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EXECUTIVE SUMMARY 
The objective of this deliverable is to develop inference methods that support efficient information selection 
from heterogeneous data pools. There are many challenges in data reasoning and inference based on 
distributed data. The first one is addressing data security and access rights to both original data and inferred 
information. The second challenge is how the actual inference over distributed sources can be performed and 
implemented.  We address the main principles applied to data inference and different types of inference – rule-
based, query-based, model-based and fuzzy inference – and their application in BigDataGrapes project. The Final 
section is dedicated to state of the art with standard theoretical approach to inference from descriptive logic 
stand point, as well as related work in implementing those approaches. 
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1. INTRODUCTION 
 
The objective of this deliverable is to develop inference methods that support efficient information selection 
from heterogeneous data pools. Further specification will enable implementation on top of the BigDataGrapes 
database layer including a semantic graph database (a type of NoSQL graph database engine). The final goal is 
to enable efficient retrieval of data, considering different criteria and implementing mechanisms, which go 
beyond the capabilities of today’s database and search engines. 
 
There are many challenges in data reasoning and inference based on distributed data. The most prominent one 
is addressing data security and access rights to both original data and inferred information. To address data 
security, we follow the industry business need of building the missing piece is the universal semantic data layer. 
Dave Mariani, co-founder and CEO of startup AtScale and former vice president of development, user data and 
analytics at Yahoo formulates it:  

 
"You can define security on the data lake itself … anyone who logs in and runs queries on the data lake is going to 
be secured at the data bit level rather than at the application that's using it. Now data is being secured as it's 
written as opposed to as it's used. You can't do that if you're sending data extracts out to the business and the 
business is dealing with it on its own." 
 
The second challenge of how the actual inference over distributed sources can be performed, in BigDataGrapes 
project we do not limit ourselves to any specific reasoning technique. Approximate reasoning is a non-standard 
reasoning approach based on the idea of sacrificing soundness or completeness for a significant speed-up in 
reasoning. This is done in such a way that the loss of correctness is at least outweighed by the obtained speed-
up. Parallel reasoning and distributed reasoning are considered to be essential for Web-scale reasoning to 
improve scalability. Stream reasoning provides the reasoning support in which memory overload is avoided by 
operating on streams of data instead of statically available sets. Granular reasoning is a non-standard reasoning 
approach in which multiple perspectives/views can be selected for reasoning by using knowledge at various 
levels of specificity and data at variable levels of granularity.  
 
We aim to explore the state of the art and construct possibly several reasoning plug-ins, based on insights from 
both generic inference methods and non-standard reasoning, and invite third parties to contribute further 
components to the BigDataGrapes ecosystem.  
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2. TYPES OF INFERENCE 
 
This section addresses the main principles applied to data inference and it is an attempt for drawing a roadmap 
including their major characteristics, related design and performance issues, the state of the art in the field and 
future directions. The major objectives are: 

● to clarify the principles of operation of the inference and the potential of its distribution; 

● to explain the facets of their performance, because we believe that their understanding is a key factor 
for the successful adoption of distributed inference. 

The context in which we review types of inference and their distribution potential is addressed in one or more 
of the following goals: 

● to handle efficiently larger volumes of data; 

● to speed up the data loading and indexing and to improve the performance for updates; 

● to lower the query evaluation time for complex queries (e.g. analytical Business Intelligence reports); 

● to better handle concurrent query loads and large numbers of users and 

● to ensure failover, e.g. to surmount failure of one or more nodes and repositories. 

The reminder of this section provides discussion on the different approaches, their advantages and 
disadvantages and appropriateness with respect to different scenarios and goals. 

2.1. RULE-BASED INFERENCE 
Broadly speaking, inference can be characterised by discovering new relations (see Fig1.). On the Semantic Web, 
data is modelled as a set of (named) relations between resources. “Inference” means that automatic 
procedures can generate new relations based on the data and some additional information in the form of a 
vocabulary - a set of rules. Whether the new relations are explicitly added to the set of data or returned at query 
time is matter of implementation. Inference is a tool of choice for improving the quality of data integration by 
discovering new relations, automatically analysing the content of data, or managing knowledge in general. 
Inference-based techniques are also important for discovering possible inconsistencies in the data. 

Inference is performed by semantic repositories - database management systems - which are capable of 
handling structured data, taking into consideration their semantics as well as rules for interpretation. To foster 
their realisation, the World Wide Web Consortium (W3C) developed a series of metadata, ontology, and query 
language standards. The standardisation efforts related to the Semantic technology, most notably RDF(S), 
OWL, and SPARQL, provided a solid ground for development and good minimal levels of interoperability. 
Following the enthusiasm and the wide adoption of the related standards, today, most of the semantic 
repositories are database engines, which deal with data represented in RDF, support SPARQL queries, and can 
interpret schemata and ontologies represented in RDFS and OWL. Naturally, such engines take the role of web 
servers of the Semantic Technology. 



 

 

Big Data to Enable Global Disruption of the Grapevine-powered industries 

 

D4.2 | Methods and Tools for Distributed Inference 
11 

 

 

Figure 1. Rule based inference of transitive relations “is located in” 

The logical inference over RDF datasets and their implementation in RDF triple stores or semantic graph 
databases follow one of the two principle strategies for rules application: 

● Forward-chaining: to start from the known facts (the explicit statements) and to perform inference in 
an inductive fashion. Typically, the goal is to compute the Inferred Closure. 

● Backward-chaining: to start from a particular fact or a query, and to verify it or get all possible results. In 
a nutshell, the reasoner decomposes (or transforms) the query (or the fact) into simpler (or alternative) 
facts, which are available in the knowledge base or can be proven through further recursive 
transformations. 

The forward-chaining strategy applies the rules over the available facts in order to infer new facts, which are 
added to the dataset, and then recursively applies the rules over the new dataset. The result is the so-called 
inferred closure: an extension of a knowledge base (the RDF dataset or the graph of RDF triples) with all implicit 
facts (RDF triples) that can be inferred from it. The notion materialisation is defined as a procedure that keeps 
an up-to- date inferred closure of the knowledge base.  

Materialisation is known as a technique for applying inference before query evaluation. This allows for many 
query optimisations approaches to be forward-chaining as querying is realised by lookups in the database. The 
main drawback of materialisation is that the database changes, additions, and updates are generally slow 
operations. In many scenarios, the materialisation of such frequent changes does not affect the querying 
process, as many of the materialised facts are not used in the answers.    

In such cases, an alternative to forward-chaining is a backward-chaining strategy for inferencing over 
knowledge bases. Here, answering a query requires only partial materialisation over the knowledge base. 
Unfortunately, backward-chaining is inefficient for large knowledge bases, as many optimisations for the 
materialisation of a knowledge base are not possible. 
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The most advanced approaches to implementing hybrid reasoning for a fraction of OWL in RDF databases as 
presented in the work of Urbani et al (2013). They implement backward-chaining based on the QSQ (query-
subquery) algorithm for Datalog databases modified to support reasoning over OWL RL. In the application of 
the algorithm, the facts are divided in two sets: one over which the forward-chaining is applied and the 
materialisation over the set is stored in the semantic graph database in an optimal way. The other is used to 
support a backward-chaining strategy. It applies the materialisation only when it is necessary. 

2.2. DISTRIBUTED RULE-BASED INFERENCE 
Distributed architecture and multi-threaded reasoning provide very appealing techniques for processing RDF 
knowledge bases consisting of an enormous amount of statements (usually several billions). The main 
reasoning strategy for RDF knowledge bases - forward-chaining, faces two problems: (i) maintenance of huge 
number of URIs, and (ii) inferring new RDF statements via inference rules applied to existing, in the knowledge 
base, RDF statements.  

Some of the obstacles in distributing inference at scale come from the data volume. Data in the semantic 
representation paradigm are made of terms that are either URIs or literals. Since these terms usually consist of 
long sequences of characters, an effective compression technique must be used to reduce the data size and 
increase the application performance.  In order to define a more compact representation of RDF statements, 
the URIs are represented in dictionaries, where each URI is identified by a numeric value, which is then used for 
the internal representation of the RDF statements. One of the URI terms’ characteristics in an RDF knowledge 
base is their uneven distribution, i.e. many URI terms appear only a few times.  One of the best-known 
techniques for data compression is dictionary encoding and MapReduce algorithm efficiently compresses and 
decompresses a large amount of Semantic Web data, giving a compression ratio of about 1:6 to 1:8. This 
compression approach allows for using parallel processing.  

The expressiveness of the ontology language and complexity of the rules is another challenging area for 
distribution. For example, Oren et. al (2009) shows that partitioning of an RDF database into independent parts 
is not trivial in regard to soundness and completeness of the reasoning or results in communication overload 
between the different partitions.    

Some authors propose additional restrictions on the language expressivity to cope with the problem. For 
example, Priaya et. al (2014) define an ABox independent partitioning, which supports reasoning in OWL Lite 
knowledge bases.  Further work in this direction by Shrinoshita et. al (2017) evaluates enhanced MSC method 
over random graph theory that results in very small tractable concepts provided that the number of role 
assertions are removed from consideration is large enough. 

2.3. QUERY-BASED INFERENCE  
The ability to abstract the query syntax from the data syntax bears important advantages in data access 
scenarios where one has to deal with complex relationships or with schema diversity. As long as the semantic 
repositories can interpret the semantics in a recursive fashion, one can enjoy interpretations of the data, which 
combine results from previous interpretations and explicit assertions. In other words, depending on the data 
patterns and the semantics, one can retrieve facts, which are results of multiple steps of interpretation, and 
this way to uncover relationships which would otherwise remain hidden. 

The standardized way of distributed query inference is to use SPARQL 1.1 Federated Query extension for 
executing queries distributed over different SPARQL endpoints. The SERVICE keyword extends SPARQL 1.1 to 
support queries that merge data distributed across the Web, and the inference should follow the backward-
chaining strategy implemented on the query level. This feature is very powerful and allows integration of RDF 
data from different sources using a single query. It is also possible to use the federation mechanism to do 
distributed querying over several repositories on a local server for managing security on data level.  

The query-level inference is the most expressive mechanism for inference as it can use the full power of SPARQL 
and for defining rules (as SELECT) statements with filtering and exceptions. It can include custom functions and 
potentially wrap complex machine learning models as well.  
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2.4. MODEL-BASED INFERENCE  
Scientists derive insights from models of complex systems by applying the models to address various types of 
prognostic queries. This can include, for example: 

● Prediction: How will the system evolve in the near future?  

● Conditional forecasting: How will the system respond if X changes?  

● Counterfactual analysis: What would have happened if X had been Y?  

● Comparative impact: What is the difference in utility between strategy X and strategy Y? 

● Optimal planning: What is the optimal amount of X to introduce to maximise utility Y?  

● Risk assessment: What is the risk of X?  

● Outcome avoidance: What is the optimal action or intervention to reduce the risk of X decreasing more 
than Y? 

Model-based inference can also be used diagnostically to test models against available data or knowledge 
through model checking, validation, and calibration. Automation of model-based inference procedures could 
increase the speed and accuracy with which these models can be used to address key questions of national 
security by orders of magnitude. Applications will include frequent update of user-specified queries as new data 
becomes available, rapid response to emerging natural disasters or other real-time threats, and even fully 
automated inference with machine-generated queries. 

Model-based inference is predominantly based on machine learning techniques and depend very much on the 
available data features. As part of the initial research in BigDataGrapes will explore the available data sets in 
deliverable D2.1 Use Cases & Technical Requirements Specification before drawing any conclusions on the 
relevant techniques. This work is closely related to D4.3 Methods and Tools for Scalable Distributed Processing.  

2.5. FUZZY INFERENCE 
Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. It 
is classically applied in Fuzzy control systems to formalise the reasoning process of human language by means 
of fuzzy logic.  It uses the “IF…THEN” rules along with connectors “OR” or “AND” for drawing essential 
decision rules. 

Although alternative approaches such as genetic algorithms and neural networks can perform just as well as 
fuzzy logic in many cases, fuzzy logic casts to terms that human operators can understand and makes it easier 
to automate tasks that are already successfully performed by humans. State of the art implementation of Fuzzy 
Inference is provided by Mathworks.  

It is still unclear if Fuzzy logic can be applied to any of the use cases in BigDataGrapes. Such decision can be 
made based on deliverable D2.1 Use Cases & Technical Requirements Specification and initial experiments using 
actual data provided by the use case partners. 
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3. STATE-OF-THE-ART 
3.1. OWL DIALECTS SUITABLE FOR SCALABLE INFERENCE 

In order to match the expectations for the next generation global Web of data, the Semantic Web requires 
scalable high-performance storage and reasoning infrastructure. One challenge towards building such an 
infrastructure is the expressivity of its schema and ontology definition standards RDFS and OWL.  RDFS (Brickley 
and Guha, 2004)  is the schema language for RDF, which allows for the definitions of subsumption hierarchies 
of classes and properties; the latter being binary relationships defined with their domains and ranges. While 
RDFS is generally a fairly simple knowledge representation language, implementing semantic repositories 
which support its semantics and provide performance and scalability comparable to those of relational 
database management systems (RDBMS) is very challenging. 

The semantics of RDFS is based on Logical Programming (LP) – a declarative programming paradigm, in which 
the program specifies a computation by giving the properties of a correct answer. The LP languages like 
PROLOG emphasise the logical properties of a computation, using logic and proof procedures to define and 
resolve problems. Most logic programming is based on the Horn-clause logic with negation-as-failure to store 
the information and rule entailment to solve problems. Datalog is a query and rule language, a simplified version 
of PROLOG, meant to enable the efficient implementation of deductive databases. The semantics of RDFS is 
defined by means of rule entailment formalism, which is a simplification of Datalog.  

OWL1, (Dean and Schreiber, 2004) is an ontology language, which supports more comprehensive logical 
descriptions of the schema elements (see Fig.2), for instance: transitive, symmetric, and inverse properties; 
unions and intersections of classes; and property restrictions. The first version of the OWL specification, which 
was published as W3C standard in year 2004 has three dialects: OWL Lite, OWL DL and OWL Full. They range in 
their levels of expressivity. OWL Lite is a subset of OWL DL, and OWL DL is a subset of OWL Full. The OWL 
language is based on description logics (Baader et al, 2003).  

The reasoning procedures of DLs are decision procedures that are aimed to always terminate – in mathematical 
logic terms this means that DLs are decidable. Compared to other logical languages DLs are relatively 
inexpressive. Still reasoning with DLs is based on satisfiability checking, which means that, in order to prove or 
to reject a specific statement, a DL reasoner needs to check whether it is possible or not to build a model of the 
world which satisfies a “theory” which includes this statement or its negation. For instance, suppose that there 
is a semantic repository which contains one billion statements and a client makes a query, checking whether 
specific resource is an instance of a specific class. In order to validate this, with respect to the semantics of OWL 
DL, a repository should add to its current contents the statement that the resource is not instance of the class 
and check whether the new state of the repository is consistent. It is clear that such semantics is impractical to 
implement for large volumes of data. Even the simplest dialect of OWL, OWL Lite is a DL formalism which does 
not support algorithms enabling efficient inference and query answering over reasonably large knowledge 
bases.  

Logic programming and description logics support semantics and data interpretation capabilities of a different 
nature: LP uses rules to infer new knowledge, whereas DL employ descriptive classification mechanisms. None 
of these is more powerful or expressive than the other one – there are meaning aspects which can be expressed 
in each one of them, which cannot be expressed in a language from the other paradigm. As result, the semantics 
of OWL Lite and DL are incompatible with that of RDFS2. Although OWL was meant to be layered on top of 
RDFS in the Semantic Web specification stack, there is no “backward compatibility”. In practical terms, this 
means that it may be impossible to “upgrade” an application that uses RDFS schemata to OWL, without 
replacing the schemata with OWL ontologies. The latter may require considerable changes in the semantics of 
the classes and the properties and in the data modelling principles used in the application.  

 
1 
2
 The issues related to the interoperability and layering of the Semantic Web languages is also discussed in the introductory 

Chapter 1. 

http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Deductive_database
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To bridge the gap of expressivity, compatibility and logical decidability and reach the goals of scalable inference, 
other dialects of OWL have been created which lay between RDF(S) and OWL Lite.  0 presents a simplified map 
of the expressivity or complexity of a number of these OWL-related languages together with their bias towards 
description logic and logical programming based semantics. The diagram provides a very rough idea about the 
expressivity of the languages, based on the complexity of entailment algorithms for them. A direct comparison 
between the different languages is impossible in many of the cases. For instance, Datalog is not simpler than 
OWL DL, it just allows for a different type of complexity.  

 

Figure 2. Diagram of expressivity of OWL dialects 

OWL DLP is a non-standard dialect, offering a promising compromise between expressive power, efficient 
reasoning, and compatibility. It is defined in "Description Logic Programs: Combining Logic Programs with 
Description Logic" (Grosof et al, 2003) as the intersection of the expressivity of OWL DL and logical 
programming . In fact, OWL DLP is defined as the most expressive sub-language of OWL DL, which can be 
mapped to Datalog. OWL DLP is simpler than OWL Lite. The alignment of its semantics to the one of RDFS is 
easier, as compared to the Lite and DL dialects. Still, this can only be achieved through the enforcement of some 
additional modelling constraints and transformations. A broad collection of information related to OWL DLP 
can be found in “Ontology Logic and Reasoning at Semantic Karlsruhe”3.  DLP has certain advantages: 

● There is freedom to use either DL or LP (and associated tools and methodologies) for modelling 
purposes, depending on the modeller’s experience and preferences. 

● From an implementation perspective, either DL reasoners or deductive rule systems can be used. Thus, 
it is possible to model using one paradigm, e.g. a DL-biased ontology editor, and to use a reasoning 
engine based on the other paradigm, e.g. a semantic repository based on rules.  

These features of DLP provide extra flexibility and ensure interoperability with a variety of tools. Experience 
with using OWL has shown that existing ontologies frequently use only very few constructs outside the DLP 
language. 

 
3
 https://ieeexplore.ieee.org/document/7072815/ 

https://ieeexplore.ieee.org/document/7072815/
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Ter Horst (2005) defines RDFS extensions towards rule support and describes a fragment of OWL, more 

expressive than OWL DLP. He introduces the notion of R-entailment of one (target) RDF graph from another 

(source) RDF graph on the basis of a set of entailment rules R. R-entailment is more general than the D-
entailment used by Hayes (2004) in defining the standard RDFS semantics. Each rule has a set of premises, 
which conjunctively define the body of the rule. The premises are “extended” RDF statements, where variables 
can take any of the three positions. The head of the rule comprises one or more consequences, each of which 
is, again, an extended RDF statement. The consequences may not contain free variables, i.e. which are not used 
in the body of the rule. The consequences may contain blank nodes. 

The extension of the R-entailment (as compared to the D-entailment) is that it “operates” on top of the so-
called generalized RDF graphs, where blank nodes can appear as predicates. R-entailment rules without 
premises are used to declare axiomatic statements. Rules without consequences are used to imply 
inconsistency. 

This extension of RDFS became popular as “OWL Horst”. As outlined in "Combining RDF and Part of OWL with 
Rules: Semantics, Decidability, Complexity" (ter Horst, 2005) this language has a number of important 
characteristics: 

● It is a proper (backward-compatible) extension of RDFS. In contrast to OWL DLP, it puts no constraints 
on the RDFS semantics. The widely discussed meta-classes (classes as instances of other classes) are 
not disallowed in OWL Horst.  

● Unlike the DL-based rule languages, like SWRL (Horrocks et al, 2005), R-entailment provides a 
formalism for rule extensions without DL-related constraints; 

● Its complexity is lower than the one of SWRL and other approaches combining DL ontologies with rules 
of "Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity" (ter Horst, 2005).  

OWL Horst is supported by GraphDB and ORACLE, which makes it the OWL dialect that has the largest industry 
support. An official OWL dialect with the same properties emerged recently under the name OWL 2 RL. The 
latter is one of the tractable profiles (dialects) defined in the specification of OWL 2 (Motik et al, 2009)  – the 
next version of the OWL language that is currently in process of standardisation. OWL 2 RL is designed with the 
objective to be the most expressive OWL dialect which allows for efficient reasoning with large volumes of data 
in rule-based systems. OWL 2 RL was inspired by OWL Horst – its semantics is defined with rule language 
equivalent to R-entailment. However, OWL 2 RL is considerably more expressive than OWL Horst. Support for 
OWL 2 RL is provided by several reasoning engines, including GraphDB and ORACLE. 

Recent research reported in "UniProt in RDF: Tackling Data Integration and Distributed Annotation with the 
Semantic Web" (Redaschi and the UniProt Consortium, 2009) evaluates the level of completeness of the 
inference supported by few inference engines (namely HAWK) and semantic repositories: IBM’s Minerva, 
Sesame and GraphDB by ONTOTEXT. It demonstrates that although GraphDB supports sufficient reasoning to 

answer the LUBM4  queries correctly, it is still not complete with respect to the semantics of the data and the 
queries. 

3.2. ADVANTAGES OF THE DIFFERENT DISTRIBUTION APPROACHES 
The general approaches for distribution of database management systems are: 

● Data partitioning, where the information stored and accessed by the system is spread across multiple 
machines, so that none of them contains the entire dataset; 

● Data replication, where the entire dataset resides on each of the machines. 

Data replication is a traditional approach for boosting the read performance of a DBMS at the cost of 
redundancy and write propagation complexity. In a classic scenario, several slave nodes are assigned 

 
4 LUBM benchmark is introduced in D7.1 
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incoming read requests by a central master node that performs any sort of load balancing (e.g. round robin) 
to distribute the load evenly across the slaves. Writes are executed on the master node and updates are 
propagated to the slaves in the background. Such a setup is very appropriate in situations when a lot of 
read requests occur while write requests are rare or clustered together in large batches (for example if a 
large dataset is initially loaded in the repository). In such situations the resource-intensive replication 
procedure will not be necessary most of the time, while a theoretically linear scalability will take place on 
the reading side.  

While data partitioning looks as the more promising schema, it is also the one which is most problematic to 
implement. In general, it enables the management of larger volumes of data and provides more space for 
in-memory data-structures. Each node can apply more efficient caching and optimisation with respect to 
the fraction of the data that it deals with. Data partitioning with redundancy also allows for failover support. 
Still, the major issue is that query evaluation against distributed data requires intensive communication 
between the nodes for exchanging of intermediate results; the most common variety of such 
communication is known as “remote join”. Query optimisation schemata, which consider the 
communication costs, are far harder to implement, which triggers less-optimal query evaluation plans and 
larger overall numbers of index lookups. In large number of scenarios these effects neutralise the gains 
from the additional computing power gained from several machines. The same concerns are application for 
rule-based reasoning in repositories using data partitioning.   

Two approaches to data partitioning appear in database systems from the established distributed DBMS 
research: horizontal and vertical partitioning. The horizontal data partitioning approach partitions a dataset 
across several repository nodes where no schema limitations apply to any of the nodes.  A vertical 
partitioning approach would assign different parts of the data schema to different repository nodes, so, 
that later on requests for any type of data would be redirected to the respective repository node. This 
approach can be further extended and types of data that usually appear “close” together can be placed 
within a single node (when possible). In principle, such clustering would allow for whole sub-queries to be 
executed within a single node. It would therefore avoid the transfer of intermediate results between the 
repository nodes and the central query processing node only to complete the query. 

As an overview of the two major distribution approaches we can summarise that: 

● Data partitioning improves data scalability, however in most of the cases hampers the query evaluation 
performance due to high communication overheads. It can improve loading performance if there is no 
materialisation involved; 

● Data replication allows for better handling of concurrent query loads and failover. It is neutral with 
respect to loading and inference performance. 

None of these approaches provides a principal advantage for evaluation of complex queries. Under data 
replication one of the nodes can be off-loaded from concurrent queries, which would allow faster execution 
of a complex query. An approach known as “federated join” can in theory improve the performance of such 
queries in very specific data partitioning scenarios, where the communication costs can be minimized. 
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3.3. RELATED WORK 
3.3.1. WEBPIE BY VU AMSTERDAM  

"WebPIE (Web-scale Parallel Inference Engine)5 is a MapReduce distributed RDFS/OWL inference engine 
written using the Hadoop framework. This engine applies the RDFS and OWL ter Horst rules and it materializes 
all the derived statements." 

It's a stream of work starting from MSc thesis of Urbani (2009) supervised by Frank van Harmelen. Their notable 
achievement is performing materialization of RDFS on 100B statements using notable cluster of machines with 
high-speed connectivity funded as part of LaRCK6 project.  

The major concern about their approach is regarding the manually optimization of Map Reduce rules in a very 
special manner in order to avoid the pitfalls of remote joining, therefore implementing full OWL 2 RL this way 
is unfeasible. 

The more-recent re-implementation of WebPIE (Kim and Parkis, 2015) based on SPARK with its Resilient 
Distributed Datasets (RDDs). They achieve lower scale (less than 1B) and proud of the fact that they doubled 
the speed 5 years later.  

What evidence this provides for our deliverable:  

● Distributed reasoning is only possible for logical languages with very limited expressivity 
● Even for such languages, it requires tailor made inference flows crafted by human experts 
● Although the results demonstrated in experimental setting were very impressive in terms of scalability, 

such systems appeared impractical to exploit in enterprise setting.  
● This is way the project was abandoned and none of the commercial RDF engines with reasoning support 

adopted it.  

3.3.2. RDFOX BY OXFORD / BORIS MOTIK 

"RDFox7 is a highly scalable in-memory RDF triple store that supports shared memory parallel datalog reasoning 
behind the founded in 2017 Oxford Semantic Technology8 as university spin-off which aims to commercially 
exploit the technology. The most recent general article about the system (Kim and Park , 2015) is co-author by 
Zhe Wu – the architect of ORACLE's RDF support; ORACLE also have parallelized, but not distributed inference. 

RDFox is not a fully-fledged triplestore as discussed in “RDFox: A Highly-Scalable RDF Store” (Motik et al, 2015), 
it still does not have full SPARQL support but uses owl:sameAs optimization and incremental delete of inferred 
statements. 

Note: this is parallel inference, not distributed inference system.  

What evidence this provides for our deliverable:  

● Parallel inference is feasible and can speed up reasoning substantially, subject to very specific and 
careful implementation of lock-free data structures with low-level programming. This is why it is written 
in C++, not in Java 

 
5
 http://few.vu.nl/~jui200/webpie.html 

6
 https://cordis.europa.eu/project/rcn/85416_it.html 

7
 https://cs.ox.ac.uk/isg/tools/RDFox/ 

8 https://www.oxfordsemantic.tech/  

http://few.vu.nl/~jui200/webpie.html
https://cordis.europa.eu/project/rcn/85416_it.html
https://cs.ox.ac.uk/isg/tools/RDFox/
https://www.oxfordsemantic.tech/
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● Parallel inference is way easier to implement than distributed reasoning. The core reason of this is that 
there is no data sharding and no "remote join" problem. In 2015 the RDFox team declared future work 
plans for implementation of distributed share-nothing reasoning system. 3 years later they haven't 
published any results in this direction 

MULTI SENSOR write up on reasoning 

Multisensor deliverable 5.4 (Simeonov et al, 2016) reports relevant results on parallel inference and provides 
evidence that a general-purpose commercial data store parallelization can speed up inference at least twice, 
both for small but tangled dataset like Wordnet and for 1B triples knowledge graph. Datasets used in 
Multisensor combine DBPedia, Bablenet, statistics and other business information and the implementation of 
parallel inference has become part of GraphDB since version 7.2. However, the practical results of GraphDB 8.x9 
show that on dataset like the one of LDBC SPB, the speed up is minimal, because in SPB's knowledge graph 
provides owl:sameAs mappings the reasoning implications of which limit the applicability of some of the 
parallelization techniques.  

  

 
9
 https://ontotext.com/products/graphdb/benchmark-results/ 

https://ontotext.com/products/graphdb/benchmark-results/


 

 

Big Data to Enable Global Disruption of the Grapevine-powered industries 

 

D4.2 | Methods and Tools for Distributed Inference 
20 

 

4. IMPLEMENTATION PARADIGMS  
 
In BigDataGrapes project we envision using GraphDB by ONTOTEXT as main semantic graph database. GraphDB 

is a highly-efficient and robust graph database with RDF and SPARQL support. GraphDB uses RDF4J10 as a 
library, taking advantage of its APIs for storage and querying, as well as the support for a wide variety of query 
languages (e.g., SPARQL and SeRQL) and RDF syntaxes (e.g., RDF/XML, N3, Turtle). 
 
The development of GraphDB is partly supported by SEKT11, TAO, TripCom12, LarKC13, and 
other FP614 and FP715 European research projects16. 

Distributed inference engine for BigDataGrapes will be implemented as a set of external to GraphDB engines 
which use the APIs of the database to access the data in real time and synchronize inference indexes, power 
inference algorithms and provide provenance of the newly inferred fact.  

4.1. GRAPHDB PLUGIN API  
The most powerful access mechanism to GraphDB and its data layer is via GraphDB Plugin API. It is a framework 
and a set of public classes and interfaces that allow developers to extend GraphDB and build custom inference 
mechanism over distributed data space. These extensions are bundled into plugins, which GraphDB discovers 
during its initialisation phase and then uses to delegate parts of its query processing tasks. The plugins are given 
low-level access to the GraphDB repository data, which enables them to do their job efficiently. They are 
discovered via the Java service discovery mechanism, which enables dynamic addition/removal of plugins from 
the system without having to recompile GraphDB or change any configuration files. 

Plugin API can be effectively used to modify, filter or enrich the final results of a request which is particularly 
suitable to query-based distributed inference.  For each binding set that is to be returned to the GrapHDB client 
the implemented plugin modifies the binding set and return it. After a binding set is processed by a plugin, it is 
passed to the next plugin that has enabled post-processing. Finally, after all results are processed and returned, 
each plugin serves modified result set to the client. 

Alternatively, Plugin API can be used for custom inference as it allows for processing of data update statement 
(forward-chaining inference) as it looks for patterns containing specific predicates. It works as during 
initialization the plugin register the predicates it is interested in and then GraphDB filters updates for 
statements using these predicates and notifies the plugin. Filtered updates are not processed further by 
GraphDB, but the particular implementation of the Plugin API must handle insert or delete operation. 

Further documentation of how to implement Plugin API and provide plugin configuration can be found in 
GraphDB documentation17. 

4.2. RDF4J API EXTENSION OF GRAPHDB 
Programmatically, GraphDB can be used via the RDF4J18 Java framework of classes and interfaces. 
Documentation for these interfaces (including Javadoc19). Code snippets in the following sections are taken 
from (or are variations of) the developer-getting-started examples, which come with the GraphDB distribution.  

 
10

 http://rdf4j.org/about/ 
11

 http://www.sekt-project.com/  
12

 http://www.tripcom.org/  
13

 http://www.larkc.org/  
14

 http://cordis.europa.eu/fp6/  
15

 http://cordis.europa.eu/fp7/  
16

 http://ontotext.com/knowledge-hub/  
17

 http://graphdb.ontotext.com/documentation/standard/plug-in-api.html#making-a-plugin-configurable  
18

 http://rdf4j.org/about/ 
19

 http://docs.rdf4j.org/javadoc/latest/ 

http://www.sekt-project.com/
http://www.tripcom.org/
http://www.larkc.org/
http://cordis.europa.eu/fp6/
http://cordis.europa.eu/fp7/
http://ontotext.com/knowledge-hub/
http://graphdb.ontotext.com/documentation/standard/plug-in-api.html#making-a-plugin-configurable
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RDF4J comprises a large collection of libraries, utilities and APIs. The important components for this section 
are: 

● the RDF4J classes and interfaces (API), which provide a uniform access to the SAIL components from 
multiple vendors/publishers; 

● the RDF4J server application. 

With RDF4J 2, local repository configurations are represented as RDF graphs. To access remote repositories 
RDF4J server provides a Web application that allows interaction with repositories using the HTTP protocol. It 
runs in a JEE compliant servlet container, e.g., Tomcat, and allows client applications to interact with 
repositories located on remote machines. In order to connect to and use a remote repository, local repository 
manager must be replaced with a remote one. 

The RDF4J HTTP server is a fully fledged SPARQL endpoint - the RDF4J HTTP protocol is a superset of 
the SPARQL 1.120 protocol. It provides an interface for transmitting SPARQL queries and updates to a SPARQL 
processing service and returning the results via HTTP to the entity that requested them. 

4.3. GRAPHDB REMOTE NOTIFICATIONS 
Remote notifications are powerful mechanism for maintaining distributed inference, where changes in the 
remote instances notify the inference engine for changes on data level which affect the inferred facts and 
indexes. GraphDB’s remote notification mechanism provides filtered statement add/remove and transaction 
notifications for both local or remote GraphDB repositories. Subscribers for this mechanism use patterns of 
subject, predicate and object (with wildcards) to filter the statement notifications to only actionable ones in 
order to increase inference performance.  

Apart from the native GraphDB notifications21, RDF4J API provides such a mechanism implementing 
RepositoryConnectionListener which can be notified of changes in a NotifiyingRepositoryConnection. 
However, the GraphDB notifications API works at a lower level and uses the internal raw entity IDs for subject, 
predicate and object instead of Java objects. The benefit of this is that a much higher performance is possible. 
The downside is that the client must do a separate lookup to get the actual entity values and because of this, 
the notification mechanism works only when the client is running inside the same JVM as the repository 
instance. 

 

  

 
20

 http://www.w3.org/TR/sparql11-protocol/ 
21

 http://graphdb.ontotext.com/documentation/standard/notifications.html 
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5. DISTRIBUTED INFERENCE WITH MONGODB  
 

5.1. WHY TO CONSIDER MONGODB? 
MongoDB is an open-source No-SQL database designed for ease of development and scaling, which provides 
high performance, high availability, and automatic scaling. In a nutshell, MongoDB is the distributed 
document database with one of the biggest developers and user community and it is part of the MEAN 
technology stack.  

Similar to GraphDB, MongoDB uses a JSON and JSON-LD compatible data-interchange format - BSON - for 
modelling data as documents. The JSON-LD format is a hierarchical view of data, allowing more complex 
search queries for embedded/nested documents. It can be mapped to traditional RDF format and RDF use of 
namespaces fits well within MongoDB’s BSON document storage model.  

Furthermore, MongoDB allows for a more flexible approach to data and data changes that is closely aligned 
to the document and document annotation model, where a change in data models does not require re-
indexing unless explicitly requested. MongoDB's general-purpose approach and explicit requirement to 
introduce indices for specific performance/query evaluations is a better modelling approach than classical RDF 
semantic representation for very large document/annotation data sets/models which are likely to change. This 
lowers the impact of schema changes and guarantees scalability and performance well beyond the 
throughput supported in GraphDB.  

It should also be noted that MongoDB data modelling approach allows for simpler GraphDB mapping 
connector model/architecture than other connectors, e.g. ElasticSearch. Rather than defining explicit 
mapping of RDF property paths within GraphDB to JSON fields, as currently used within the GraphDB to 
ElasticSearch connector architecture, JSON-LD format of documents provides a simpler modelling approach 
where the graph references are provided as LD context within JSON files. RDF Quads can simply be converted 
to JSON-LD within the context of a named graph.  

In BigDataGrapes we have use-cases (in WP8) with extreme scalability requirements and relatively simple data 
models (modelled in WP3) (i.e., tree representations of a document or image collection with its meta-data) 
that suggest usage of highly scalable document store in addition to GraphDB. Therefore, choosing the de 
facto state of-the-art distributed document store, our evaluation is focused on inference paradigms, instead 
of document store distributed implementation.  

5.2. MAPPING APPROACHES FOR MONGODB DOCUMENTS IN JSON FORMAT TO RDF 

We have identified three possible implementations: 

1. By custom mappings via DocManager for each use case – this is the most powerful way since it poses 
virtually no limitation on the data replication.  

2. By convention via DocManager – transforming documents to property graph model, which works well 
for simple documents only. 

3. By convention via JSON-LD – this is probably the most elegant mapping since JSON-LD allows to 
annotate any JSON document with additional metadata used as tip for its transformation to RDF 
format. The tips become quite complex when namespace, context and URI patterns are combined 
altogether. 

We have chosen to implement JSON-LD mapping approach. For example, a MongoDB document from the 
LDBC SPB benchmark (see 6 Evaluation of MongoDB Inference Scenarios) would look like the follows:  

 
{ 
 "_id" : ObjectId("5bbde32067710d51290ef227"), 
 "@graph" : [ 
  { 

https://www.mongodb.com/
http://meanjs.org/
http://meanjs.org/
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   "@id" : "http://www.bbc.co.uk/things/1#id", 
   "@type" : "cwork:NewsItem", 
   "bbc:primaryContentOf" : [ 
    { 
     "@id" : "bbcd:7#id", 
     "bbc:webDocumentType" : { 
      "@id" : "bbc:HighWeb" 
     } 
    }, 
    { 
     "@id" : "bbcd:8#id", 
     "bbc:webDocumentType" : { 
      "@id" : "bbc:Mobile" 
     } 
    } 
   ], 
   "cwork:about" : [ 
    { 
     "@id" : "dbpedia:AccessAir" 
    }, 
    { 
     "@id" : "dbpedia:Battle_of_Bristoe_Station" 
    }, 
    { 
     "@id" : "dbpedia:Nicolas_Bricaire_de_la_Dixmerie" 
    }, 
    { 
     "@id" : "dbpedia:Bernard_Roberts" 
    }, 
    { 
     "@id" : "dbpedia:Bartolomé_de_Medina" 
    }, 
    { 
     "@id" : "dbpedia:Don_Bonker" 
    }, 
    { 
     "@id" : "dbpedia:Cornel_Nistorescu" 
    }, 
    { 
     "@id" : "dbpedia:Clete_Roberts" 
    }, 
    { 
     "@id" : "dbpedia:Mark_Palansky" 
    }, 
    { 
     "@id" : "dbpedia:Paul_Green_(taekwondo)" 
    }, 
    { 
     "@id" : "dbpedia:Mostafa_Abdel_Satar" 
    }, 
    { 
     "@id" : "dbpedia:Tommy_O'Connell_(hurler)" 
    }, 
    { 
     "@id" : "dbpedia:Ahmed_Ali_Salaad" 
    } 
   ], 
   "cwork:altText" : "thumbnail atlText for CW http://www.bbc.co.uk/context/1#id", 
   "cwork:audience" : { 
    "@id" : "cwork:NationalAudience" 
   }, 
   "cwork:category" : { 
    "@id" : "http://www.bbc.co.uk/category/Company" 
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   }, 
   "cwork:dateCreated" : { 
    "@type" : "xsd:dateTime", 
    "@value" : "2011-03-19T13:02:55.495+02:00", 
    "@date" : ISODate("2011-03-19T11:02:55.495Z") 
   }, 
   "cwork:dateModified" : { 
    "@type" : "xsd:dateTime", 
    "@value" : "2012-03-20T18:32:39.165+02:00", 
    "@date" : ISODate("2012-03-20T16:32:39.165Z") 
   }, 
   "cwork:description" : " constipate meant breaking felt glitzier democrat's huskily breeding solicit 
gargling.", 
   "cwork:liveCoverage" : { 
    "@type" : "xsd:boolean", 
    "@value" : "false" 
   }, 
   "cwork:mentions" : { 
    "@id" : "geonames:2862704/" 
   }, 
   "cwork:primaryFormat" : [ 
    { 
     "@id" : "cwork:TextualFormat" 
    }, 
    { 
     "@id" : "cwork:InteractiveFormat" 
    } 
   ], 
   "cwork:shortTitle" : " closest subsystem merit rebuking disengagement cerebrums caravans conduction 
disbelieved might.", 
   "cwork:thumbnail" : { 
    "@id" : "bbct:1361611547" 
   }, 
   "cwork:title" : "Beckhoff greatly agitators constructed racquets industry restrain spews pitifully 
undertone stultification." 
  } 
 ], 
 "@id" : "bbcc:1#id", 
 "@context" : { 
  "bbc" : "http://www.bbc.co.uk/ontologies/bbc/", 
  "cwork" : "http://www.bbc.co.uk/ontologies/creativework/", 
  "bbcc" : "http://www.bbc.co.uk/context/", 
 } 
} 

 
Where: 

● @graph node represents the RDF context in the JSON-LD doc. 

● _id key is a Mongo internal key. 

● @type xsd:dateTime date has a @date key with a ISODate(...) value. This is not related to the JSON-
LD standard and is ignored when the doc is parsed to RDF Model. The dates are extended for faster 
search/sorting. The ISODate in Mongo is its internal way to store dates and is optimized for searching. 
This step will make querying/sorting by this date field easier but is optional. 
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5.3. INTEGRATING MONGODB WITH GRAPHDB 

Note: Querying MongoDB’s JSON-LD serialized data using GraphDB plugin for MongoDB is publicly available 
since the release of GraphDB v. 8.0.0 ( see http://graphdb.ontotext.com/documentation/standard/release-
notes.html) 

 

The integration between GraphDB and MongoDB is implemented as a GraphDB plugin (see 4.1 GraphDB Plugin 
API), which sends a request to MongoDB then transforms the result (which is expected to be a valid JSON-LD 
document) to RDF model (see the Architecture - component diagram below).  

In order to be converted to RDF Models, the documents in Mongo should be represented as valid JSON-LD, 
where each document must be in separate context. This guarantees that the relationship between the 
statements in GraphDB and documents in MongoDB is preserved when selected documents are retrieved 
from MongoDB and made available for GraphDB in order to perform inference. Current implementation 
supports integration on the level of documents, while retrieval optimisation on selecting only relevant parts 
of documents is included in the future development plans. 

 

 

 

5.4. CREATING AN INDEX 
To configure GraphDB with MongoDB connection settings we need to set: 

● The server where MongoDB is running; 

● The port on which MongoDB is listening; 

● The name of the database you are using; 

● The name of the MongoDB collection you are using; 

http://graphdb.ontotext.com/documentation/standard/release-notes.html
http://graphdb.ontotext.com/documentation/standard/release-notes.html


 

 

Big Data to Enable Global Disruption of the Grapevine-powered industries 

 

D4.2 | Methods and Tools for Distributed Inference 
26 

 

● The credetentials - (Optional unless you are using authentication) the username and password that 
will let you connect to the database. 

Below is a sample query of how to create a MongoDB index: 

PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
INSERT DATA { 
    inst:spb1000 :service "mongodb://localhost:27017" ; 
        :database "ldbc" ; 
        :collection "creativeWorks" . 
} 
 

Supported predicates: 

● :service - MongoDB connection string; 

● :database - MongoDB database; 

● :collection - MongoDB collection; 

● :user - (optional) MongoDB user for the connection; 

● :password - (optional) the user’s password; 

● :authDb - (optional) the database where the user is authenticated; 

5.5. DELETING AN INDEX 
Deletion of an index is done using the following query: 

PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
INSERT DATA { 
        inst:spb1000 :drop _:b . 
} 

5.6. AUTHENTICATION 
All types of authentication can be achieved by setting the credentials in the connection string. However, as it 
is not a good practice to store the passwords in plain text, the :user, :password and :authDb predicates are 
introduced. If one of those predicates is used, it is mandatory to set the other two as well. These predicates 
set credentials for SCRAM and LDAP authentication and the password is stored encrypted with a symmetrical 
algorithm on the disk. For x.509 and Kerberos authentication the connection string should be used as no 
passwords are being stored. 

5.7. QUERYING MONGODB 
Below is a sample query which returns the dateModified for docs with the specific audience: 

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
 
SELECT ?creativeWork ?modified WHERE { 
        ?search a inst:spb1000 ; 
                :find '{"@graph.cwork:audience.@id" : "cwork:NationalAudience"}' ; 
                :entity ?entity . 
        GRAPH inst:spb1000 { 
                ?creativeWork cwork:dateModified ?modified . 
        } 
} 

https://docs.mongodb.com/manual/core/security-scram/
https://docs.mongodb.com/manual/core/security-ldap-external/
https://docs.mongodb.com/manual/core/security-x.509/
https://docs.mongodb.com/manual/core/kerberos/
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In a query, use the exact values as in the docs. For example, if the full URIs are used instead 
of “cwork:NationalAudience” or “@graph.cwork:audience.@id” there wouldn’t be any matching results. 

The :find argument is a valid BSON document. 

Note 

The results are returned in a named graph to indicate when the plugin should bind the variables. This is an API 
plugin limitation. The variables to be bound by the plugin are in a named graph. This allows GraphDB to 
determine whether to bind the specific variable using MongoDB or not. 

Supported predicates: 

● :find - accepts single BSON and sets a query string. The value is used to call db.collection.find(); 

● :project - accepts single BSON. The value is used to select the projection for the results returned 
by :find. Find more info at MongoDB: Project Fields to Return from Query. 

● :aggregate - accepts an array of BSONs. Calls db.collection.aggregate(). This is the most flexible way 
to make a MongoDB query as the find()method is just a single phase of the aggregation pipeline. 
The :aggregate predicate takes precedence over :find and :project. This means that if 
both :aggregate and :find are used :find will be ignored. 

● :graph - accepts an IRI. Specifies the IRI of the named graph in which the bound variables should be. 
Its default value is the the name of the index itself. 

● :entity - (REQUIRED) returns the IRI of the MongoDB document. If the JSON-LD has context, the value 
of @graph.@id is used. In case of multiple values, the first one is chosen and a warning is logged. If 
the JSON-LD has no context, the value of @id node is used. Even if the value from this predicate is not 
used, it is required to have it in the query in order to inform the plugin that the graph part of the 
current iteration is completed. 

● :hint - specifies the index to be used when executing the query (calls cursor.hint()) 

5.8. MULTIPLE INDEX CALLS IN THE SAME QUERY 
Multiple MongoDB calls are supported in the same query. There are two approaches: 

● Each index call to be in a separate subselect (Example 1); 

https://docs.mongodb.com/manual/tutorial/project-fields-from-query-results/
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● Each index call to use different named graph. If querying different indexes, this comes out-of-the-box. 
If not, use the :graph predicate. (Example 2). 

Example 1: 

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
SELECT ?creativeWork ?modified WHERE { 
    { 
        SELECT ?creativeWork ?modified { 
            ?search a inst:spb1000 ; 
                :find '{"@graph.@id" : "http://www.bbc.co.uk/things/1#id"}' ; 
                :entity ?creativeWork . 
            GRAPH inst:spb1000 { 
                ?creativeWork cwork:dateModified ?modified ; 
            } 
        } 
    } 
    UNION 
    { 
        SELECT ?creativeWork ?modified WHERE { 
            ?search a inst:spb1000 ; 
                :find '{"@graph.@id" : "http://www.bbc.co.uk/things/2#id"}' ; 
                :entity ?entity . 
            GRAPH inst:spb1000 { 
                ?creativeWork cwork:dateModified ?modified ; 
            } 
        } 
    } 
} 

Example 2: 

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
SELECT ?creativeWork ?modified WHERE { 
    { 
        ?search a inst:spb1000 ; 
                :graph :search1 ; 
                :find '{"@graph.@id" : "http://www.bbc.co.uk/things/1#id"}' ; 
                :entity ?creativeWork . 
        GRAPH :search1 { 
                ?creativeWork cwork:dateModified ?modified ; 
        } 
    } 
    UNION 
    { 
        ?search a inst:spb1000 ; 
                :graph :search2 ; 
                :find '{"@graph.@id" : "http://www.bbc.co.uk/things/2#id"}' ; 
                :entity ?entity . 
        GRAPH :search2 { 
                ?creativeWork cwork:dateModified ?modified ; 
        } 
    } 
} 

Both examples return the same result. 
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5.9. USING AGGREGATION FUNCTIONS 

MongoDB has a number of aggregation functions such as: min, max, size, etc. These functions are called using 
the :aggregate predicate. The data of the retrieved results has to be converted to RDF model. The example 
below shows how to retrieve the RDF context of a MongoDB document. 

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT ?s ?o { 
    ?search a inst:spb1000 ; 
        :aggregate '''[{"$match": {"@graph.@id": "http://www.bbc.co.uk/things/1#id"}}, 
                {'$addFields': {'@graph.cwork:graph.@id' :  '$@id'}}]''' ; 
        :entity ?entity . 
    GRAPH inst:spb1000 { 
        ?s cwork:graph ?o . 
    } 
} 

The $addFields phrase adds a new nested document in the JSON-LD stored in MongoDB The newly added 
document is then parsed to the following RDFstatement: 

<http://www.bbc.co.uk/things/1#id> cwork:graph <http://www.bbc.co.uk/context/1#id> 

We retrieve the context of the document using the cwork:graph predicate. 

This approach is really flexible but is prone to error. 

Let’s examine the following query: 

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 
SELECT ?g1 ?g2 { 
    ?search a inst:spb1000 ; 
        :aggregate '''[{"$match": {"@graph.@id": "http://www.bbc.co.uk/things/1#id"}}, 
                {'$addFields': {'@graph.inst:graph.@id' :  '$@id'}}]''' ; 
        :entity ?entity . 
    GRAPH inst:spb1000 { 
        OPTIONAL { 
            ?s inst:graph ?g1 . 
        } 
        ?s <inst:graph> ?g2 . 
    } 
} 

It looks really similar to the first one except that instead of @graph.cwork:graph.@id we are writing the value 
to @graph.inst:graph.@id and as a result ?g1will not get bound. This happens because in the JSON-LD stored in 
MongoDB we are aware of the cwork context but not of the inst: context. In this way ?g2 will get bound 
instead. 
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5.10. CUSTOM FIELDS 
Example: 

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/> 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 
PREFIX : <http://www.ontotext.com/connectors/mongodb#> 
 
SELECT ?size ?halfSize { 
    ?search a inst:spb1000 ; 
        :aggregate '''[{"$match": {"@graph.@type": "cwork:NewsItem"}}, 
                {"$count": "size"}, 
                {"$project": {"custom.size": "$size", "custom.halfSize": {"$divide": ["$size", 2]}}}]''' ; 
        :entity ?entity . 
    GRAPH inst:spb1000 { 
        ?s inst:size ?size ; 
        inst:halfSize ?halfSize . 
    } 
} 
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6. EVALUATION OF MONGODB INFERENCE SCENARIOS 

We envision three scenarios for distributed inference in the context of integration of GraphDB with 
MongoDB: 

● Scenario 1: Backward-chaining query rewrite  

● Scenario 2: Forward-chaining materialisation in MongoDB 

● Scenario 3: Forward-chaining materialisation in GraphDB  

In the following sessions we describe each of the scenarios and discuss their advantages and disadvantages 

6.1. EVALUATION METHODOLOGY 
To comply with industry standards for performance measurement of implementation strategies , we have 
evaluated distributed inference using MondoDB in accordance to Linked Data Benchmark Council (LDBC) 
Semantic Publishing Benchmark.  LDBS is established as an independent authority responsible for specifying 
benchmarks, benchmarking procedures and verifying/publishing results for software systems designed to 
manage graph and RDF data.  
 
In particular we have chosen Semantic Publishing Benchmark v2.0 (SPB) of LDBC . SPB is inspired by the 
Media industry imitating the BBC’s Dynamic Semantic Publishing approach. Its evaluation scenario considers 
large volume of streaming content, namely news, buts it is applicable to all forms of media assets.  This 
content is provided as enriched asset with metadata which describes its links to reference data – rich 
semantic knowledge graph, ontologies and taxonomies - that include relevant concepts, entities and factual 
information. Actual content enrichment and generation of its metadata is out-of-scope of the benchmark and 
is provided primer to the evaluations.  
 
Both screaming nature of the data and the rich semantic metadata of the SPB, as well as the fact that it is 
especially designed for RDF database engines, make it particularly relevant for evaluating integration 
scenarios of GraphDB and MongoDB in BigDataGrapes context.  
 
The main interactions with the repository that are measured are (i) updates, that add new metadata or alter 
it, and (ii) queries, that retrieve content according to various criteria. Queries in SBP measure the efficiency of 
retrieving relevant content according to twelve pre- defined information questions that require inference.  
 
The SBP is provided as synthetic data set generator (software component) and set of 12 queries to be 
executed against the generated data set. The original code base of the benchmark assumes that an RDF 
database is used to store both the reference knowledge (mostly static) and the metadata (that grows 
constantly, to stay in synch with the inflow of streaming content).  
 
To allow using the same data set and queries to measure distribution of data between GraphDB as RDF and 
MongoDB as JSON_LD and to finally measure the efficiency of inference our experiments required 
modifications in both: the dataset generator as well as on query syntax to query both GraphDB and MongoDB 
for retrieve the data for each information question (query).   
 
Each of the scenarios we have evaluated required different approach for data and query distribution among 
GraphDB and MongoDB.  
 
Evaluation is performed with a dataset of 256 million documents, written by 4 agents and queried by 8 agents. 
Initial set of tests – insert, update and delete are limited to 600 seconds.  

 

http://www.ldbc.eu/
http://ldbcouncil.org/developer/spb
http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
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6.2. SCENARIO 1: BACKWORD-CHAINING QUERY REWRITE 

This is the simplest scenario of all the three ones in focus of this evaluation. Here there is a clear separation 
between knowledge graph and streaming data - knowledge graph is stored in GraphDB, while the streaming 
data is modelled as documents in MongoDB. The links between the two are implemented as using persistent 
URIs for concepts both in GraphDB and within documents. No inferences is materialised at the data insertion 
time as the links are virtual. Therefore, this scenario uses backword-chaining (see 2.3 Query-based inference).  
After the knowledge graph is loaded in GraphDB data insertion is performed on a single step:  

Step 1. Each asset/streaming data object along with its metadata is modelled as JSON-LD document and it is 
inserted into MongoDB.  

The advantage of this scenario is in data ingestion time. As there is no inference at ingestion time, and no 
duplication (de-normalisation) of any data, writes are extremely fast (see Evaluation results analysis).  

While on the query time this scenario may perform as well as the other two, the main disadvantage is seen in 
queries that rely in inferenced data and data aggregations.  

6.3. SCENARIO 1 EVALUATION RESULTS: 
Seconds: 600 
2019-03-22 11:43:08 (completed query mixes: 8) 
 Editorial: 
  4 agents 
 
  143629 inserts (avg : 6       ms, min : 1       ms, max : 606     ms) 
  17887 updates (avg : 34      ms, min : 6       ms, max : 3776    ms) 
  17950 deletes (avg : 32      ms, min : 4       ms, max : 3770    ms) 
 
  179466 operations (143629 CW Inserts (0 errors), 17887 CW Updates (0 errors), 17950 CW 
Deletions (0 errors)) 
  299.1100 average operations per second 
 
 Aggregation: 
  8 agents 
 
  9     Q1   queries (avg : 102     ms, min : 5       ms, max : 424     ms, 0 errors) 
  11    Q2   queries (avg : 11      ms, min : 4       ms, max : 49      ms, 0 errors) 
  10    Q3   queries (avg : 36      ms, min : 4       ms, max : 161     ms, 0 errors) 
  10    Q4   queries (avg : 10      ms, min : 3       ms, max : 29      ms, 0 errors) 
  10    Q5   queries (avg : 1930    ms, min : 5       ms, max : 12334   ms, 0 errors) 
  11    Q6   queries (avg : 178     ms, min : 46      ms, max : 699     ms, 0 errors) 
  9     Q7   queries (avg : 363     ms, min : 89      ms, max : 983     ms, 0 errors) 
  11    Q8   queries (avg : 7       ms, min : 2       ms, max : 46      ms, 0 errors) 
  0     Q9   queries (avg : 0       ms, min : 0       ms, max : 0       ms, 0 errors) 
  12    Q10  queries (avg : 240     ms, min : 4       ms, max : 1191    ms, 0 errors) 
  10    Q11  queries (avg : 170     ms, min : 78      ms, max : 385     ms, 0 errors) 
  12    Q12  queries (avg : 33      ms, min : 12      ms, max : 152     ms, 0 errors) 
 
  115 total retrieval queries (0 errors) 
  0.1919 average queries per second 
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6.4. SCENARIO 2: FORWARD-CHAINING MATERIALIZATION IN MONGODB 

In this scenario SBP rich semantic knowledge graph is stored in GraphDB as originally designed by the 
benchmark, however all SBP assets are stored as documents in MongoDB. Furthermore, we use forward-
chaining approach (described in section 2.1 Rule-based inference) to implement inference and distribute it 
using native MongoDB distribution mechanism. The materialisation is performed on MongoDB document 
insertions (write) time where the materialisation for each document is executed in two steps:  

Step 1. All references to knowledge graph originally found in the asset’s metadata are looked up in 
GraphDB where their inference closer is retrieved from. In this way the inference is originated in GraphDB and 
provided as pre-calculated output to MongoDB along with the document original content.  

Step 2. When writing documents to MongoDB all concepts that are retrieved from GraphDB are 
inserted into the document, expanding the document, and only then the documents is submitted to 
MongoDB. In this way the document is enlarged to accommodate already pre-calculated inference and is 
distributed along with the document on MongoDB’s native distribution mechanism.  

Our Implementation of this scenario is realised as a modification of the original synthetic data generation tool 
where data is generated, where only semantic knowledge graph is stored in GraphDB. Extension of this tool 
retrieves relevant data from GraphDB and imports it along with the documents in MongoDB. In general, it 
monitors a collection in MongoDB and extends all new documents with inferred statements from GraphDB. 

Alternative implementation, foreseen in the future that is easier for administration but more complex as 

development efforts, is to use GraphDB remote notification mechanism (see section 4.3 GraphDB remote 
notifications) and perform in-memory inference and extend the documents concept list while submitting 
documents to MongoDB via GraphDB.  

The advantage of this scenario is that one can query MongoDB directly having all semantics materialised and 
will improve query time (see section Evaluation results, where the evaluation setting creates an array 
cwork:tags which combines cwork:about and cwork:mentions). This will greatly reduce the execution 
complexity of queries compared to other scenarios.  

Main disadvantage of this scenario comes from the fact that the knowledge graph data in GraphDB can 
evolve and this requires proper synchronisation mechanisms between already materialised inference in 
MongoDB and GraphDB updates. This is potentially possible to be implemented with GraphDB remote 
notification mechanism (see section 4.3 GraphDB remote notifications) and is subject of future development. 
Still keeping the documents is MongoDB up-to-date when the reference data in GraphDB is changed may be 
tricky. 

6.5. SCENARIO 2 EVALUATION RESULTS: 
Seconds  600 
2019-03-22 10:42:14 (completed query mixes: 17) 
 Editorial: 
  4 agents 
 
  5808 inserts (avg : 363     ms, min : 178     ms, max : 3436    ms) 
  678   updates (avg : 366     ms, min : 223     ms, max : 1708    ms) 
  732   deletes (avg : 23      ms, min : 1       ms, max : 467     ms) 
 
  7218 operations (5808 CW Inserts (0 errors), 678 CW Updates (0 errors), 732 CW Deletions (0 
errors)) 
  12.0300 average operations per second 
 
 Aggregation: 
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  8 agents 
 
  20    Q1   queries (avg : 50      ms, min : 5       ms, max : 176     ms, 0 errors) 
  20    Q2   queries (avg : 4       ms, min : 3       ms, max : 8       ms, 0 errors) 
  20    Q3   queries (avg : 14      ms, min : 3       ms, max : 85      ms, 0 errors) 
  21    Q4   queries (avg : 6       ms, min : 3       ms, max : 51      ms, 0 errors) 
  20    Q5   queries (avg : 1042    ms, min : 106     ms, max : 10375   ms, 0 errors) 
  19    Q6   queries (avg : 95      ms, min : 47      ms, max : 200     ms, 0 errors) 
  19    Q7   queries (avg : 33      ms, min : 21      ms, max : 107     ms, 0 errors) 
  20    Q8   queries (avg : 4       ms, min : 2       ms, max : 11      ms, 0 errors) 
  17    Q9   queries (avg : 176029  ms, min : 166625  ms, max : 185911  ms, 0 errors) 
  21    Q10 queries (avg : 345     ms, min : 5       ms, max : 1396    ms, 0 errors) 
  18    Q11 queries (avg : 323     ms, min : 70      ms, max : 1507    ms, 0 errors) 
  20    Q12 queries (avg : 3       ms, min : 2       ms, max : 6       ms, 0 errors) 

 

6.6. SCENARIO 3: FORWARD-CHAINING MATERIALISATION IN GRAPHDB 

In this scenario we again use forward-chaining approach (described in section 2.1 Rule-based inference), which 
is performed on document insertions (write) time. In contrast to Scenario 2: Forward-chaining materialization 
in MongoDB where documents are enlarged with materialised inference results, in this second scenario the 
knowledge graph is enlarged with relations data between assets and the extracted metadata. All reference 
data – knowledge graph – is stored in GraphDB, all asset data along with its metadata is stored in MongoDB, 
while some of the metadata is duplicated in GraphDB as well. This is performed in two steps:   

For each document the materialisation is executed in two steps:  

Step 1. Each asset is modelled as a document and stored in MongoDB and reference to this document is 
modelled as “creative work” concept and stored in GraphDB as well. 

Step 2. All references in each asset’s metadata to concepts in the knowledge graph are modelled as relations 
between the corresponding “creative work” and referred concept.  

In this way all references to knowledge graph originally found in the asset’s metadata are stored in GraphDB 
with links to the MongoDB documents by URI. The inference is natively materialised in GraphDB and only the 
streaming part of the data which constitutes the larger volume of is distributed.  

Querying data in this scenario is realised as hybrid queries where document URIs are identified in GraphDB 
and the actual document are retrieved from MongoDB.  

The advantage of this scenario addresses the disadvantage of Scenario 1 and changes in the knowledge graph 
are natively handled in GraphDB. As the links between screaming assets and the corresponding concepts they 
refer to are stored in GraphDB and the inference is materialised in the same place, changes in the knowledge 
graph are handled efficiently by GraphDB.  

Main disadvantage of this approach is that some of the data is de-normalised and duplicated in GraphDB and 
potentially can hit its scalability limits.  

 
 

6.7. SCENARIO 3 EVALUATION RESULTS: 
Seconds : 600 
2019-03-15 16:58:08 (completed query mixes : 37) 
    Editorial: 
        4 agents 
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        10609 inserts (avg : 169     ms, min : 45      ms, max : 3949    ms) 
        1345  updates (avg : 212     ms, min : 87      ms, max : 2019    ms) 
        1376  deletes (avg : 203     ms, min : 38      ms, max : 3982    ms) 
 
        13330 operations (10609 CW Inserts (0 errors), 1345 CW Updates (0 errors), 1376 CW Deletions (0 errors)) 
        22.2167 average operations per second 
 
    Aggregation: 
        8 agents 
 
        42    Q1   queries (avg : 113     ms, min : 4       ms, max : 716     ms, 0 errors) 
        40    Q2   queries (avg : 11      ms, min : 4       ms, max : 29      ms, 0 errors) 
        42    Q3   queries (avg : 16      ms, min : 3       ms, max : 33      ms, 0 errors) 
        39    Q4   queries (avg : 43      ms, min : 4       ms, max : 112     ms, 0 errors) 
        40    Q5   queries (avg : 62931   ms, min : 51161   ms, max : 79797   ms, 0 errors) 
        40    Q6   queries (avg : 533     ms, min : 42      ms, max : 3732    ms, 0 errors) 
        40    Q7   queries (avg : 9309    ms, min : 2550    ms, max : 30476   ms, 0 errors) 
        41    Q8   queries (avg : 3       ms, min : 2       ms, max : 8       ms, 0 errors) 
        42    Q9   queries (avg : 379     ms, min : 127     ms, max : 873     ms, 0 errors) 
        39    Q10  queries (avg : 9138    ms, min : 4       ms, max : 36280   ms, 0 errors) 
        42    Q11  queries (avg : 31      ms, min : 19      ms, max : 96      ms, 0 errors) 
        40    Q12  queries (avg : 21      ms, min : 9       ms, max : 120     ms, 0 errors) 
 
        487 total retrieval queries (0 errors) 
        0.8122 average queries per second 

 
 
 

6.8. EVALUATION RESULTS ANALYSIS  
In the evaluation result comparison, we are analysing the performance of each of the three scenarios 
described above. The baseline for evaluation is served by original design on LDBC SPB for querying a graph 
database, in our experiment GraphDB. All documents as well as the inferred statements are stored using 
GraphDB native forward-chaining mechanism.  
 
Our analysis considers both aspects of the benchmark: Insert, Update and Delete; as well as runtime query 
performance for selected 12 queries described in APPENDIX I - SPB Query Description. 

6.9. INSERT, UPDATE AND DELETE 
As expected, Scenario 1: Backword-chaining query rewrite (see the table below) performs much better on all 
basic database interactions as the load of inference is moved on query time. Scenario 2: Forward-chaining 
materialization in MongoDB performs worse because of the extra queries sent to GraphDB for each reference 
from a document (to be stored in MongoDB) and corresponding concepts in the knowledge graph.   

 
 

Evaluation Baseline Scenario 1 Scenario 2 Scenario 3 

Insertion per 600 sec 11,217 inserts  143,629 inserts  5,808 inserts 10,609 inserts 

Insert average  24 ms 6 ms 363 ms 169 ms 

Updates per 600 sec 1,408 updates  17,887 updates  678 updates 1,345 updates 
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Update average 194 ms 34 ms 366 ms 212 ms 

Deletes per 600 sec 1,384 deletes 17,950 deletes 6732   deletes 1,376 deletes 

Deletes average 174 ms 32 ms 23 ms 203 ms 

 
 

 

6.10. QUERY PERFORMANCE 
As noted in the table below, those queries that don’t imply usage of inference performed better in Scenario 1 
and Scenario 2, while heavy inference queries as queries that rely on aggregation functions as Q7 and Q9, 
perform better in GraphDB.  

 

Evaluation Baseline Scenario 1 Scenario 2 Scenario 3 

Q1 avg in ms 171 102 50 113 

Q2 avg in ms 6 11 4 11 

Q3 avg in ms 74 36 14 16 

Q4 avg in ms 57 10 6 43 

Q5 avg in ms 131 1930 1042 62,931 

Q6 avg in ms 70 178 95 533 

Q7 avg in ms 9 363 33 9,309 

Q8 avg in ms 5 7 4 3 

Q9 avg in ms 277 0 176029 379 

Q10 avg in ms 513 240 345 9,138 

Q11 avg in ms 98 170 323 31 

Q12 avg in ms 14 33 3 21 

 
 
 
 

7. METHODOLOGY FOR CHOOSING AN APPROACH 
We have 3 possible approaches. It is important to identify which cases do each of the approaches 
cover. This is essential in order to pick an approach for our datasets. The scenarios are evaluated 
based on the two dimensions:  

● Insertion & update performance 
● Query time performance 

 
There is an obvious tradeoff between the two dimensions. The backward chaining vs forward 
chaining approaches differ exactly in those dimensions. Usually the backward chaining approach is 
fast for insertion and deletes but has poorer performance as compared to the forward chaining 
where the inference is calculated during ingestion. The difference in performance could be negligible 
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if short graph traversals are used for the inference. Such a corner case can only be discovered 
through evaluation. Here we have our very first differentiator which has to be taken into 
consideration when choosing an approach. If the data you ingest is extremely volatile and your first 
concern is to have fast updates then you should choose the backpropagation approach. This will 
have an impact on the query time performance but your database will be kept up to-date and will be 
able to scale efficiently. Generally speaking this will not be the most used approach. When opting for 
using triple stores the people usually want to have quick graph traversals thus some kind of 
inference should be involved.  
 
If you care for query time performance and need non-minimal inference then you should choose 
between scenario 2 and 3. The differences between the two are more subtle than those between 
forward and backward chaining thus picking out the right one for your use case is harder.  
 

7.1 INSERT PERFORMANCE 

Scenario 2 has performance 2N, while Scenario 3 has performance N. Where N is the time for insert. 
This would mean that Scenario 3 performs two times better than scenario 2. This can be explained 
because in scenario 3 the data is present locally within the JVM of the GraphDB. No communication 
with other services is required in order to infer some statements. 
 

7.2 QUERY PERFORMANCE 
In Table X we have analyzed the differences between the performance of the two scenarios. Where 
N is the time smallest time taken for the two scenarios. The other columns are normalized by the 
original value divided by N. Where we see the value 1 for a use case it means that it is the faster 
option. We can see that scenario 2 performs better for 9 out of the 12 queries. The differences 
between the other 3 (Q8, Q9 & Q11) should be analysed.  
 

● Q8 the difference is negligible, in absolutes it is 1ms. 
● Q9 the difference is staggering and the scenario basically fails in this use case. The results are 

returned in over 3 minutes compared to 379ms for scenario 3. Root cause analysis should be 
done to further understand the difference in performance. 

● Q11 the difference is of significance, but still the result is returned within 323ms. 
 
 

Evaluation N Scenario 2 in times N Scenario 3 in times N 

Q1 avg in ms 50 1 2.26 

Q2 avg in ms 4 1 2.75 

Q3 avg in ms 14 1 1.14285714285714 

Q4 avg in ms 6 1 7.16666666666667 

Q5 avg in ms 1042 1 60.39443378119 

Q6 avg in ms 95 1 5.61052631578947 

Q7 avg in ms 33 1 282.090909090909 

Q8 avg in ms 3 1.33333333333333 1 
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Q9 avg in ms 379 464.456464379947 1 

Q10 avg in ms 345 1 26.4869565217391 

Q11 avg in ms 31 7.48387096774194 1 

Q12 avg in ms 3 1 7 

 

7.3 Q9 QUERY TIME BEHAVIOUR 
 

The query is characterized by a complex aggregation logic. In the SPARQL the query seems simple and 

optimized by the underlying query engine. In order to accommodate the query via MongoDB we have created 

the aggregation pipeline. For the purpose of supporting generic queries we have created a single index per 

field we have used. This is not optimal for this particular type of query. Here we have filtering by multiple 

fields with different cardinality which results in query time joining of the two indexes. This is not the most 

efficient way possible for these types of queries. MongoDB supports hierarchical indexing. By using such 

indexing the query time would be decreased and could possibly become less than a minute. 

 

7.4 CHOOSING THE BEST SCENARIO 
 

Based on the analysis we can easily define the rules and guidelines for choosing the best approach for your 

use case.  

1. Do you have very volatile data and a paramount need to be always up to date with it? Don’t you use 

inference frequently or can you compromise query time performance for it? - If yes, then choose 

scenario 1. 

2. Do you need very fast and optimizable queries? Are you willing to invest in maintenance and higher 

cost for set up? Are you ok with analysing your need for specific indexes and checking for degrading 

performance? - If yes, then choose scenario 2. 

3. Do you need a generic purpose graph with consistent performance (though not the best one) with 

low maintenance costs? - If yes, then choose scenario 3 (best for exploratory work).   
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8. THE USE CASE 
 

We have picked a use case scenario on which we will apply a distributed inference approach discussed in the 

previous sections. In this use case we have data for estates and two types of observations related to these 

estates - meteorological data and samples gathered from a field and tested in a lab.  

 

The data sources were transformed into RDF format by using the TARQL tool. TARQL (Tabular SPARQL) is a 

command-line tool for converting CSV files to RDF using SPARQL 1.1 syntax. It’s written in Java and based on 

Apache ARQ.  Тhe CSV file’s contents are input into the query as a table of bindings. This allows manipulation 

of CSV data using the full power of SPARQL 1.1 syntax, and in particular the generation of RDF using 

CONSTRUCT queries.  TARQL is particularly useful as it is lightweight, efficient and works in streaming mode.  

 

 

8.1 ESTATES DATA 

The estates data includes a unique identifier, the estate name and a geographic polygon for its 
location. The name and geographic boundaries of the estates don’t change often thus we can deem 
this data static or at least close to static.  

 estate 
name 

1 http://data.bigdatagrapes.eu/resource/Symbeeosis/estate/RIRA "RIRA Vineyards" 

2 http://data.bigdatagrapes.eu/resource/Symbeeosis/estate/Skouras "Skouras winery" 

3 http://data.bigdatagrapes.eu/resource/Symbeeosis/estate/Papagiannoulis "Papagiannoulis 

Winery" 

4 http://data.bigdatagrapes.eu/resource/Symbeeosis/estate/Papagiannakos "Papagiannakos 

domaine" 

5 http://data.bigdatagrapes.eu/resource/Symbeeosis/estate/Semeli "Semeli winery" 

 

8.2 METEOROLOGICAL DATA 

The meteorological data is streamed from an on premise device. It sends frequent updates on the 
weather conditions. This data is volatile and we could expect that with time it will only grow in size. 
Each observation includes information for atmospheric pressure, wind direction, air humidity, 
rainfall, wind speed and the estate for which this information applies. We have transformed the data 
into a JSON-LD serialization for RDF. 
{ 

   "_id":{ 

      "$oid":"5f2d4999e7b331040b92b497" 

   }, 

   "@context":{ 

http://bdg-graphdb/resource?uri=http%3A%2F%2Fdata.bigdatagrapes.eu%2Fresource%2FSymbeeosis%2Festate%2FRIRA
http://bdg-graphdb/resource?uri=http%3A%2F%2Fdata.bigdatagrapes.eu%2Fresource%2FSymbeeosis%2Festate%2FSkouras
http://bdg-graphdb/resource?uri=http%3A%2F%2Fdata.bigdatagrapes.eu%2Fresource%2FSymbeeosis%2Festate%2FPapagiannoulis
http://bdg-graphdb/resource?uri=http%3A%2F%2Fdata.bigdatagrapes.eu%2Fresource%2FSymbeeosis%2Festate%2FPapagiannakos
http://bdg-graphdb/resource?uri=http%3A%2F%2Fdata.bigdatagrapes.eu%2Fresource%2FSymbeeosis%2Festate%2FSemeli
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      "@base":"http://data.bigdatagrapes.eu/", 

      "bdg":"http://data.bigdatagrapes.eu/resource/ontology/", 

      "crs-ogc":"http://www.opengis.net/def/crs/OGC/1.3/", 

      "geo":"http://www.opengis.net/ont/geosparql#", 

      "gn":"http://www.geonames.org/ontology#", 

      "owl":"http://www.w3.org/2002/07/owl#", 

      "qb":"http://purl.org/linked-data/cube#", 

      "qb4st":"http://www.w3.org/ns/qb4st/", 

      "rdf":"http://www.w3.org/1999/02/22-rdf-syntax-ns#", 

      "rdfs":"http://www.w3.org/2000/01/rdf-schema#", 

      "skos":"http://www.w3.org/2004/02/skos/core#", 

      "wgs":"http://www.w3.org/2003/01/geo/wgs84_pos#", 

      "xml":"http://www.w3.org/XML/1998/namespace", 

      "xsd":"http://www.w3.org/2001/XMLSchema#" 

   }, 

   "@id":"data/cosmetics-weather/2019/Paros/2019-07-26T14:00:00", 

   "@type":"qb:Observation", 

   "bdg:dateTime":{ 

      "@type":"xsd:dateTime", 

      "@value":"2019-07-26T14:00:00" 

   }, 

   "bdg:direction_wind":{ 

      "@id":"compass/north" 

   }, 

   "bdg:humidity_air":"73.0", 

   "bdg:plot":{ 

      "@id":"Symbeeosis/estate/Moraitis" 

   }, 

   "bdg:pressure_atmospheric":"1010.8", 

   "bdg:rainfall":"0.0", 

   "bdg:rainfall_MAX":"0.0", 

   "bdg:speed_wind":"24.1", 

   "bdg:speed_wind_MAX":"32.2", 

   "bdg:temp_air":"26.0" 

} 

8.3 LABORATORY OBSERVATIONS 

The laboratory observations data is modelled in a similar manner. The samples for the observations 
are manually collected once a year from each estate. This type of data is again very static and closer 
to the estates metadata in terms of velocity. In the figure below we can see that the purple nodes 
are of type qb:Observation and in fact include the information for the laboratory observations. The 
extraction method in this case “Ultrasound” is another vertice linked by an edge to the Observation. 
The observation can be linked to the estate if the sample was taken by two hops. The estate is the 
vertice in red in this case the “Rira Vineyard”. 
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8.4 PICKING AN INFERENCE SCENARIO 

Based on the defined approaches in the previous sections we needed to pick an appropriate 
inference scenario implementation. We have two datasets which are relatively static (estates and 
laboratory observations) and one which is volatile (meteorological observations). The 
meteorological observations will be held in a document store for better scalability. Document stores 
are great for storing self contained documents. The meteorological observations are self contained 
and only hold a reference to the estate on which the observations are taken. The other more static 
and interconnected data will reside in GraphDB. 
 
Based on this setup we can decide on the most appropriate scenario. We will do this by answering 
the predefined questions: 

1. Do you have very volatile data and a paramount need to be always up to date with it? Don’t you use 

inference frequently or can you compromise query time performance for it?  - If yes, then choose scenario 

1. 

We have volatile data but handling some lag in the processing of meteorological data is ok. We will 

use inference. Scenario 1 does not fit our use case. 

2. Do you need very fast and optimizable queries? Are you willing to invest in maintenance and higher cost 

for set up? Are you ok with analysing your need for specific indexes and checking for degrading 

performance? - If yes, then choose scenario 2. 

 We want fast queries but investing in too much maintenance does not seem justified. 

3. Do you need a generic purpose graph with consistent performance (though not the best one) with low 

maintenance costs? - If yes, then choose scenario 3 (best for exploratory work).   

 We prefer to spend our time analysing the data rather than optimizing it for quick accessing.  

 Scenario 3 is most appropriate for our use case. We will proceed with it. 
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8.5 PERSISTING INFERRED  
After some digging we decided that the meteorological data could be meaningful if aggregated for a window 

of time. We decided daily aggregates can be stored within the GraphDB repository. Usually such an operation 

would require a data cleaning stage. It would be responsible for handling fluctuations within the data 

reported by the sensors. For instance a sensor might be reporting temperature of 25 degrees for an hour and 

then report a value of 50. Such a value should not be part of any aggregates as it is probably faulty. Identifying 

such outliers is part of the preloading step of the samples into MongoDB. The following implementation of 

the inference assumes that we have trustworthy data within the MongoDB collection. Using this approach we 

achieve decoupling of tasks.  

 

Persisting the inferred statements is implemented with SPARQL queries.  

 

8.5.1 CONNECTOR QUERY 

The purpose of the connector query is to authenticate to a remote MongoDB instance. In our case 
the MongoDB instance is deployed on a separate server. This server is accessed via its DNS name - 
rolle. The real username and password are replaced with superficial ones for the purpose of the 
deliverable. After this query is successfully executed the MongoDB collection can be queried through 
a SPARQL query. 
 
PREFIX : <http://www.ontotext.com/connectors/mongodb#> 

PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 

INSERT DATA { 

    inst:bdg :service "mongodb://rolle:30000" ; 

        :database "my-database" ; 

        :collection "bdg" ; 

        :user "root" ; 

        :password "secretpassword" ; 

     :authDb "admin" . 

} 

8.5.2 TEST CONNECTION QUERY 

After the connection has been established we use the below query to test it. If no results are 
returned then there is an issue. 
 
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#> 

PREFIX : <http://www.ontotext.com/connectors/mongodb#> 

select * where {  

 bind('{"@id":"data/cosmetics-weather/2018/Markopoulo/2018-05-08T11:50:00"}' as ?q) 

    ?search a inst:bdg ; 

            :find ?q; 

            :entity ?obs . 

    GRAPH inst:bdg { 

        ?obs ?p ?o  

    } 
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} limit 100  

8.5.3 CREATE DAILY AGGREGATED WEATHER DATASET  

This query is a bit more complicated than the other ones but it is the one doing the actual work. It 
iterates over all of the estates. For each estate it queries the MongoDB fetching the measurements 
and aggregates them by date. A bucket per day per predicate is created. Each bucket stores the 
measured values. After the collection phase for each bucket an average is calculated. The average 
values are then written into the GraphDB repository. This approach allows the aggregates to be 
indexed within GraphDB. The GraphDB indexes allow for various access patterns thus complex 
queries can be run. In the next section we will give an example of such a query. 
 
With this inference with query approach we ensure an eventual consistency guarantees between the 
two datastores. MongoDB serves as the source of truth and a master of the data for meteorological 
measurements. GraphDB stores the derived version of that data. Periodically running the inference 
query will ensure that MongoDB and GraphDB remain in a consistent state. We introduce some lag 
between the data stored in Mongo and that within GraphDB. For analytical purposes it should be 
affordable. When the meteorological data accumulates to a considerable size doing the input 
asynchronously would be preferable. Synchronous inserts into the system would pose performance 
issues and a possibility for data loss. 
 
BASE <http://data.bigdatagrapes.eu/resource/> 

PREFIX bdg: <http://data.bigdatagrapes.eu/resource/ontology/> 

PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>  

PREFIX : <http://www.ontotext.com/connectors/mongodb#> 

PREFIX qb: <http://purl.org/linked-data/cube#> 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

INSERT { 

    graph <graph/cosmetics/daily-weather> { 

        ?OBSURI a qb:Observation ; 

            ?p ?AVG ; 

            bdg:plot ?plot ; 

            bdg:date ?date ; 

            qb:dataSet <data/cosmetics/daily-weather> ; 

         . 

    } 

} 

WHERE { 

    bind(strafter(str(?plot),"http://data.bigdatagrapes.eu/resource/") as ?plot_str) 

    bind(uri(concat("data/cosmetics/daily-weather/",?plot_str,"/",str(?date))) as ?OBSURI)       

    {select ?plot ?date ?p (avg(?val) as ?AVG) where {  

            #bind(<Symbeeosis/estate/Skouras> as ?plot) 

            ?plot a bdg:Estate . 

            bind(strafter(str(?plot),"http://data.bigdatagrapes.eu/resource/") as ?plot_str) 

            bind(replace('{"bdg:plot" : {"@id":"<Q>"}}',"<Q>",?plot_str) as ?q) 

            ?search a inst:bdg ; 

                    :find ?q; 
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                    :entity ?meteo_obs . 

            values ?p { 

                bdg:humidity_air 

                bdg:rainfall 

                bdg:speed_wind 

                bdg:pressure_atmospheric 

                bdg:temp_air  

            }  

            GRAPH inst:bdg { 

                ?meteo_obs ?p ?o ; 

                bdg:dateTime ?dateTime . 

            } 

            bind(if(!contains(?o,"-"),strdt(?o,xsd:float),?null) as ?val) 

        bind(strdt(replace(str(?dateTime),"T.*$",""),xsd:date) as ?date)      

    } group by ?plot ?date ?p } 

} 

8.5.4 QUERYING OVER AGGREGATED DAILY DATA FOR WEATHER 

Now we can easily link between estates, meteorological measurements and laboratory 
measurements. The following query does exactly that.  
 
BASE <http://data.bigdatagrapes.eu/resource/> 

PREFIX bdg: <http://data.bigdatagrapes.eu/resource/ontology/> 

PREFIX qb: <http://purl.org/linked-data/cube#> 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

select * where {  

    #bind(<http://data.bigdatagrapes.eu/resource/data/cosmetics/2018/IA10> as ?sample) 

    ?lab_obs a qb:Observation ;   

          bdg:sample ?sample ;  

             bdg:extractionMethod <extractionMethod/Maceration> ; 

             bdg:TFCQuercetin ?tfc ; 

    .          

    ?sample bdg:plot ?plot ; bdg:date ?date . 

    ?meteo_obs a qb:Observation ;  

               qb:dataSet <data/cosmetics/daily-weather> ;  

               bdg:plot ?plot ; 

               bdg:date ?date ; 

               bdg:humidity_air ?hum ; 

               bdg:temp_air ?temp ; 

    .            

} 
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9. SUMMARY 
 
 
Inference distribution is a topic that has been studied previously, however the reported results vary in terms of 
applicability to a wide range of use cases. Reviewed literature, general methodology and individual tools for 
both distribution and parallelization provide valuable insights of possible options for applying distributed 
inference to BigDataGrapes project use-cases.  

To provide pragmatic evaluation of the use case scenario similar to BigDataGrapes use-cases in terms of level 
of complexity and distribution of related datasets and need for particular type of inference, we have performed 
a number of experiments. This allows us to experiment with state-of-the-art tools and draw the roadmap for 
future implementations using one of the mechanisms for extending GraphDB build-in inference capabilities.  

We have selected three inference scenarios to test while distributing data using state-of-the-art distributed 
storage – MongoDB. Evaluation results performed on standardised benchmark (LDBC) clearly show that each 
of the scenarios provides an optimal solution for different use-case.  

We applied one of the three scenarios which fits best our use case. We were able to integrate highly volatile 
data with big volume from streaming measurements and more static interconnected data. The inference is 
implemented with eventual consistency guarantees. Once the inference processing is completed making 
queries over the interconnected graph is both fast and easy.  
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11. APPENDIX I - SPB QUERY DESCRIPTION 
 
Full reference to queries can be found in LDBC Github project.  

11.1. QUERY 1 DESCRIPTION 
Retrieve creative works about thing t (or that mention t)  
# reasoning: rdfs:subClassOf, rdf:type 
 # join ordering: cwork:dateModified rdf:type owl:FunctionalProperty 
 # join ordering: cwork:dateCreated rdf:type owl:FunctionalProperty 
 
 Choke Points:  
# - join ordering based on cardinality of functional properties cwork:dateCreated, cwork:dateModified  
# Optimizer should use an efficient cost evaluation method for choosing the optimal join tree  
# - A sub-select which aggregates results. Optimizer should recognize it and execute it first 
 # - OPTIONAL and nested OPTIONAL clauses (treated by query optimizer as nested sub-queries)  
# Optimizer should decide to put optional triples on top of the join tree (i.e. delay their execution to the last 
possible moment) because OPTIONALs are treated as a left join 
 # - query optimizer has the chance to recognize the triple pattern: ?cWork a ?type . ?type rdfs:subClassOf 
cwork:CreativeWork and eliminate first triple (?cwork a ?type .) since ?cwork is a cwork:CreativeWork 
 

11.2. QUERY 2 DESCRIPTION 
 Retrieve properties of a concrete creative work.  
# reasoning rdfs:subClassOf, rdf:type  
# join ordering: cwork:dateModified rdf:type owl:FunctionalProperty  
# join ordering: cwork:dateCreated rdf:type owl:FunctionalProperty 
 
Choke Points:  
# - join ordering based on cardinality of functional proerties cwork:dateCreated, cwork:dateModified  
# Optimizer should use an efficient cost evaluation method for choosing the optimal join tree  
# - OPTIONAL clauses (treated by query optimizer as nested sub-queries)  
# Optimizer should recognize that FILTER condition contains variables which are part of the OPTINAL clauses 
and unlike query1 to start execution of OPTIONAL clause as soon as possible thus eliminating the intermediate 
results.  
# - query optimizer has the chance to recognize the triple pattern : ?creativeWork a ?type . ?type rdfs:subClassOf 
cwork:CreativeWork  
# and eliminate first triple (?creativeWork a ?type .) since ?creativeWork is a cwork:CreativeWork 
 

11.3. QUERY 3 DESCRIPTION 
Describes all creative works about a topic with certain fixed properties and order them by creation date. The 
size of the result-set is limited by a random number between 5 and 20. 
 
Choke Points:  
# - UNIONS - optimizer should execute the UNIONs in terms or in parallel  
# - OPTIONAL clauses (treated by query optimizer as nested sub-queries)  
# Optimizer should recognize that FILTER condition contains variables which are part of the OPTINAL clauses 
and start execution of OPTIONAL clause as soon as possible thus eliminating the intermediate results.  
# - Optimizer should be able to split the FILTER conditions into conjunction of conditions and start their 
execution as soon as possible thus eliminating intermediate results  
# - Optimizer could consider the possibility to choose a query plan that would facilitate the ordering (ORDER 
BY) of result 
 

https://github.com/yasengmarinov/ldbc_spb_bm_2.0/tree/features/mongodb/datasets_and_queries/sparql/basic
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11.4. QUERY 4 DESCRIPTION 
Describes all blog posts tagged with a topic and order them by creation date. The size of the result-set is limited 
by a random number between 5 and 20. 
 
 Choke Points:  
# - Optimizer could consider the possibility to choose a query plan that would facilitate the ordering (ORDER 
BY) of result 
 

11.5. QUERY 5 DESCRIPTION 
Retrieve entities that are most tagged within one-hour interval. Restriction on audience type and Creative Work 
type further limits result. 
 
Choke Points:  
# - Full scan query  
# Optimizer should not consider the ORDER BY as important clause in cases where all results are counted 
(COUNT(*))  
# - A sub-select which aggregates results. Optimizer should recognize it and execute it first  
# - Join ordering based on cardinality of functional property cwork:dateModified  
# Optimizer should use an efficient cost evaluation method for choosing the optimal join tree 
 # - Optimizer should be able to split the FILTER conditions into conjunction of conditions and execute the as 
soon as possible, which will limit the amount of intermediate results 
 

11.6. QUERY 6 DESCRIPTION 
Retrieve creative works within a certain range defined by geo-coordinates. Retrieves a list of all creative works 
that are mentioning entities within a geo-spatial range.  
 
Choke Points:  
# - A geo-spatial query  
# Allows each RDF engine could use its custom geo-spatial implementations.  
# - Optimizer should be able to split the FILTER conditions into conjunction of conditions and execute them as 
soon as possible, which will limit the amount of intermediate results 
 
 

11.7. QUERY 7 DESCRIPTION 
Retrieve creative works that have been created within a defined date-time range of one hour. Additional 
constraint added the type of creative works created in that time range. 
 
Choke Points:  
# - Date range query  
# - Optimizer should be able to split the FILTER conditions into conjunction of conditions and execute them as 
soon as possible, which will limit the amount of intermediate results 
 

11.8. QUERY 8 DESCRIPTION 
Retrieve the N most popular topics creative works that have been modified in a time range of one hour. 
Restriction on audience type and Creative Work type further limits result.  reasoning : owl:ObjectProperty, 
owl:DataProperty  join ordering cwork:dateModified rdf:type owl:FunctionalProperty 
 

11.9. QUERY 9 DESCRIPTION 
Retrieve most recent Creative Works related to a particular one, namely such that are tagged with the same 
concepts. Calculates a score for a particular Creative Work, based on the number of Creative Works that it 



 

 

Big Data to Enable Global Disruption of the Grapevine-powered industries 

 

D4.2 | Methods and Tools for Distributed Inference 
50 

 

shares tags with. The different combinations of cwork:about and cwork:mention count with factors between 
0.5 and 2. When calculating the score, multiplication of results due to owl:sameAs equivalence should be 
suppressed. For instance, if only the following two statements are asserted in the repository 
 # <cw1 cwork:tag e1> and <e1 owl:sameAs e2>  
# The query SELECT (COUNT(*) AS ?cnt) { cw1 cwork:tag ?e } should return 1, instead of 2  
# Reasoning : rdfs:subPropertyOf reasoning with respect to cwork:tag; owl:sameAs with respect to tags  
 
Choke Points:  
# - Optimizer should consider cardinality of star-shaped sub-queries for choosing the optimal join ordering.  
# - Optimizer should identify the possibility of asynchronous execution of the aggregate sub-queries.  
# - Optimizer should consider the selectivity of the DISTINCT for choosing the right execution plan. The distinct's 
state # should be shared between threads or should be merged after the top order sort.  
# - Engines which support optimized handling owl:sameAs reasoning that allows for control of query results 
expansion can implement this query in a much simpler and efficient way. The first sub-query may look as follows:  
# SELECT (COUNT(*) AS ?cnt_2) 
# WHERE {  
# ?other_cw cwork:about ?oa .  
# <CreativeWorkUri> cwork:about ?oa . 
 # } 
 

11.10. QUERY 10 DESCRIPTION 
Retrieve creative works that mention locations in the same province (A.ADM1) as the specified one.  Additional 
constraint on time interval further limits returned result within one hour. 
 

11.11. QUERY 11 DESCRIPTION 
Retrieve a list of the most recent Creative Works that have tagged with entities, related to a specific popular 
entity from reference dataset # Relations can be (inbound and outbound; explicit or inferred) 
 

11.12. QUERY 12 DESCRIPTION 
Retrieve the descriptions of the latest creative works tagged with a specific location. Consider that the 
description of each specific. Creative Work is stored in dedicated named graph. The result should include only 
the explicit statements about the creative work, without owl:sameAs equivalence and without statements 
inferred otherwise. 


