana et al., 2016; Jung et al., 2020). Details are discussed in section 2.1. 101 

 102 

For our “top-down” approach, we examine the posterior carbon flux estimates from the data 103 

assimilation (DA)/flux-inversion model CarbonTracker (Peters et al., 2007; Jacobson et al., 104 



 

2020) developed at the National Oceanic and Atmospheric Administration (NOAA) and the 105 

European version, CarbonTracker-Europe (van der Laan-Luijkx et al., 2017). These posterior 106 

fluxes are estimated using the TBMs SiBCASA and CASA as prior flux estimates that are then 107 

optimally adjusted to match the spatiotemporal variability of observed atmospheric CO2 using 108 

an atmospheric chemical transport model. 109 

 110 

In this study we will examine whether we can learn more about how changes in the terrestrial 111 

carbon cycle may have led to the observed increase in CO2 amplitude at high latitudes (Graven 112 

et al., 2013) by using both process-based and "multiple constraint" models and evaluating their 113 

consistency. Graven et al., (2013) examined the seasonal amplitude of CO2 observed at Barrow 114 

Atmospheric Baseline Observatory (BRW), Alaska and found increases of 50% over 50 years and 115 

smaller increases of 25% at Mauna Loa Observatory (MLO), Hawaii. They concluded that carbon 116 

uptake is more rapidly increasing at high latitudes (45°-90°N) than at lower latitudes (10°-117 

25°N). This study implies ecological changes in boreal forests such as increased stand area and 118 

biomass (Pan et al., 2011) or northward tree expansion due to warming (Elmendorf et al., 2012). 119 

These changes are not accounted for in many CMIP5 models, resulting in underestimated 120 

changes in NEE over the past 50 years and uncertainty about whether future projections are 121 

accurate. Later studies suggested the intensification of agriculture in the northern hemisphere 122 

over the past several decades contribute up to a quarter to the observed seasonal amplitude 123 

increase at high latitudes (Zeng et al., 2014; Gray et al., 2014). More recent studies used top-124 

down studies to suggest the Siberian and temperate ecosystems have been a main contributor 125 

to the observed amplitude increase at BRW (Lin et al., 2020).  126 

 127 

The main objectives of this study are the following: (1) determine whether process-based and 128 

"multiple constraint" models are consistent in terms of terrestrial carbon flux strength and 129 

seasonal variability on global and regional scales from 2000-2017; and (2) quantify how both 130 

these fluxes and its seasonal variability may have changed over this time period. 131 

 132 

2       Data and Methods 133 

  134 

2.1    Model Descriptions 135 

 136 

This section briefly describes the carbon cycle models used in this study, beginning with the 137 

TBMs (CASA-GFED and SiBCASA) used as first-guess estimates for two versions of the atmospheric 138 



 

inversion model CarbonTracker. Thereafter, we briefly describe the similarities and differences 139 

of the. Lastly, we describe the FLUXCOM product and the new predictive-phenology-based TBM 140 

SiB4. 141 

 142 

2.1.1 Prior Flux Fields: CASA and SiBCASA  143 

 144 

The Carnegie-Ames-Stanford Approach (CASA; Potter et al., 1993) terrestrial carbon cycle 145 

model uses satellite-derived NDVI, a simple light efficiency model and meteorological drivers 146 

to simulate monthly net primary production (NPP). Both CT2019 prior fluxes are driven using 147 

Advanced Very High-Resolution Radiometer NDVI. Calculating NPP requires an assumption that 148 

NPP is a constant fraction of the GPP and autotrophic respiration is the same size as NPP, but 149 

opposite sign for all ecosystems and geographical areas. CASA estimates heterotrophic 150 

respiration (RH) of CO2 using a biomass pool structure with first-order equations. CASA NPP and 151 

RH are combined to simulate monthly NEE at a global 1°x 1° resolution. 152 

 153 

SiBCASA is a hybrid of the Simple Biosphere Model, Version 2.5 (SiB2.5), and the CASA model 154 

(Schaefer et al., 2008). SiB2.5 is a biophysical model that estimates land-surface carbon fluxes 155 

at 10-20 minute resolution with global 1°x 1° degree resolution (Sellers et al., 1986, 1996a, 156 

1996b; Denning et al., 1996). It uses biophysical processes to calculate variables such as 157 

temperature and moisture content at canopy tops and soil depths. SiB2.5 carbon uptake by 158 

gross primary productivity (GPP) is determined using enzyme kinetics (Farquhar et al., 1980) 159 

and stomatal physiology (Collatz et al., 1991; 1992) at a leaf level. These calculations are then 160 

scaled to the entire canopy using Photosynthetically Active Radiation (fPAR), Leaf Area Index 161 

(LAI), and vegetation cover fraction from Global Inventory Monitoring and Modeling System 162 

(GIMMS) NDVI data set, version g (Tucker et al., 2005). SiB2.5 GPP and ecosystem respiration 163 

(RE) is combined with CASA RH to provide global estimates of autotrophic respiration and non-164 

fire net ecosystem exchange (NEE).  165 

 166 

2.1.2 CarbonTracker CT2019B 167 

  168 

NOAA’s CarbonTracker is an atmospheric CO2 modeling system that estimates surface fluxes 169 

that are in optimal agreement with available atmospheric CO2 measurements. CarbonTracker 170 

is updated on a quasi-annual basis, and we use results from the latest version CT2019B 171 

(Jacobson et al., 2020). CT2019B simulates atmospheric transport using ERA-interim analyzed 172 



 

winds (Dee et al., 2011) within the TM5 atmospheric transport model (Krol et al., 2005) running 173 

at a global 3° longitude by 2° latitude resolution with a nested regional grid of 1°x 1° degree 174 

over North America. 175 

 176 

The CT2019B estimation scheme requires first-guess, or prior, surface CO2 flux estimates. This 177 

serves both to initialize the optimization scheme and to constrain flux estimates in locations 178 

with sparse observational information. To mitigate the sensitivity to prior fluxes, CT2019B 179 

conducts independent inversions using unique combinations of multiple prior flux estimates: 180 

two versions of the CASA model, two data-constrained models of air-sea CO2 exchange, and two 181 

gridded estimates of fossil-fuel emissions. A description for these flux estimates can be found 182 

in sections 4 and 5 of Jacobson et al., (2020). 183 

 184 

Posterior fluxes from these independent inversions are averaged to produce the final CT2019B 185 

flux estimate. CarbonTracker finds optimal surface fluxes by estimating a set of scaling factors 186 

that multiply net surface CO2 exchange from the prior models. These scaling factors are 187 

estimated on a weekly basis, and over 239 ecoregions (i.e., 11 terrestrial Transcom regions 188 

contain a maximum of 19 ecoregion types) spanning the globe. 189 

 190 

CT2019B assimilated more than 4.1 million measurements of atmospheric CO2 mole fraction 191 

between 2000 and 2018. These measurements were collected from surface flask sampling 192 

networks, towers, aircraft, and shipboard platforms from 55 international laboratories and are 193 

grouped into the Observational Package (ObsPack) GLOBALVIEWplus data product version 5.0 194 

(Cooperative Global Atmospheric Data Integration Project, 2019). 195 

 196 

The atmospheric CO2 measurements cover the entire globe but are not distributed uniformly. 197 

North America and Europe have a relatively high density of observations, but large regions of 198 

the tropics and Southern Hemisphere are sparsely observed. For use in inversions, each 199 

assimilated CO2 measurement is assigned a model-data mismatch (MDM) error term, which 200 

expresses the statistical extent to which the model is expected to deviate from the 201 

measurement. In CT2019B, this MDM varies by site, season, local time of day, and altitude 202 

above the land surface. Temporal and spatial gaps in observational coverage can lead to errors 203 

in estimated surface fluxes, including the tendency of the model to stay close to a given prior 204 

flux estimate.  205 

  206 



 

CT2019B uses two versions of the CASA model runs as prior flux estimates: The Global Fire 207 

Emissions Database project version 4 (GFEDv4.1s) and GFED used with the National Aeronautic 208 

and Space Administration (NASA’s) Carbon Monitoring System (CMS). Both CASA model runs are 209 

driven by Advanced Very High-Resolution Radiometer (AVHRR) NDVI data.  210 

 211 

By using multiple terrestrial priors, CT2019B mitigates potential prior biases that may propagate 212 

into the posterior flux product, though this assumes both priors do not have the same biases. 213 

To resolve diurnal and synoptic variability, CT2019B monthly priors with a 1°x 1° spatial 214 

resolution are temporally downscaled using a variant of the scheme introduced by Olsen and 215 

Randerson (2004) to simulate 3-hourly NEE of CO2. This modified scheme avoids abrupt month-216 

to-month changes in downscaled fluxes using a smoothing scheme introduced by Rasmussen 217 

(1991). Complete documentation, access to data products, and a detailed assessment of 218 

CT2019B performance are available at http://carbontracker.noaa.gov. 219 

 220 

2.1.3 CarbonTracker-Europe CTE2018 221 

 222 

We use the latest release of CarbonTracker Europe (hereafter “CTE2018”) (van der Laan-Luijkx 223 

et al., 2017). CTE2018 uses a different set of first-guess prior surface CO2 flux estimates and a 224 

different version of CO2 data (as detailed below). Both inverse models use the ocean inversion 225 

flux (OIF) scheme to provide prior estimates of air-sea CO2 flux (Jacobson et al., 2007), and 226 

CT2019B additionally uses an updated version of the Takahashi et al. (2009) pCO2 climatology. 227 

CTE2018 uses a fossil fuel emission inventory developed by the CARBONES project by 228 

USTUTT/IER (see ier.uni-stuttgart.de) and CT2019B uses two emissions products called the 229 

"Miller" and "ODIAC" emissions datasets described in Jacobson et al., (2020). CTE2018 uses a 230 

single terrestrial prior flux field (as opposed to multiple priors used in CT2019B) derived from 231 

the SiBCASA model described in section 2.1.1. As SiBCASA simulates 1°x 1° resolution global 232 

fluxes on a 10-minute time resolution, temporal downscaling is not necessary as it is in CT2019B; 233 

albeit, a single prior flux estimate propagates potential biases into the posterior product. Both 234 

inversion models use TM5 at a global 3° longitude × 2° latitude resolution, and CTE2018 uses 235 

an additional nested regional grid at 1° × 1° resolution over Europe.  236 

 237 

CT2019B assimilates these prior flux estimates with a more recent version of CO2 data than 238 

CTE2018, but CTE2018 includes greater observational coverage over the Amazonia, Eurasia, and 239 

http://phenology.cr.usgs.gov/ndvi_avhrr.php
http://carbontracker.noaa.gov/
http://carbontracker.noaa.gov/
http://carbontracker.noaa.gov/
https://www.ier.uni-stuttgart.de/


 

Tropical Asia. Similar to CT2019B, each measurement is assigned an MDM mismatch error value, 240 

which varies by site, time, and location. Likewise, these measurements are not uniformly 241 

distributed over the globe. Temporal and spatial gaps in the observations lead to posterior 242 

fluxes closely resembling their prior flux estimates. Similar to CT2019B, a weekly set of 243 

unknown multiplicative scaling factors are applied to each of the land and ocean prior fluxes 244 

to be assimilated, but for a particular grid box of the global domain instead of the ecoregion 245 

regions used by CT2019B. Further information on CTE2018 documentation and available data 246 

products can be found at https://www.carbontracker.eu. 247 

 248 

2.1.4 FLUXCOM 249 

 250 

The FLUXCOM initiative generates a variety of global flux products by upscaling site-level eddy 251 

covariance observations of GPP and RE to produce non-fire NEE using different machine learning 252 

methods trained by different sets of satellite remote sensing and meteorological data (Jung et 253 

al., 2020; Tramontana et al., 2016). We use results from the remote sensing plus 254 

meteorological/climate forcing setup described by Jung et al. (2020) that is driven by 255 

meteorological forcing data from ERA-5 (C3S, 2017) and MODIS land products (collection 5; 256 

https://lpdaac.usgs.gov/) variables. The MODIS land products include temperature, land cover, 257 

and fPAR. The FLUXCOM dataset provides global flux estimates at a global 0.5° x 0.5° resolution 258 

with daily temporal resolution from 1979 to 2018, and are publicly available at Fluxcom.org. 259 

 260 

Jung et al. (2020) found FLUXCOM NEE fluxes were consistent with the seasonal and inter-261 

annual variability of atmospheric inversion models (including CTE2018 used in this study) across 262 

the northern hemisphere. However, a lack of consistent temporal and global coverage and 263 

systematic errors in FLUXNET data quality limit the use of FLUXCOM global flux products to 264 

extract natural signals (i.e. interannual variability and trends) and lead to unrealistic flux 265 

magnitudes e.g., a strong carbon sink in the tropics (Jung et al., 2020). As the FLUXNET network 266 

expands coverage in under-sampled regions, upscaling uncertainties can be expected to be 267 

reduced. Nevertheless, FLUXCOM global-scaled carbon flux products provide a useful bottom-268 

up constraint on the global carbon cycle that can be readily compared with process-based or 269 

top-down models at regional and global scales. 270 

 271 

2.1.5 SiB4 272 

  273 

https://lpdaac.usgs.gov/


 

The Simple Biosphere Model version 4.2 (SiB4) is an environmentally responsive prognostic 274 

phenology model with dynamic carbon allocation and cascading carbon pools (Haynes et al., 275 

2019; Baker et al., 2013; Lokupitiya et al., 2009; Schaefer et al., 2008; Sellers et al., 1996). 276 

SiB4 combines biogeochemical, biophysical, and phenological processes to predict vegetation 277 

and soil moisture, land surface energy and water budgets, and the terrestrial carbon cycle.  278 

 279 

Rather than prescribing satellite-derived NDVI to track plant phenology, SiB4 fully simulates 280 

phenology by determining the above and belowground biomass, which impacts GPP and RE. At 281 

every 10-minute time-step predictor variables i.e. albedo, radiation, temperature, and soil 282 

moisture, as well as the resulting energy exchanges, moisture fluxes, carbon fluxes, and carbon 283 

pool transfers are computed at a global 0.5°x 0.5°degree resolution.  284 

 285 

Similar to SiBCASA, photosynthesis depends directly on environmental factors (e.g. humidity, 286 

moisture, and temperature) and aboveground biomass, and carbon uptake, or assimilation, is 287 

determined using enzyme kinetics (Farquhar et al., 1980) and stomatal physiology (Collatz et 288 

al., 1991; 1992). Carbon outgassing through autotrophic and heterotrophic respiration 289 

(combined to form ecosystem respiration (RE)) depends on biomass growth and maintenance as 290 

well as moisture, temperature, and the carbon pools.  291 

 292 

Carbon is transferred between carbon pools once daily as a function of assimilation rate, day 293 

length, moisture, temperature, and pool size. Once the pools are updated, the state of the 294 

carbon cycle, energy exchanges, moisture fluxes, and related predictor variables are revised, 295 

thus providing a self-consistent prognostic system.  296 

 297 

SiB4 framework is designed to ensure an annual balance for global terrestrial carbon budget 298 

(NEE=0) because natural carbon uptake and release is largely balanced on global scales (Schimel 299 

et al., 1995). However, SiB4 is capable of producing unbalanced fluxes by incorporating 300 

additional sources and sinks (e.g. disturbances, dynamic vegetation, CO2 fertilization, 301 

nutrient limitation, and regrowth). Yet, such external sources and sinks likely only offset 302 

the global annual balance by only a small percentage (Denning et al., 1996). 303 

 304 

SiB4 has been evaluated globally against the FLUXNET network, satellite solar-induced 305 

fluorescence (SIF), and satellite-derived LAI and biomass (Smith et al., 2017; Haynes et al., 306 



 

2019; Parazoo et al., 2020) and has been found to have improved predictions over grasslands 307 

(Haynes et al., 2019b). 308 

 309 

2.2 Carbon Flux Analysis 310 

 311 

2.2.1 Seasonal variability and annual total analysis 312 

 313 

In this study, we determine whether terrestrial carbon models produce a net carbon source or 314 

sink to the atmosphere from 2000 to 2017. To create annual NEE (excluding fire emissions) for 315 

each model by calculating their global sum in units of PgC yr-1. This process is repeated for 11 316 

different land regions defined by the TransCom project (Gurney et al., 2002). Each region 317 

represents a continent-scale terrestrial area of broadly similar ecosystem types (Figure 1). 318 

Furthermore, they are used in the CT2019B data assimilation (DA) scheme as source regions for 319 

which estimates of land and ocean surface fluxes are produced. Following CT2019B’s DA 320 

scheme, in which optimized fluxes from multiple inversions are averaged together to form a 321 

final posterior flux estimate, we average together terrestrial priors (i.e. CASA-GFEDv4.1s and 322 

CASA-CMS) to form a representative single prior flux estimate for CT2019B. 323 

 324 

 325 

 326 

Figure 1. Terrestrial CO2 flux regions of the TransCom inter-comparison project (Gurney et al., 327 

2002). 328 



 

  329 

To examine the structure of the terrestrial carbon seasonal cycle at regional scales, we 330 

produced monthly averaged fluxes from the models for 2000-2017. With monthly fluxes, we 331 

calculated the amplitude and phase of the seasonal cycle for RE and GPP for each model to 332 

gain additional information about the biospheric flux components that drive the terrestrial 333 

carbon cycle. For each region, monthly time series were averaged over 2000-2017 to produce 334 

a 12-month seasonal cycle. Seasonal cycles were compared among the models using a  335 

R-squared metric.  336 

 337 

Likewise, we conduct a trend analysis to determine whether the model’s terrestrial carbon 338 

cycle fluxes have changed over the recent past. Here we apply a linear least-squares regression 339 

to determine whether a model’s net land fluxes detect any “statistically meaningful” trends 340 

(i.e. r2≥0.65 at p≤0.05) over the 18-year period using the criterion described in Bryhn & Dimbeg 341 

(2011). This process is repeated for GPP and RE on global and regional scales. We do not include 342 

SiB4 in the trend analysis as it assumes a long-term carbon balance and we are considering an 343 

18-year period. 344 

 345 

2.1.1 Boreal seasonal amplitude enhancement 346 

 347 

Graven et al., (2013) concluded that increases in CO2 amplitude from Barrow Atmospheric 348 

Baseline Observatory (BRW; see for more details https://www.esrl.noaa.gov/gmd/obop/brw/) 349 

between 1961-2011 are due to increased biogenic carbon uptake in northern latitude region 350 

(north of 45N). Our study assesses how well inverse models reproduce the CO2 seasonal cycle 351 

at BRW and its increased seasonal amplitude. We calculate the seasonal amplitude trend of CO2 352 

using an average annual growth rate over the years 1972-2017 and 2000-2017 for both BRW 353 

observations and inversions. 354 

 355 

Using inverse models, we examine how these seasonal CO2 amplitude trends translate into 356 

annual NEE changes in the boreal region (north of 45˚N). For each model, we produce annual 357 

cycle NEE amplitudes, as well as a 3-month averaged NEE over months of peak carbon uptake 358 

from the atmosphere into the biosphere (i.e. June, July, and August) and early winter carbon 359 

release from the biosphere into the atmosphere (October, November, and December). 360 

 361 

3 Results 362 



 

  363 

3.1 Seasonal Cycle Analysis 364 

 365 

 366 

Figure 2. Monthly averaged NEE of CO2 for terrestrial TransCom regions between 2000 and 367 

2017. Positive values indicate a flux from the biosphere to the atmosphere, and the shaded 368 

regions represent the 1-σ standard deviation of each model's monthly fluxes. 369 

 370 



 

 371 

Figure 3. Monthly averaged gross primary production (GPP, solid lines) and ecosystem 372 

respiration (RE, dotted lines) for terrestrial TransCom regions between the years 2000 and 373 

2017. Positive values indicate a flux from the biosphere to the atmosphere, and the shaded 374 

regions represent the 1-σ standard deviation of each model's monthly fluxes. 375 

 376 

Monthly NEE, GPP, and RE seasonal cycles are compared across “top-down” and “bottom-up” 377 

models. In general, we find all models agree more in the Northern Hemisphere regions than 378 

Southern Hemisphere regions or the tropical regions (Figure 2 and Figure S1). This agreement 379 

between “multiple constraint” approaches may result from the greater density of observations 380 

in the Northern Hemisphere, leading to more information about surface fluxes. 381 

 382 

In the Northern Hemisphere boreal regions, modeled NEE seasonal cycles disagree mostly on 383 

the strength of Eurasian boreal carbon uptake in the summer months and carbon release in the 384 

dormant months. July NEE rates vary by as much as 6.0 PgC among the models, with FLUXCOM 385 

showing the least uptake and CT2019B having the most uptake. In the summer months, small 386 

differences in NEE between models mask large differences between the component fluxes GPP 387 

and RE (Figure 3). For example, FLUXCOM, SiB4, and the CTE2018 prior (SiBCASA) have similar 388 

NEE summertime uptake in the Eurasia boreal region (an averaged difference between models 389 



 

of 2.9 PgC yr-1), but the amplitude in GPP and RE vary greatly among the models (an averaged 390 

difference of 7.3 and 7.1 PgC yr-1 respectively). Similarly, for Boreal North American, the 391 

seasonal amplitude of the modeled NEE agrees better (an averaged difference between models 392 

of 1.4 PgC yr-1), compared to their respective GPP and RE seasonal amplitudes (an averaged 393 

difference of 4.3 and 4.2 PgC yr-1 respectively). 394 

 395 

In Northern Hemisphere temperate regions, NEE among models agrees better for North America 396 

and Europe than for Eurasia (see Figure S1). For the Eurasian temperate region, FLUXCOM and 397 

SiB4 have a stronger summertime uptake (both by ~3 PgC yr-1) than both the CarbonTracker 398 

priors and posteriors. In the winter, FLUXCOM and CarbonTracker priors and posteriors show 399 

similar near-zero NEE whereas SiB4 shows net outgassing of up to 3.6 PgC yr-1. Here, SiB4 has a 400 

stronger NEE seasonal amplitude rate than other models that is driven mainly by its strong GPP 401 

seasonality. These specific regions have an abundance of deciduous trees and it is possible SiB4 402 

overestimates deciduous seasonality. 403 

  404 

For Tropical South America, there is good agreement in NEE seasonality between SiB4, both 405 

CarbonTracker posteriors, and their respective prior estimates (ranges from r2=0.85 to 0.99 406 

between comparison combinations). By contrast, FLUXCOM NEE seasonality does not agree well 407 

with other models (ranging from r2=0.09 to 0.32) and shows peak carbon uptake in October 408 

whereas other models show a peak in August. FLUXCOM shows a stronger net carbon uptake (by 409 

~6 PgC yr-1) than all other models throughout the year (see Figure S2 and S3). This strong carbon 410 

sink is driven mainly by a weaker RE (by as much as 8.0 PgC yr-1) whereas it's GPP strength is 411 

within the variability of other models. 412 

 413 

For the Northern and Southern African regions and South American Temperate region, FLUXCOM 414 

shows a stronger seasonality than other models. Particularly in the Northern and Southern 415 

African regions, FLUXCOM shows stronger NEE uptake (ranging from 4.1 to 5.2 PgC yr-1) than 416 

other models from December to February. 417 

 418 

For Australia, the averaged NEE seasonality amplitude difference between models is 0.3 PgC 419 

yr-1. Both CarbonTracker priors (i.e. CASA-GFED and SiBCASA) show a NEE minimum in 420 

September to October that is not captured by FLUXCOM or SiB4. Across the southern hemisphere 421 

regions, both CTE2018 prior and posterior NEE seasonal cycles are nearly identical (r2=0.99 to 422 



 

1.0), whereas CT2019B posterior seasonality shows more seasonal variability than its prior 423 

counterpart (CASA-GFED) with a correlation between r2=0.7 to 0.87. 424 

 425 

3.2 Annual Total Emissions Analysis 426 

 427 

 428 

 429 

Figure 4. Annual mean and 1-sigma interannual variability (IAV) of net ecosystem exchange 430 

(NEE) for each TransCom region from 2000-2017. Negative values (in green) indicate a 431 

carbon uptake from the atmosphere into the biosphere. TransCom regions are arranged 432 

top-to-bottom to align with relative latitudinal locations with global estimates at the 433 

bottom. 434 

 435 

In our annual total NEE analysis, we find both CarbonTracker posteriors and priors, and 436 

FLUXCOM agree that each TransCom region is a net carbon sink (Figure 4). SiB4 is not included 437 

in this analysis as it assumes a long-term carbon balance. CT2019B and CTE2018 posterior NEE 438 

estimate global annual uptake is -3.6±0.6 and -3.7±0.8 PgC yr-1, respectively. These estimates 439 

agree within each model’s interannual variability (IAV) and suggest stronger carbon uptake than 440 

their prior counterparts by up to 2.1 and 1.3 PgC yr-1. Both CT2019B and CTE2018 posterior NEE 441 

suggest more carbon uptake than their priors (CASA-GFED and SiBCASA respectively) in the 442 



 

boreal regions (an annual difference of 0.6 to 0.8 PgC yr-1, respectively) and also to a lesser 443 

extent in the temperate Eurasian and North American regions (a difference of 0.2 to 0.3 PgC 444 

yr-1). By contrast, posterior NEE shows less carbon uptake than prior estimates in the Southern 445 

African region (a difference of 0.1 to 0.3 PgC yr-1). CarbonTracker posteriors suggest the largest 446 

carbon sinks are found in Eurasian and African regions, whereas their prior estimates suggest 447 

only African regions. FLUXCOM NEE shows stronger carbon uptake than other models in all 448 

regions except at northern boreal latitudes. FLUXCOM estimates global annual carbon uptake 449 

to be -21.5±0.6 PgC yr-1. 450 

 451 

3.3 Trend Analysis 452 

 453 

 454 

Figure 5. Trends of annual total NEE, RE, and GPP for different TransCom regions estimated 455 

for 2000-2017. Negative values (more green) represent an increase in carbon uptake, and 456 

positive values (more brown) represent an increase in carbon release. 457 

 458 

Using a linear regression of each model’s terrestrial fluxes over an 18-year period, we 459 

determine whether the global carbon cycle has changed as estimated by different modeling 460 

techniques and observational constraints (e.g. atmospheric observations, flux measurements 461 

and NDVI-derived GPP). We find both inversions show more net carbon release in time than the 462 

NDVI-based models used as prior estimates by both inversions (Figure 5). The CT2019B prior 463 

shows an increase in both GPP and RE over time, with RE slightly stronger by 0.01 PgC yr -1 464 

resulting in a small net carbon release over time. The CTE2018 SiBCASA prior also shows an 465 



 

increase in both GPP and RE over time, yet with a slightly stronger GPP resulting in net carbon 466 

uptake. By contrast, FLUXCOM shows a small global decrease in net carbon uptake by 0.1 PgC 467 

yr-1. However, no model’s NEE trends are found to be statistically “meaningful” according to 468 

the criterion (i.e.  r2≥0.65 at p≤0.05) defined by Bryhn & Dimbeg, (2011). 469 

 470 

3.3 Seasonal Amplitude Change Analysis 471 

 472 

 473 

Figure 6. (a) CO2 seasonal amplitudes (in ppm) and trends (% yr-1) observed at BRW 474 

observatory from 1972-2017 and 2000-2017; (b) “zoomed-in” CO2 seasonal amplitude and 475 

trend from BRW from 2000-2017 with estimates from CT2019B and CTE2018 posteriors; (c) 476 

the CO2 seasonal cycle at BRW with estimates from CT2019B and CTE2018 posteriors; (d) 477 

annual boreal region (i.e., north of 45˚N) peak-to-trough NEE amplitudes in units of PgC yr-478 

1 from both CarbonTracker posteriors and priors, FLUXCOM, and SiB4; (e) boreal region NEE 479 

annually averaged over the peak productivity months of June, July, and August (JJA); and 480 



 

(f) boreal region NEE annually averaged over the early winter months of October, 481 

November, and December (OND). 482 

 483 

We calculated the average annual growth rate of the CO2 seasonal amplitude at BRW over the 484 

full current record 1972-2017 and compared it with Graven et al. (2013). We find the CO2 peak-485 

to-trough amplitude trend over full record at BRW to be 0.55±0.09%yr-1, which is within the 486 

standard deviation of the 0.60%yr-1 trend estimated by Graven et al., (2013) from 1961-2011 487 

(Figure 6a). Over the time period considered in our study, 2000-2017, we estimate the observed 488 

seasonal amplitude growth rate to be 0.53±0.08%yr-1, within a standard deviation of the 1972-489 

2011 growth rate.  490 

 491 

We also find that both CT2019B and CTE2018 simulated CO2 mole fractions have nearly identical 492 

seasonal cycles at BRW from 2000-2017 (with an agreement of r2=0.99). Atmospheric inversions 493 

are also able to capture the observed seasonal cycle amplitude trend at BRW from 2000-2017. 494 

Here, CT2019B simulated CO2 mole fractions show a trend of 0.53±0.13%yr-1, nearly exactly the 495 

same as what is observed, whereas CTE2018 suggests a stronger trend of 0.67±0.09%yr-1 but 496 

within 1-sigma standard deviation of BRW observations (Figure 6a-c). 497 

 498 

Because both inversions were able to reproduce the CO2 seasonal amplitude trend at BRW, we 499 

use them to examine the source of this increased CO2 seasonal amplitude using NEE fluxes. We 500 

note that it is expected that inversions are able to reproduce the observations because they 501 

are constrained by these observations at BRW and other sites, although biased priors could 502 

prevent inversions from reproducing the annual cycle amplitude trend. Using the high latitude 503 

band (north of 45˚N) criteria as considered in Graven et al. (2013), CT2019B shows a NEE 504 

amplitude trend of 0.38±0.09%yr-1 and CTE2018 shows a NEE amplitude trend of 0.78±0.06%yr-1 505 

(Figure 6d). Both inversions’ NEE amplitude trends are within 1-sigma standard deviation of 506 

their CO2 seasonal amplitude trends. 507 

 508 

At high latitudes, the boreal seasonal amplitude of NEE for both CarbonTracker posterior 509 

estimates significantly exceed their priors by between 0.17 and 0.23%yr-1.  The CarbonTracker 510 

posteriors also have larger boreal seasonal amplitudes than FLUXCOM (by between 0.55 and 511 

0.95%yr-1) and SiB4 (by between 0.36 and 0.76%yr-1). Whereas CarbonTracker priors have a 512 

positive trend in seasonal amplitude, SiB4 does not have any trend and FLUXCOM shows a small 513 

negative trend.  514 



 

 515 

We consider that the NEE amplitude trends at high boreal latitude could mainly be attributed 516 

to increased uptake during months of highest productivity (June, July, and August (JJA)) or 517 

increased emission by soil respiration early in the cold season (October, November, and 518 

December (OND)). We observe that, in absolute values, CTE2018’s early winter mean NEE trend 519 

(1.13±0.05%yr-1) is nearly double that of its summertime NEE trend (-0.53±0.05%yr-1), whereas 520 

both CT2019B's early winter (0.39±0.08%yr-1) and summer NEE trends (-0.3±0.04%yr-1) are within 521 

error bars of each other over the 18-year period (see Figure 6e-f). Compared to the NDVI 522 

constrained models used as priors for both inversions, posterior estimates for both inversions 523 

show a weaker net carbon uptake in the summertime and a greater carbon release in early 524 

winter. In early winter, both posteriors mean NEE trends exceed the variability of their prior 525 

counterparts. In summer, only the CTE2018 NEE trend exceeds the variability of its prior. 526 

 527 

Inversions cannot directly tell us whether a trend of seasonally averaged NEE is a result of a 528 

change in carbon uptake or respiration because these are not estimated individually, but the 529 

NDVI constrained models provide some insight. In the summer months, both CarbonTracker 530 

posterior and prior estimates show a negative NEE trend which implies more net carbon uptake. 531 

Here, both SiBCASA and CASA-GFED show a greater growth rate in GPP than RE (Figure S4). By 532 

contrast, in the early winter, both CarbonTracker posterior and prior estimates show a positive 533 

NEE trend which implies more net carbon release. CTE2018 prior shows a greater growth rate 534 

of RE than GPP. CT2019B prior shows a decrease in GPP as well as an increase in RE. 535 

 536 

At high latitudes, SiB4 NEE amplitude is larger than other models, but does not show a change 537 

in NEE amplitude over the past two decades (-0.02±0.03%yr-1). However, it shows small 538 

increases in net carbon uptake in summertime (-0.04±0.05%yr-1) and net release in early winter 539 

(0.10±0.02%yr-1). These NEE growth rates are a result of increased growth in both boreal GPP 540 

and RE in both summer and early winter months, and are dependent on each of the flux’s initial 541 

flux strength in year 2000. By contrast to both inversions and other TBMs over the 18-year 542 

period, FLUXCOM shows a positive NEE trend, meaning more carbon efflux, in the summer 543 

months (0.2±0.03%yr-1) in addition to positive NEE trend in the summer months (0.16±0.03%yr-544 

1). We note that we also examined other seasons and at different latitudinal bands and did not 545 

find any large changes in NEE between models. 546 

 547 

4 Discussion 548 



 

 549 

4.1 Terrestrial carbon flux seasonality and annual rates 550 

  551 

We compared atmospheric inversions, prognostic and diagnostic TBMs, and bottom-up 552 

terrestrial carbon flux products to gain insights about the carbon cycle in terms of terrestrial 553 

carbon flux seasonality and annual biospheric emissions. 554 

 555 

In the northern hemisphere boreal regions, both inversions show an annual carbon sink 556 

(between -0.7 and -0.9 PgC yr-1) that is stronger than their prior estimates (between -0.1 and -557 

0.2 PgC yr-1). This difference is mainly due to increased carbon uptake in the summer months 558 

in the inversions and indicates atmospheric CO2 measurements call for a stronger carbon sink 559 

than their prior flux fields that rely on satellite-based NDVI data. NDVI and other satellite driven 560 

light-use efficiency models often failed to capture seasonal photosynthetic dynamics at 561 

northern latitudes such as seasonal photosynthetic activity of boreal evergreen forests (Gamon 562 

et al., 1995; 2016). Though FLUXCOM and the inversions show similar seasonal cycles and annual 563 

NEE rates for northern boreal regions, these results may be fortuitous because of the large 564 

temporal and spatial gaps in both CO2 measurements and FLUXNET data as well as their 565 

different scaling methods that incorporate these limited observations. Issues with upscaling 566 

site-level FLUXNET data include how different ecosystem heterogeneity such as plant function 567 

types and environmental drivers such as atmospheric conditions change at different scales 568 

(Tramontana et al., 2016). In addition to temporospatial gaps in the atmospheric CO2 569 

observational network, errors in top-down estimates depend on accurately quantifying the 570 

uncertainties of the prior fluxes in the data assimilation scheme and the accuracy in 571 

atmospheric transport used to link observed atmospheric CO2 to surface carbon fluxes. 572 

Uncertainties in atmospheric transport can propagate systematic errors in both the global 573 

annual carbon budget and the magnitude of seasonal cycle around the world (Schuh et al., 574 

2019). Both CarbonTracker priors suggest the northern boreal regions have experienced more 575 

carbon uptake (of up to -0.03 PgCyr-1) and more carbon release (of up to 0.03 PgCyr-1) over the 576 

past 18-years that has resulted in a small net terrestrial carbon sink (of up to -0.01 PgCyr-1). 577 

However, these trends at high boreal regions, as well as across all other regions, are not 578 

significantly meaningful. This insignificance may result from no important changes in biogenic 579 

carbon sources or sinks have occurred over this time period. Another possible explanation is 580 

there are not enough observations to reduce the current noise. With more observations in these 581 



 

regions over a longer time period, we will likely be able to detect important changes in 582 

terrestrial carbon sources and sinks. 583 

 584 

In the northern temperate regions including Europe, CT2019B and CTE2018 posterior flux 585 

estimates are similar to prior estimates for Europe, but posteriors show greater uptake relative 586 

to priors in the North American and Eurasian temperate region. In Europe, where there is a 587 

relative abundance of available atmospheric CO2 observations compared to other temperate 588 

latitudes, similarities between priors and posteriors may imply CarbonTracker priors are pretty 589 

close to the true value for Europe. In other regions, posteriors show more carbon uptake than 590 

their priors. This may suggest priors underestimate carbon uptake at temperate regions, but 591 

there may be other possibilities. It may be true that fossil fuel assumptions prescribed in the 592 

CarbonTracker DA scheme are incorrect. A recent study by Basu et al. (2020) reported that 593 

many U.S. fossil fuel CO2 emission inventories, including the US Environmental Protection 594 

Agency (EPA), may be significantly underestimated. This study conducted an independent 595 

emission monitoring evaluation over North America using atmospheric inversions constrained 596 

by both atmospheric CO2 and Δ14CO2 measurements collected as part of NOAA’s Global 597 

Greenhouse Gas Reference Network. If fossil fuel emissions are under-estimated in the 598 

CarbonTracker DA scheme (which does not revise prior estimates of fossil fuel emissions), this 599 

may result in an underestimation of natural carbon sinks or overestimation of sources. For the 600 

temperate regions that account for the most fossil fuel emissions, biased fossil fuel CO2 601 

emissions likely will cause potential biases in posterior NEE rates. Another possibility for 602 

differences between CT2019B and CTE2018 NEE fluxes at temperate regions is the different set 603 

of observations used in the assimilation process. For example, CT2019B has recently assimilated 604 

the extensive Siberian tower measurements collected by the National Institute for 605 

Environmental Studies.  606 

 607 

For tropical regions, we find that posterior fluxes match prior flux estimates, and that FLUXCOM 608 

has a significantly stronger carbon sink throughout the year. In the South American Tropical 609 

region, CTE2018's seasonal cycle and annual uptake is nearly identical (r2=0.99) to its prior 610 

estimate, whereas CT2019B shows more seasonal variability (r2=0.85) and a stronger annual 611 

uptake rate (by 0.2 PgCyr-1). A close resemblance of posteriors to their priors, as shown by 612 

CTE2018, typically indicates limited observational coverage in these regions. CT2019B's 613 

increased variability and an increase in uptake rates could be the result of assimilating aircraft 614 

data across Brazil collected by the Instituto de Pesquisas Energéticas e Nucleares (IPEN). 615 



 

Likewise, for Tropical Asia, CTE2018's seasonal variability and annual uptakes (-0.1 PgCyr-1) are 616 

little unchanged from prior estimates. CT2019B has the same uptake rates as it's prior estimate, 617 

but shows greater seasonal variability (r2=0.79). This greater seasonal variability could be 618 

related to assimilated shipboard observations across the Pacific Ocean collected by the National 619 

Institute for Environmental Studies (NIES). 620 

 621 

FLUXCOM shows a stronger uptake rate during all months, by up to 2.6 PgCyr-1 in Tropical Asia, 622 

and 5.1 PgCyr-1 in the South American Tropics. FLUXCOM also has a different seasonal cycle 623 

from the inversions, NDVI-constrained models, and SiB4 (r2=0.09 to 0.32). A possible explanation 624 

for this may be our choice of FLUXCOM ensemble product. We chose the ensemble median of 6 625 

members with ERA-5 meteorological forcing data setups that included all three machine 626 

learning methods and both flux partitioning methods. However, Jung et al. (2020) state that 627 

the large tropical carbon sink in FLUXCOM is consistent among all the FLUXCOM setups and 628 

ensemble members. A possible explanation for this large carbon sink may be systematic biases 629 

in observational GPP or RE. However, recent studies (Campioli et al., 2016; Spielmann et al., 630 

2019) have reported no systematic biases in FLUXNET GPP used in upscaled global FLUXCOM 631 

GPP. Tropical carbon loss fluxes by fire, land-use change, or evasion from inland waters are 632 

reportedly missing from FLUXNET observations but likely only offset half the tropical carbon 633 

sink (Zscheischler et al., 2017). Another possible explanation for FLUXCOM's large tropical sink 634 

includes upscaling issues. Upscaling sparse ground-based site-level flux observations over a 635 

large region with heterogeneous vegetation and varying meteorological conditions can be a 636 

challenge (Fu et al., 2019). 637 

 638 

4.2 Changes in boreal Seasonal Amplitude 639 

 640 

We combine CarbonTracker inversions, remote-sensing TBMs, and the prognostic TBM SiB4 to 641 

determine possible causes of the CO2 seasonal amplitude increase at BRW over the past two 642 

decades. CarbonTracker inversions capture the observed CO2 seasonal amplitude trend at BRW 643 

from 2000-2017 and their CO2 seasonal amplitudes are within 1-sigma standard deviation of 644 

their northern boreal (45-90˚N) NEE amplitude trends. This implies a link between the CO2 645 

seasonal amplitude trend and the northern boreal NEE amplitude trend. CarbonTracker priors 646 

and posteriors suggests that the NEE amplitude trends are a response to both increased rates 647 

of carbon uptake in the summer months and increased carbon release in the early winter 648 

months.  649 



 

 650 

Top-down and bottom-up estimates confirm various remote-sensing and atmospheric CO2 651 

observational studies that have reported heterogenous greening and browning trends at 652 

northern high latitudes. These trends are linked to enhanced biomass cover and productivity 653 

(Pan et al., 2011; Myers-Smith et al., 2020; Xu et al., 2013; Wenzel et al., 2016; Forkal et al., 654 

2016) driven by arctic warming (Elmendorf et al., 2012; Zhu et al., 2016). The same Arctic 655 

warming has also resulted in enhanced by carbon release due to microbial decomposition in soil 656 

driven (Commane et al., 2014; Natali et al., 2019). We find CarbonTracker models to have a 657 

greater NEE amplitude growth rate than the bottom-up estimates. This greater growth rate is 658 

a result of enhanced early-winter carbon release. This finding agrees with evidence for large 659 

early-winter respiration flux in the northern boreal latitudes that offsets carbon uptake in 660 

summer months. Commane et al. (2014) combined aircraft and tower CO2, eddy covariance flux 661 

data, and satellite remote sensing to estimate the Alaskan carbon budget from 2012-2014 and 662 

found that the seasonal amplitude of CO2 in early winter is likely due to carbon release from 663 

soil organic matter. Natali et al. (2019) synthesized in-situ carbon flux data over the arctic 664 

using machine learning methods to show winter carbon release due to microbial decomposition 665 

in soil is stronger than carbon uptake during the growing season.  666 

 667 

Another possible explanation for why top-down estimates show a greater NEE amplitude trend 668 

than bottom-up estimates is that bottom-up TBMs rely on satellite-based NDVI and light-use 669 

efficiency models which have been shown to inadequately capture seasonal photosynthetic 670 

activity at northern latitudes such as seasonal photosynthetic activity of boreal evergreen 671 

forests (Gamon et al., 1995; 2016). However, top-down posterior estimates show a slower rate 672 

of change in NEE during summer months than their respective priors. Some studies have used 673 

TBMs to suggest the increase is associated with mid-latitude agriculture intensification across 674 

North America (Zeng et al., 2014; Gray et al., 2014). A more recent study used a top-down 675 

approach to suggest Siberian and temperate ecosystems are mainly responsible (Lin et al., 676 

2020). 677 

 678 

The current configuration of SiB4 does not simulate the effects of increasing CO2 or land-use 679 

change and therefore is not expected to produce a long-term net sink or source of carbon. It is 680 

however expected to show a response to inter-annual climate variability. This is likely why we 681 

see only a negligible change to the boreal seasonal amplitude of NEE, but see an increase in 682 

summertime carbon uptake and early-winter carbon respiration with variability. Such changes 683 



 

in boreal carbon productivity and respiration rates are often linked with woody vegetation 684 

expansion and warmer temperatures in the arctic. However, SiB4 does not simulate changes in 685 

land cover types over time, so the greater GPP and RE in SiB4 may be directly associated with 686 

warmer temperatures. As SiB4 begins to incorporate additional carbon sources and sinks that 687 

offset its annual carbon balance (e.g. disturbances, dynamic vegetation, CO2 fertilization, 688 

nutrient limitation, and regrowth), this TBM may prove instrumental in testing the impact of 689 

these factor in regional to global carbon budget analysis. 690 

 691 

Jung et al., 2020 reports northern cold regions are poorly represented by FLUXNET sites which 692 

likely cause extrapolation issues used in the upscaling process. This makes sense that limited 693 

observations cause challenges in upscaling carbon fluxes over a large region with vast 694 

heterogeneous vegetation. In order to adequately capture changes and variability of carbon 695 

fluxes in northern boreal ecosystems, more observations are needed. Though northern boreal 696 

ecosystems are shown to have smaller NEE interannual variability than other ecological regions 697 

(Baldocchi et al., 2018), FLUXCOM has underestimated interannual variability compared to 698 

inversions (Jung et al., 2020). The reason is unclear, but underestimated variability may be 699 

caused by machine-learning methods chosen by FLUXCOM (Tramontana et al., 2016; Marcolla 700 

et al., 2017). Representing changes in the boreal region NEE requires accounting for variations 701 

in soil moisture, water balance. Resolving changes in NEE variability in boreal ecosystems 702 

requires continuous measurements of environmental factors such as soil moisture, water 703 

balance, and air temperature (Baldocchi et al., 2018). Increasing the size of the FLUXNET 704 

network, improving its machine-learning methods, and resolving environmental factors will 705 

improve the quality of the FLUXCOM product. 706 

 707 

5 Conclusions 708 

  709 

We combined advanced data-driven and process-based modeling techniques to provide insight 710 

into present-day terrestrial carbon cycle processes and how they may be changing in response 711 

to climate variability and trends. We find that models typically agree in terms of seasonal 712 

variability, and all show an annual carbon sink for all regions across the globe. Models presented 713 

in this study imply that the net global annual carbon sink has not changed significantly between 714 

the years 2000 and 2017. We learned that the CarbonTracker system captures the observed 715 

increase in the seasonal amplitude of CO2 at BRW, and suggests that this growth may have less 716 

to do with increased productivity in summer months than increased carbon outgassing rates 717 



 

during early winter months. Such increased boreal carbon outgassing rates are also found from 718 

bottom-up estimates from FLUXCOM. The combination of process-based and "multiple 719 

constraint" models present an opportunity to understand how the carbon cycle processes 720 

respond to climate change. 721 
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 1038 

Figure S1. Coefficient of determination, or r-squared, values between model’s monthly 1039 

averaged net ecosystem exchange (NEE) at TransCom regions between 2000 and 2017. 1040 

Green colors represent good model agreement and red represents poor agreement. 1041 

 1042 



 

Figure S2. Coefficient of determination, or r-squared, values between model’s monthly 1043 

averaged gross primary production (GPP) at TransCom regions between 2000 and 2017. 1044 

Green colors represent good model agreement and red represents poor agreement. 1045 

 1046 

 1047 

Figure S3. Coefficient of determination, or r-squared, values between model’s monthly 1048 

averaged ecosystem respiration (RE) at TransCom regions between 2000 and 2017. Green 1049 

colors represent good model agreement and red represents poor agreement. 1050 

 1051 

 1052 



 

 1053 

Figure S4. (a) Boreal region (i.e. north of 45˚N) seasonal amplitudes of GPP in the summer 1054 

months of June, July, and August (JJA) for CarbonTracker priors, FLUXCOM, and SiB4; (b) 1055 

as well as the seasonal amplitudes of RE; and (c) boreal region seasonal amplitudes of GPP 1056 

in the early winter months of October, November, and December (OND) (d) as well as the 1057 

seasonal amplitudes of RE.  1058 
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