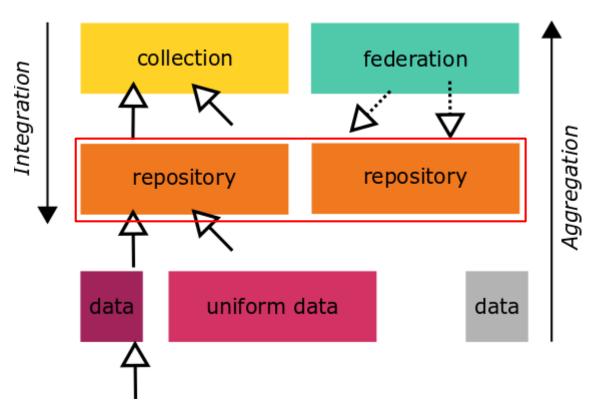


Data flow, standardization, and quality control

presented by Brenner Silva* with the Software Engineering Team**, and the Computing and Data Centre*** of the Alfred-Wegener-Institute Bremerhaven, Germany

Contacts: * presenter: brenner.silva@awi.de, ** lead: roland.koppe@awi.de, *** head: stephan.frickenhaus@awi.de


Context

Defining data and data services

Registered single or uniform measurements

Repository: high level of integration for researcher, easy of use, standardization of incoming data.

Collections: catalogue of multiple organizations, lower level of integration, standardized and indexed metadata. Federations: "connects once, access all"; control and maintenance of data remains with data providers.

Services

List of products, solutions or standards in use for integration and interoperability with data repositories.

Туре	Name	URL
OGC:WFS	LfULG, Saxony	umwelt.sachsen.de
OAS:REST	Waterways, WSV	www.pegelonline.wsv.de
OGC:WCS	rasdaman, AWI	data.awi.de/rasdaman
OPenDAP	COSYNA, HZG	opendap.hzg.de
THREDDS	Copernicus, EU	my.cmems-du.eu
ftp	DWD, Germany	opendata.dwd.de

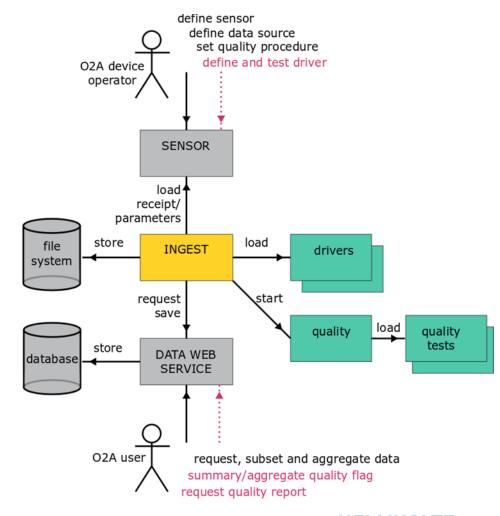
Standards or solutions used in data service applications

Solution / Protocol	Features / Functionality		
FTP	universal, slow transfer		
HTTP	generic, typing, compression, for small packages		
WSDL / SOAP (HTTP/SMTP)	extensible, web services specification via XML		
REST / HTTP	simple, customizable requests via HTTP, JSON		
OPenDAP / HTTP	selective data retrieval		
THREDDS / OPenDAP	versatile, multiple protocols and a single output (netcdf)		
OGC WCS / HTTP, SOAP	complete, multiple format encoding and transfer protocols		
WebDAV, SRM, XROOTD, RFIO, S3, Swift, CDMI	authoring, multicast, scalability,		

O2A - Observation to Archive and Analysis

- The data-flow framework operational and developed at the AWI, Bremerhaven.
- For interoperability the O2A currently uses OGC standards and REST architecture to support:
- SENSOR management
- near-real-time ingestion
- quality control
- data monitoring and request via:
 - Dashboard
 - Data Web Service
- analytics
- knowledge base registration

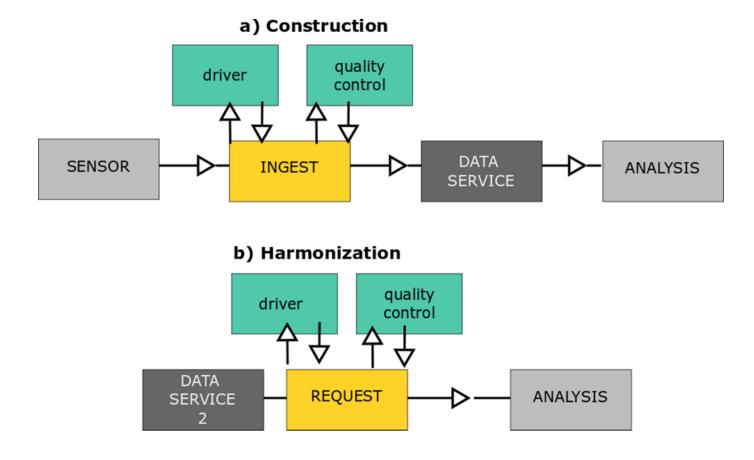
http://data.awi.de/o2a-doc



Ingest

The <u>ingest</u> performs automatic quality control to deliver quality-flagged data to the <u>dashboard</u>. Drivers are used to access data of specific formats (e.g. regarding data loggers of different instruments like weather stations, buoys, ferry boxes, CTD).

The quality control (QC) requests observation properties from the <u>sensor REST-API</u> for each corresponding sensor and each quality control test. The input data is in <u>NRT format</u>, where each column of observations is under a unique sensor-URN. At ingest, the quality control algorithm builds a table of devices and parameters to assess the input data for correctness and validity of observations.

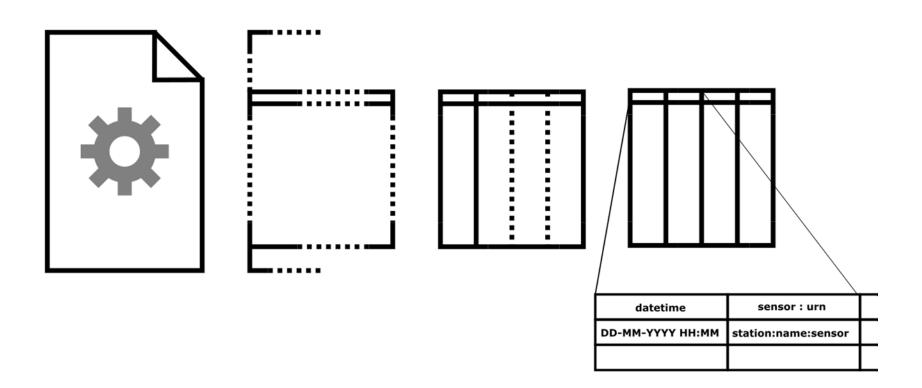

Modules

illustrative script for data flow

import dws# for data requestimport driver# for transformationimport quality# for quality tests

data = dws.request(source)
data = driver.format(data)
data = quality(data)

analyse(data)



Driver – for textual tabular data

Some features:

- detect encoding
- apply a data model to detect tabular data (separator, valid lines and valid rows)
- validate timestamp
- map header columns for sensor identification
- store in NRTformat

Quality control

Quality assurance and optimization of sensor metadata are based on ingest procedure and quality tests.

The starting point for the currently implemented quality control tests is the ARGO real-time quality control (Wong et al. 2019).

Please refer to the left table or go to <u>Quality Flagging</u> for current status of the O2A. Currently, the flagging scheme in use is ordinal and of primary level (<u>UNESCO 2013</u>).

Test name	Description	Property required	Ancillary data required	Status
Operation temperature range	Test for temperature conditions (air and/or surface temperature) under which the instrumentation is deployed	Operation Temperature	Temperature observation	operational
Manufacturer range	Test if value is within the limits of the instrumentation (e.g. due to construction, material or filter) as given by manufacturer	Manufacturer range	None	operational
Operation range	Test if value is within a specific range valid for the location where the sensor is deployed	Operation range	None	operational
Gradient test	Test for gradient, i.e. absolute distance from the median value of neighboring (n=5) observations	Gradient Threshold	None	operational
Spike test	Test for spikes, i.e. distance from the median value subtracted by the standard deviation of neighboring (n=5) observations	Spike Threshold	None	operational
Range function	Test for physical relationships, or interdependency, among observations	Thresholds array	None	development
Geo location	Test for valid geographic location of moving and stationary sensors	Latitude, longitude and altitude ranges	Location of observations or Sensor Event	development

Quality flagging

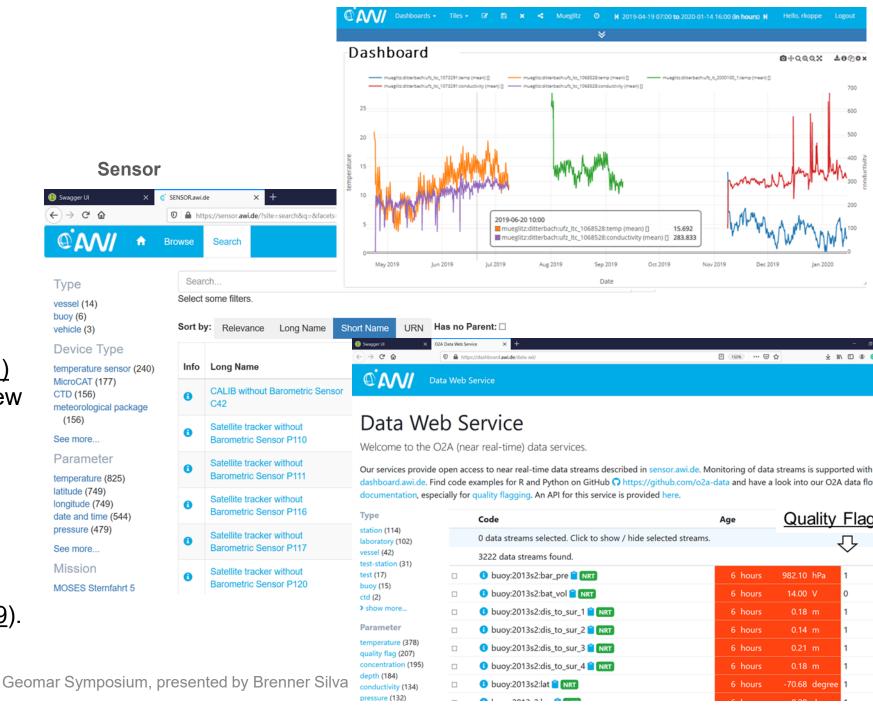
A secondary level of the QF has been developed to represent the processing history into a Quality Code. In addition, a Quality Score can be used either to assess the Quality Flag or, as in the approach of the FZJ (Kaffashzadeh *et al.*, 2019), to indicate the plausibility of each observation.

a) Quality flags at primary level

Flag	Meaning
0	No QC performed
1	Good data
2	Probably good data
3	Probably bad data that are potentially correctable
4	Bad data
5	Missing value
6	Primal error
7	Not used

b) Illustration of observation including quality information

datetime	sensor : urn	Quality Flag	Quality Score	Quality Code	Uncertainty
DD-MM-YYYY HH:MM	station:name:sensor	[0-9]	[01]	[0-n]	[-11]



Sensor, DWS, and Dashboard

Sensor access and manage metadata.

The <u>Data Web Service (DWS)</u> gives a near-real-time overview of the harmonized data the current quality flag (QF).

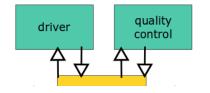
<u>Dashboard</u> is for monitoring. The example on the right shows data from the Müglitz River collected by the UFZ (Nixdorf E. and Ködel U. 2019).

Sensor and DWS

⑤ Swagger UI

The <u>Sensor</u> and the <u>Data Web Service</u> uses the REST architecture to offer open access to metadata and data. Useful for building client applications (e.g. driver and quality modules).

iger UI	X C SENSOR.awi.de X	+					- 0 ×	
C' 🕜	♥ ▲ https://sensor.awi.de/api/#/				(110%) ···· 🗢 🚖 🖳 🖳 🕲 🌘		⊻ II\ 🗉 ತ 📀 Ξ	1
	\varTheta swagger	https://sensor.aw	i.de/rest/swagger.json	username	password	Login		Â
	SensorWeb RES This is the API of the REST ser	vice endpoints for managi	ng sensor metadata.					
	backend_Collections_		Swagger UI X O2A Data W	Show/Hide List (Operations Expan	nd Operations		- 0
	backend_Contact_Ope	erations	← → ♂ ☆	https://dashboard. awi.de /data-xxl/api/#/			150% … 🛛 🕁	¥ m 🗉 🔹 😉
	DELETE /sensorsAdmin/cor	ntacts/deleteSystemCont	\varTheta swagger	https://dashboard.awi.	de/data-xxl/api//re	st/swagger.json		Explore
	Parameters Parameter Value contactID (required) Response Messages HTTP Status Code Reason 500 Interna Try it out! Interna	l Server Error .	content and usage.	t] xl/api//rest/swagger.json		mode data. Have a	a look at the <u>overview</u> for more in	nformation about
	_	n <mark>tacts/putNewSystemCo</mark> n ntacts/modifySystemCon	The inserted data will be		different resolutio	ns (e.g. HOUR). In t	column must be named datetim :his precalculation will only value st qf in resolution-step	
Geomar S	Symposium, presente	ed by Brenner :	Name body (body)	Description Example Value Model "string" Parameter content type text/tab-senarater-values:cl	harratellITE-9 ×			


Take home

1. The landscape of standards and protocols is diverse. When considering integration, functionality levels the approach.

2. Driver and quality control aim to increase modularity in the O2A repository. Further tests are required for assessment, documentation, and the transferability.

3. Next use-case (AWIpev) aims to assess quality control implications on data aggregation of time-series.

Туре	Name	URL
OGC:WFS	LfULG, Saxony	umwelt.sachsen.de
OAS:REST	Waterways, WSV	www.pegelonline.wsv.de
OGC:WCS	rasdaman, AWI	data.awi.de/rasdaman
OPenDAP	COSYNA, HZG	opendap.hzg.de
THREDDS	Copernicus, EU	my.cmems-du.eu
ftp	DWD, Germany	opendata.dwd.de

Acknowledgement

Literature review and development of driver and quality modules were carried out within the **Digital Earth** Project <https://www.digitalearth-hgf.de> with the **Software Engineering** Team (lead by Dr. Roland Koppe, <roland.koppe@awi.de>) and the **Computing and Data Centre** (head by Prof. Dr. Stephan Frickenhaus, <stephan.frickenhaus@awi.de>) of the **Alfred-Wegener-Institute** (AWI), Bremerhaven.

Thank you

