
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 

of any copyrighted component of this work in other works. 

 

 

 

 

 
 



Design and Verification of an open-source SFU
model for GPGPUs

Josie E. Rodriguez Condia∗, Juan-David Guerrero-Balaguera†, Cristhian-Fernando Moreno-Manrique†,
Matteo Sonza Reorda∗

∗Politecnico di Torino - Department of Control and Computer Engineering (DAUIN)
{josie.rodriguez, matteo.sonzareorda}@polito.it

†Universidad Pedagogica y Tecnologica de Colombia (UPTC) - Electronic Engineering School
{juandavid.guerrero, Cristhian.Moreno}@uptc.edu.co

Abstract—General Purpose Graphic Processing Units (GPG-
PUs) are widely used in data-intensive applications, such as
multimedia and high-performance computing. These technologies
are currently used also to support safety-critical applications
(e.g., in the automotive and industrial domains) to implement
computer vision, sensor fusion, or machine learning algorithms,
which often require the processing of complex transcendent or
trigonometric functions. In these cases, an integrated special
function unit in the GPGPU is utilized, which is intended to
increase the performance in parallel operations. However, this
complex module is not present in most of the available architec-
tural and micro-architectural open-source models of GPGPUs,
so limiting the characterization and analysis of applications
using these units. In this work, we report about the design
and functional verification of a Special Function Unit to execute
transcendent and trigonometric operations in GPGPUs. We
integrated the proposed module within an open-source GPGPU
(FlexGripPlus) implementing the G80 micro-architecture. The
experimental results show the significant improvements in per-
formance and accuracy achievable by using these modules in
parallel applications running in a GPGPU.

Index Terms—Functional Verification, General Purpose
Graphics Processing Units (GPGPUs), Special Function unit
(SFU)

I. INTRODUCTION

Nowadays, General Purpose Graphic Processing Units
(GPGPUs) are the leading workhorse solution concerning
data-intensive applications, such as multimedia, multi-signal
analysis, and high-performance computing. Thanks to their
highly parallel architecture, these technologies are now also
used in embedded and safety-critical applications, where high
levels of reliability are required. In automotive and robotics
(to mention 2 major application areas), GPGPUs are adopted
in sensor-fusion, computer vision [1] and Advanced Driver-
Assistance Systems (ADAS).

Originally, Graphics Processing Units (GPUs) were devoted
to managing large arrays of data and were commonly related
as special-purpose accelerators to implement image processing
techniques. These techniques include the processing of images
in raster and vector formats, the processing of surfaces, the
mapping of textures, and the rendering of images. These
operations usually require the execution of transcendental

This work has been partially supported by the European Commission
through the Horizon 2020 RESCUE-ETN project under grant 722325.

and trigonometric functions, so specialized hardware acceler-
ators were included in GPUs. The GPU technologies quickly
evolved and started to be used with success in the general-
purpose domain as GPGPUs.

The transcendental and trigonometric hardware accelera-
tors (also known as Special Function Units or SFUs) are
often present in GPGPU modern architectures, since complex
processing algorithms are typical in modern applications [2].
Thus, most manufacturers usually include SFUs to process part
of the complex operations. In principle, two main approaches
are used to design and implement an SFU: i) iterative and
ii) non-iterative. The first approach is devoted to executing
iterative algorithms that converge linearly or quadratically to
the result, such as the COordinate Rotation DIgital Computer
(CORDIC), Newton-Raphson and Goldschmidt algorithms,
which are more oriented to the highest accuracy and precision
[3]. On the other hand, non-iterative architectures are based
on table-based solutions and polynomial and rational approxi-
mations, such as those based on quadratic interpolation using
enhanced minimax approximations, targeting the optimization
of hardware and power consumption [4]. However, the in-
trinsic complexity of the SFUs and the missing details about
commercial implementations in GPGPUs reduce the possibil-
ity of exploring alternative design approaches, analyzing the
provided operational features, and observing their impact on
the performance of the GPGPU in general and of specific
applications, as well. Moreover, in other fields of study, such
as reliability and test, commonly analyze reliability features,
fault effects, and mitigation strategies applied to computer
architectures. However, the analysis of SFUs is still considered
an open case study by the lack of micro-architectural models
to observe the fault effects and evaluate the effectiveness of
mitigation and fault-tolerant techniques [5].

In this work, we report about the design, implementation,
and functional verification of an open-source SFU module
intended to support the design exploration of SFUs used as
accelerators in processor-based systems and GPGPU devices.
Moreover, the proposed SFU can also be used to support the
reliability analysis and develop the quantitative assessment of
mitigation and hardening solutions for applications running on
GPGPUs.

The proposed SFU module follows most of the func-



tional descriptions and guidelines of the SFU integrated into
GPGPUs using the G80 micro-architecture of NVIDIA. The
implementation was performed in VHDL language following
a modular approach and incorporated in the FlexGripPlus
open-source GPGPU model [6]. A set of assembly (SASS)
instructions was implemented to control the SFU in the
GPGPU. These instructions are compatible with the CUDA
programming environment under the SM 1.0 compatibility.
To the best of our knowledge, this is the first available open-
source SFU module for GPGPUs.

Validation and verification were performed at the unit and
system levels of abstraction. Firstly, a stand-alone unit veri-
fication was conducted on the SFU. Then, we integrated the
SFU into the central core of FlexGripPlus, and the expected
functionality was verified on the resulting system.

The paper is organized as follows. Section II provides some
background about the organization of a GPGPU. This section
also overviews the main features of the micro-architecture
of the FlexGripPlus model where we integrated the newly
developed SFU. Section III describes the architecture of the
proposed SFU. Section IV describes the approaches used to
verify and validate the SFU independently and integrated into
the GPGPU. Section V reports the experimental results and
their analysis, and Section VI draws some conclusions and
lists some related future works .

II. BACKGROUND

A. Organization of a GPGPU

GPGPUs are composed of a combination of multiple paral-
lel architectures. In principle, these architecture are all based
on the Single-Instruction Multiple-Data (SIMD) paradigm
using several cores, also known as Streaming Multiprocessors
(SMs), to compute instructions with high throughput. Inside
each SM, one instruction is fetched from memory, and then
decoded and processed in parallel using a set of available
execution resources (Floating-point units (FPUs), Streaming
Processors (SPs), and dedicated accelerators). These execution
units perform the operations from each independent task
(thread) with a static allocation. SMs are organized in groups
of threads (called Warps) by a scheduler controller that man-
ages and monitors each group of tasks. Internally, SMs also
include several pipeline stages, local memories, and register
files to process each thread in parallel.

B. The FlexGripPlus Architecture

The FlexGripPlus model [6] is an open-source soft-core
GPGPU fully described in VHDL that implements the G80
architecture from NVIDIA [7]. This model is an improved
version of the original FlexGrip model developed by the
University of Massachusetts [8]. FlexGripPlus supports up to
28 assembly instructions, and it is fully compatible with the
CUDA programming environment under the SM 1.0 compat-
ibility.

FlexGripPlus is mainly composed of an array of SMs. Each
SM executes instructions following variations of the SIMD
and Single-Instruction Multiple-Thread (SIMT) taxonomies. A

Fig. 1. A general scheme of the SM in FlexGripPlus.

Block Scheduler assigns the tasks to every SM. Internally, an
SM includes a Warp Scheduler Controller that submits the
warps and dispatches them to the available SPs and FPUs.
The flexibility of the model allows the selection of 8, 16, or
32 SPs. Each SM is organized in a five-stage pipeline (see Fig.
1). The SPs, FPUs, and a branch management unit are located
in the Execute stage and operate in parallel. The data channels
(feeding the operands) for the SPs, FPUs, and the branch
module are shared and switched depending on the executed
instruction.

FlexGripPlus does not include an SFU accelerator and has
no the support for SFU operations. However, this model
has the main features of common GPU architectures and is
compatible with one commercial programming tool, so this
model is an excellent candidate to integrate the new SFU and
support the instructions from the programming environment.

III. SFU DESIGN

The design of the SFU takes into account the descriptions
and specifications for the G80 architecture introduced in [7] to
compute transcendental functions. The proposed SFU uses a
modular scheme and is compatible with the IEEE 754 standard
for single-precision operations. We used the iterative and the
non-iterative to describe the functions in the SFU. For that
purpose, we identified five special functions to be described
and implemented in the SFU: sinx, cosx, log2 x, 2x, and 1√

x
.

A detailed review of the CUDA programming environment and
the PTX manual under the SM 1.0 computer compatibility
revealed that the execution of the

√
x operation is replaced by

two instructions, one reciprocal operation RCP and another
instruction for the 1√

x
function. It is worth noting that the

reciprocal operation was previously introduced in the FPU
of the model and is not considered in the present design.
However, this operation is commonly included in multiple
designs of SFUs.

The SFU is designed using a Bottom-Up modular approach,
so each function is described individually, and then these are
integrated as a multi-functional block. One golden SFU model
was designed at the architectural level following the functional
and operational specifications. The Octave framework is used
to describe the golden SFU model. Then, each module is



sin

cos

Cordic

x

x

x

x

start

Reset

Clk

Input(31 : 0)

Result(31 : 0)

Selop(2 : 0)

Start

Fr

L2

xlog2

1

x−−√

E2

2x

3 − to− 5
decoder

O0

O1

O2

O3

O4

En

Sel(2 : 0)

En

En

En

0

2
3
4

1

ready

Stall
sel(2 : 0)
ready

Stall Control
Clk

Reset

stall

sel

SFU0

SFU1

SFU −SCH

0

1

2

− 1
N

2

0

1

2

− 1
N

2

Ri0

Ri1

Ri2

Ri −1N

2

Ri N

2

Ri +1N

2

Ri −2N

2

RN−1

Ro0

Ro1

Ro2

Ro
−1

N

2

Ro N

2

Ro
+1

N

2

Ro
+2

N

2

RoN−1

Fig. 2. A general scheme of the proposed SFU module (Top) and the
integration with the GPGPU (Bottom)

detailed and represented at the RT level. Fig. 2 shows the
proposed SFU design and its integration in the GPGPU
architecture. As it can be observed, the SFU also includes
some control signals to enable and select the function to be
executed. The SFU is driven by a single clock. The input and
output channels are limited to single-precision operands.

A. SIN and COS modules

The CORDIC algorithm is used to implement the SIN
and COS functions. The proposed structure uses the circular
coordinate system in the rotation mode with 16 iterations to
determine the result [9]. This sub-module is composed of two
single-precision floating-point multiplier and three adder/sub-
tractor, compliant with the IEEE 754 standard. A routing logic
is used to perform the operations of the intermediate results.
The CORDIC function is implemented sequentially to reduce
the number of floating-point modules in the module. Two
lookup tables (LUTs) are included in the design to store the
constant values of 2−n y θn obtained following the equations
in [9]. Each LUT stores a total of 16 constants.

B. log2x module

The log2x operation uses the Adaptable Logarithm Ap-
proximation (ALA) method [10]. ALA was conceived to
process operands in integer and fixed-point formats and is
inspired in a piece-wise linear approach proposed by Mitchell
[11]. ALA uses an arbitrary number of line segments to
combine computer efficiency and precision in approximating
this function.

In this work, we adapted the ALA algorithm from integer
to floating-point values, so in the proposed structure, ALA
accepts operands compliant with the IEEE-754 standard.

The integer part of the result is directly forwarded from the
exponent part (removing the bias) of the input value. On the
other hand, the mantissa of the input value is directly consid-
ered as the first approximation. Then, a new approximation is
derived in pieces of s segments of equivalent length (repre-
senting the distance between the first linear approximation and
the ends of each segment). The results of the approximations
are stored in the two LUTs of s/2 coefficients each one. The
use of s segments (s a power of 2) allows the use of the
most significant log2(s) bits, from the mantissa, to obtain two
coefficients relating to the segment for the next approximation.
In this implementation, we selected 64 segments. The most
significant bits of the mantissa are used to address the LUTs
and retrieve the representative coefficient.

The fractional part of the results is calculated through a
multiplication between the difference of the two coefficients,
and the mantissa without log2(s) most significant bits. Then,
the result is added to the mantissa and the first coefficient of
the segment. Finally, normalization is used to represent the
result as a floating-point number in single precision.

C. 2x module

The 2x function employs the same ALA structure used
for the log2x operation, with minor changes in the hardware
structure. Moreover, new segment coefficients are determined
to be used during the operation of the 2x function.

The implementation followed the same procedures ex-
plained before to calculate the fractional part of the result.
However, final normalization is not required. On the other
hand, the exponent of the results is calculated converting the
input value into fixed-point format and taking the seven most
significant of the input value.

D. Rsqrt module

The 1√
x

function was implemented using the Fast Inverse
Square Root algorithm (FISR), which was originally part
of the source code of the QUAKE II video game [12],
[13]. FISR algorithm is based on a simultaneous calculation
of log2 and 2x, which then are combined to calculate an
approximation of 1√

x
. The algorithm neglects the floating-

point format representation and considers the input bit pat-
terns as an integer number to apply a linear approximation
to the logarithmic function [14]. Thus, The entire floating-
point range represents a piece-wise linear approximation of a
monotonic logarithm function. The value is then subtracted
(in integer) with the equivalent value of one in floating-
point format (0x3F800000). A scale-down is then applied by
dividing (as floating-point numbers) the resulting value by
0x00800000, so obtaining the approximation of the log2. The
calculation of 2x follows an inverse approach. The input value
is first scaled with 0x00800000 as a floating-point number and
then subtracted as an integer by 0x3F800000. Both results are
then combined and therefore the reciprocal of square root can



Fig. 3. Verification scheme for the SFU.

be expressed as 1√
x
= 2−0.5∗log2 x. Both operations (log2 and

2x) are canceled, and a simplified version of the algorithm
is obtained by processing as integers the subtraction of a
constant (0x5F400000) by the input value shifted to the right
on one position. According to [12], error minimization can
be applied obtaining a more accurate constant, so replacing
0x5F400000 by 0x5F375A86. After applying the algorithm,
the result is refined by using once the Newton-Raphson
approximation. The parallel implementation of the module
comprises four multipliers and one adder/subtractor modules
in single-precision floating-point, one shifter, and one integer
subtractor.

E. Integration of the SFU with the GPGPU

We followed most of the descriptions of the SFUs used
in real GPGPUs. For this purpose, we used the intrinsic
functions in CUDA combined with PTX instructions to force
the compiler to generate the assembly instructions activating
the SFU module. Then, we identified the opcodes of each
instruction and implemented them in the FlexGripPlus model.
The implemented instructions are fully compatible with the
CUDA compiler. Further details about the implemented SFU
instructions (SIN, COS, LG2, EX2, RSQ) can be found in [15].
The Decode and Execute pipeline stages were modified to
implement the instructions and to integrate the SFUs.

In the original design of the G80 architecture, two SFUs
are located in each SM, so in the Execute stage, two SFUs
were added in parallel to the existing SPs, FPUs, and branch
management modules. Moreover, it was included one thread
dispatcher (SFU-SCH) to manage the operation of the parallel
threads when executing instructions using the SFUs (see Fig.
2). Some additional input and output registers (Rix and Rox)
and multiplexers are used to preserve and control the operands
and results of each thread before submitting the results to
the next stage and process another group of threads. Figure
2 shows the integration of the SFU within the GPGPU model.

A parametric description was used for the SFU-SCH module
to proportionally change the number of SFUs when the number
of SPs and FPUs in the system changes. It should be noted
that the planar attribute interpolation is not considered part
of the actual design and is left for future work. Moreover,
in the integration of the SFU with the GPGPU core, the
scheduler controller of the SM was not modified to allow

the independent execution of instructions in the SFU by
considering that the implemented controller does not include
data-hazard algorithms to avoid the conflict in the submission
of instructions.

IV. SFU VERIFICATION

We adopted a strategy based on a combination of
simulation-based and emulation-based verification. The golden
model (adopted as a reference during the design stage) was
also used to perform the verification of the SFU. Figure 3
shows the scheme used for the functional verification flow.
In this scheme, the verification is divided into two levels of
abstraction: i) unit and ii) system verification.

At the unit level, simulation-based and emulation-based
verification were applied. In contrast, simulation-based is used
at the system level. The simulations are performed in the
ModelSim and Xcelium frameworks. One FPGA and a soft-
processor are used to synthesize the SFU and check its
operation.

A. Unit verification

The SFU module is verified using the classical bottom-up
approach, targeting the local verification of each submodule in
the SFU design and then moves up to the complete module.
In principle, the complexity of the SFU does not allow us
to use exhaustive verification techniques using simulation-
based methods in a reasonable time. The stand-alone unit
would require a large set of combinations (≈2.14×1010 = 232

(input operands) · 5 (functions)).
The main targets of the unit verification are: i) the correct

execution of the target function for several input operands,
ii) the selector of the function and iii) the internal operation
of each function. Under these conditions, we employed a
compact set of patterns to verify the functionality of the SFU.
A random set of 20,000 samples were used as inputs for
each sub-module in the SFU. Some patterns were replaced by
deterministic ones targeting edge conditions and exceptions.
The previous patterns were applied at software and emulation
levels. In the emulation case, two Linear Feedback Shift
Register (LSFRs) modules and some LUTs were used to
apply suitable patterns to the SFU in the FPGA. A soft-
processor controlled the application of stimuli and retrieved
results during the emulation.

B. System verification

The main targets are the structures added to integrate the
SFU into the GPGPU. The objectives of the verification are:
i) the implementation of the instructions and the functional
selector in the SFU, ii) the correct selection of the input
and output operands for each thread in the SFU (source and
destination locations), iii) the SFU dispatcher module, iv) the
conditional operation of the SFU, and v) the execution of the
SFU instructions, even interleaved with other instructions.

An exhaustive verification of the SFU integrated in
the GPGPU is clearly not feasible and (≈8.79×1013 =
232 (input operands) · 5 (functions) · 26 (source locations)



TABLE I
HARDWARE FEATURES ON THE SFU IN ASIC AND FPGA

IMPLEMENTATIONS

Module Frequency (MHz) Hardware Power (mW) Performance (ns)
Area (µm2) Cells/LUTs

ASIC SP 500 1,149.91 3,219 0.88 0.75
SFU 10,190.97 26,339 2.17 1.98

FPGA SP 100 - 1,907 171.74 44.83
SFU - 7,791 144.18 34.5

· 26 (destiny locations)) combinations would be required. A
simulation-based verification was performed using two spe-
cially developed programs written in the assembly language
of the GPGPU and using the SFU instructions to verify
the correct functional operation of the integration of the
SFU and the GPGPU. Both programs were developed using
a modular approach, so a set of sub-routines was defined
targeting specific functional features, and then, these routines
were assembled for each program. The modular routines allow
the parametric change of operands, source and destination
registers, memory addresses, and operations order.

The SFU instructions use the register file to load and store
the operands and results, respectively. Thus, the first program
varies the register locations (used to load or store the operand
or the result) of one operation in the SFU. This program checks
the implementation of the source and destination selectors in
the instructions. This process is performed in parallel for a
group of 32 threads. In both cases (Source and Destination),
the register location is swapped from 1 to 63. Permutation
techniques were employed in the modular code to generate
the instructions used to check the source, destination, and
sequential operation of each function in the SFU.

Regarding the dispatcher of the SFU, the programs only
employ 32 threads, so the dispatcher distributes the task on
each SFU by dividing into two parts the eight active threads
(high-part and low-part), so the high-part tasks are submitted
to the SFU0, and the low-part tasks are submitted to the SFU1.
For this purpose, the second program takes into account this
behavior and distributes the input operands in memory in such
a way that each operand is the same for SFU0 and SFU1 but
different among the threads, (i.e., thread 0 and thread 4 shares
equal input operands, and similarly for thread 1 and thread 5).

The conditional execution of the SFU is checked through
adding a part of the code generating intra-warp divergence.
For this purpose, conditional operations are included, and two
paths are devoted to reviewing the activation of the instructions
when conditions from the predicate flags are required. The
first path executes a simple operation ADD. Meanwhile, the
second path executes one of the instructions using the SFU.
The process is repeated for each instruction using the SFU.

V. EXPERIMENTAL RESULTS

The experiments were performed on the SFU module and
the GPGPU integrating the SFU. The hardware costs for
the SFU were evaluated for both, an ASIC and an FPGA
implementation. For this purpose, the SFU was synthesized
first using the Open-Cell 15nm technology library in the
Design Compiler framework and then in the Quartus II

TABLE II
ERROR AND STANDARD DEVIATION FOR THE SFU

Function Input interval Average relative error σ

[0, π/2] 0.47×10−5 4.16×10−5

[0, π/6) 1.29×10−5 8.35×10−5

sinX [π/6, π/3) 0.10×10−5 0.07×10−5

[π/3, π/2] 0.03×10−5 0.02×10−5

[0, π/2] 0.60×10−5 10.71×10−5

[0, π/6) 0.03×10−5 0.03×10−5

cosX [π/6, π/3) 0.10×10−5 0.07×10−5

[π/3, π/2] 1.69×10−5 18.50×10−5

[1,2) 6.17×10−5 38.41×10−5

[1,4/3) 17.20×10−5 65.14×10−5

log2X [4/3,5/3) 0.92×10−5 0.61×10−5

[5/3,2) 0.40×10−5 0.25×10−5

[0,1) 0.38×10−5 0.22×10−5

[0,1/3) 0.39×10−5 0.24×10−5

2X [1/3,2/3) 0.38×10−5 0.23×10−5

[2/3,1) 0.38×10−5 0.22×10−5

[1,4) 98.01×10−5 59.29×10−5

[1,8/5) 73.58×10−5 54.88×10−5

1√
X

[8/5,11/5) 92.19×10−5 43.73×10−5

[11/5,14/5) 150.00×10−5 19.94×10−5

[14/5,17/5) 59.00×10−5 46.55×10−5

[17/5,4) 110.00×10−5 66.41×10−5

V13.0 environment targeting the Cyclone IV EP4CE115F29C7
FPGA platform.

Table I reports the main features in terms of hardware,
power, and performance for both cases. The cost of one SP in
the GPGPU was included as a reference for the comparison.
In terms of performance and power consumption, some pa-
rameters, such as the operative voltage, frequency, and the
optimization during the compilation generate the observed
behavior. Finally, a complete synthesis of the GPGPU model
integrating the SFUs was performed. The results show that the
hardware cost of one SFU module varies from four to eight
times the cost of one SP core: four (in the FPGA) or eight (in
the ASIC) SPs occupies almost the same area that one SFU.
Moreover, the insertion of SFUs in the GPGPU core represents
an additional cost of 5.3% of cells and 7.5% of area.

A. Precision

Table II reports the average relative error produced by each
one of the modules in the SFU. The results were obtained
by performing simulation-based verification. As it can be
observed, the average relative error and the standard deviation
(σ) are moderate for most of the modules when comparing
with results presented in [4]. However, the implementations
algorithms differ and the relative error in SIN, COS, LOG2,
and RSQRT depend on the evaluated range of input values.

In the CORDIC algorithm, the relative error increases
rapidly when the input values are very close to 0 in the
sinx function with an experimental maximum relative error
of 0.4%. A similar situation is present in the cosx function
when the input angle approaches π

2 with a maximum relative
error of 0.8%. These errors are mainly caused by rounding
issues related to the selection and fill with the LUTS for
the single-precision representation. Moreover, the iterative
implementation contributes to accumulating the rounding error
on each intermediate result and is propagated to the final result.
One possible solution to decrease the error would be the use
of double-precision formats and applying a higher number



TABLE III
COVERAGE METRICS IN THE SFU FOR UNIT AND SYSTEM VERIFICATION

Module SFU Interconections with GPU

Coverage(%)

Block 100.0 96.61
Expression 68.0 66.67

Toggle 97.0 93.75
FSM 100.0 100
Code 98.51 85.68

Overall 84.61 92.84

of iterations allowing a fine-tune of the result. However, the
performance could be compromised.

The relative error in the log2 x is maximum when the input
values are close to 1, and therefore the logarithm function
tends to 0, so obtaining a maximum error value of 0.65%. The
result deviation is caused by the quantization process, which
determines the number of segments and the number of bits
used to represent the coefficients, so directly affecting the final
error. This error could potentially be decreased by employing
a higher number of approximation segments as well as a more
significant amount of bits to represent the coefficients.

Regarding the maximum relative error in 1√
x

function, the
obtained 0.18% is produced when the function is evaluated
at values close to 1, 1.5, 2.5 and 4. This behavior can be
explained, considering that a single iteration of the Newton-
Raphson method was used. A solution to reduce the error can
be obtained by applying more iterations. Another approach
could be based on the ALA algorithm combining the log2
and 2x functions.

Finally, each function in the SFU was described as a
software program for the GPGPU using Taylor series or the
equivalent polynomial approximation. Then, Both versions of
the functions (software and SFU) were compared, using the
maximum number of threads in the SM, showing that the SFU
functions can increase the performance of an application in the
GPGPU by twice, for the iterative functions, to 22 times, for
the non-iterative functions.

B. Verification
Table III reports the results obtained when computing the

coverage metrics employing the IMC tool. In the results, we
can observe that the procedures applied to verify the SFU at
the unit level produced the 84.61% of overall coverage. The
missing coverage is mainly caused by constant descriptions in
the modules that are not feasible to stimulate. Regarding the
coverage at the system level, the two programs reported an
accumulated relatively high percentage of coverage (92.84%)
when verifying the implemented instructions and the inter-
connections modules (controller, registers, and multiplexers)
between the SFUs and the GPGPU.

The description and test-benches of the designed SFU are
freely available1. Moreover, documentation [16] for stand-
alone operation can also be accessed.

VI. CONCLUSIONS AND FUTURE WORK

This paper outlined the design of a Special Function Unit
(SFU) to be used in a GPGPU, its functional verification, and
the integration with the open-source GPGPU (FlexGripPlus).

1https://opencores.org/projects/special functions unit

The experimental results show that one SFU seems to have
an equivalent hardware cost of four to eight execution units in
the GPGPU, which contributes to explain the limited number
of SFUs in a GPGPU core. Moreover, the proposed SFU
increases the performance of an application in the order of two
to 22 times depending on the architectural approach employed
to describe the functions in the SFU. Similarly, the verification
approaches were effective on targeting different objectives
when verifying the functionality of the proposed SFU.

The modular scheme of the SFU allows the optimization of
the implemented functions: as a future work, we will target
the reduction of the relative error. Moreover, we plan to apply
other methods of verification to further increase the confidence
in the design. Additionally, we plan to select workloads using
the SFU in GPGPUs and perform reliability analyses at the
micro-architectural level of the GPGPU.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey,” Integration, vol. 59, pp. 148 – 156, 2017.

[2] A. Li, S. L. Song, M. Wijtvliet, A. Kumar, and H. Corporaal, “Sfu-
driven transparent approximation acceleration on gpus,” in Proceedings
of the 2016 International Conference on Supercomputing, ser. ICS ’16.
New York, NY, USA: Association for Computing Machinery, 2016.

[3] P. K. Meher, J. Valls, T. Juang, K. Sridharan, and K. Maharatna,
“50 years of cordic: Algorithms, architectures, and applications,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 9,
pp. 1893–1907, 2009.

[4] S. F. Oberman and M. Y. Siu, “A high-performance area-efficient
multifunction interpolator,” in 17th IEEE Symposium on Computer
Arithmetic (ARITH’05), 2005, pp. 272–279.

[5] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, P. Prinetto,
D. Rolfo, and P. Trotta, “A software-based self test of cuda fermi gpus,”
in 2013 18th IEEE European Test Symposium (ETS), 2013, pp. 1–6.

[6] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone, “Flex-
gripplus: An improved gpgpu model to support reliability analysis,”
Microelectronics Reliability, vol. 109, p. 113660, 2020.

[7] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, March 2008.

[8] K. Andryc, M. Merchant, and R. Tessier, “Flexgrip: A soft gpgpu
for fpgas,” in 2013 International Conference on Field-Programmable
Technology (FPT), 2013, pp. 230–237.

[9] J. S. Walther, “A unified algorithm for elementary functions,” in Proceed-
ings of the May 18-20, 1971, Spring Joint Computer Conference, ser.
AFIPS ’71 (Spring). New York, NY, USA: Association for Computing
Machinery, 1971, p. 379–385.

[10] D. Bariamis, D. Maroulis, and D. K. Iakovidis, “Adaptable, fast, area-
efficient architecture for logarithm approximation with arbitrary accu-
racy on fpga,” Journal of Signal Processing Systems, vol. 58, no. 3, pp.
301–310, 2010.

[11] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IEEE Transactions on Electronic Computers, vol. EC-11,
no. 4, pp. 512 – 517, 1962.

[12] M. Robertson, A brief history of invsqrt. Department of Computer
Science & Applied Statistics, 2012.

[13] T. Bradshaw, “id-software/quake-iii-arena,” Jan 2012. [Online].
Available: https://github.com/id-Software/Quake-III-Arena

[14] J. F. Blinn, “Floating-point tricks,” IEEE Comput. Graph. Appl., vol. 17,
no. 4, p. 80–84, Jul. 1997.

[15] J. E. R. Condia, B. Du, G. Roascio, E. Scie, and J.-D. Guerrero-
Balaguera, “Programmers manual flexgripplus sass sm 1.0,” pp. 1–67,
May 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3819313

[16] J.-D. Guerrero-Balaguera, J. E. R. Condia, and C.-F. Moreno-Manrique,
“Open source sfu user’s manual,” Jul. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3934441


