
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

On the testing of special memories in GPGPUs

Josie E. Rodriguez Condia†, Matteo Sonza Reorda‡,

Politecnico di Torino, Dept. of Control and Computer Engineering, Torino, Italy

{†josie.rodriguez, ‡matteo.sonzareorda}@polito.it

Abstract1—Nowadays, data-intensive processing applications, such

as multimedia, high-performance computing and safety-critical

ones (e.g., in automotive) employ General Purpose Graphics

Processing Units (GPGPUs) due to their parallel processing

capabilities and high performance. In these devices, multiple

levels of memories are employed in GPGPUs to hide latency and

increase the performance during the operation of a kernel.

Moreover, modern GPGPU architectures implement cutting-edge

semiconductor technologies, reducing their size and power

consumption. However, some studies proved that these

technologies are prone to faults during the operative life of a

device, so compromising reliability. In this work, we developed

functional test techniques based on parallel Software-Based Self-

Test routines to test memory structures in the memory hierarchy

of a GPGPU (FlexGripPlus) implementing the G80 architecture of

Nvidia.

Keywords—General Purpose Graphics Processing Units

(GPGPUs), Software-Based Self-Test (SBST), functional testing,

predicate register file, address register file, fault simulation.

I. INTRODUCTION

General Purpose Graphics Processing Units (GPGPUs) are
special-purpose units mainly used as accelerators in data-
intensive applications, such as image and video processing, and
more recently in high-performance computing. Currently, these
technologies are also promising solutions for safety-critical
applications, e.g., in the automotive field [1]. Some of these
applications (e.g., Sensor Fusion and Advanced Driver
Assistance Systems, or ADAS) require devices able to process
a large amount of data under real-time constraints. These data
usually come from multidimensional sensors (e.g., cameras and
radars). GPGPUs are suitable devices for these applications
considering their highly parallel capabilities, high performance,
and moderate power consumption. Commonly, designers use
cutting-edge semiconductor technologies for their
implementation to obtain high performance and reduced power
consumption.

Nevertheless, some studies [2] have demonstrated that these
technologies are prone to introduce faults (such as permanent
faults) during the operative life of the device, so compromising
the operations and restraining the reliability and safety of a
GPGPU. Moreover, some studies analyzed the sensibility of the
memory hierarchy of a GPGPU and verified its high
susceptibility to faults [3]. The memory hierarchy is composed
of multiple memory resources to reduce the latency when
executing parallel programs. However, each resource is
susceptible to faults. Moreover, the detection of permanent

1 The European Commission has partially supported this work through the

Horizon 2020 RESCUE-ETN project under grant 722325.

faults in some structures during the operative phase of the
device is still an open issue for these architectures.

The detection of permanent faults during in-field operations
can be performed using two different functional test strategies.
The first strategy is based on Design for Testability (DfT)
approaches, which are based on adding specialized structures to
test a target module. This solution generates and applies test
patterns, and finally detects faults locally: all test operations are
done in hardware, thanks to suitably added modules. These
modules are included in the design phase, increasing the area
and the power consumption of the device.

DfT solutions are practical and commonly used for the end-
of-production test. However, they are less effective when used
for in-field test, mainly due to the strict real-time execution
constraints. In fact, DfT solutions usually destroy the status of
the system (i.e., the content of the memory elements), which
must be saved before the test and then resumed after it. Some
other detection and mitigation solutions, such as those based on
Error-Correcting-Codes (ECCs), are costly solutions and can be
adopted only for big memory structures within the GPGPUs.
Moreover, they mostly target transient faults, and permanent
faults may impair their effectiveness with respect to transient
faults.

The second approach uses Software-Based Self-Test
(SBST), which is based on a set of specially-designed software
routines. Each routine is activated when required (e.g., at the
power-on, or periodically), and adequately sensitizes the target
module, verifying the generated results and propagating a flag
or signature stating whether a fault has been detected or not.
Commonly, the semiconductor company designs these test
routines resorting to rigorous structural metrics to compute the
achieved Fault Coverage (FC) for a given fault model in a target
design. Currently, many semiconductor and IP provider
companies (e.g., Infineon [4], STMicroelectronics [5], Cypress
[6], Renesas [7], Microchip [8], and ARM [9]) provide SBST
solutions for their products.

Some previous works dealt with SBST solutions targeting
GPGPUs. In [10, 11], the authors developed different solutions
to test the memory inside the warp scheduler. Similarly, in [12],
the authors applied a multi-program approach targeting the
pipeline registers in the GPGPUs. Finally, in [13, 14], multiple
strategies targeting data-path modules in the GPGPU were
proposed. These works proved that functional solutions could
effectively be used for in-field tests.

In this work, we propose and explore some SBST strategies
targeting the Address Register File (ARF) and the Predicate
Register File (PRF), which are specialized memory modules
inside a GPGPU. Although their size is relatively small (hence,
making their test via DfT or ECC too expensive or infeasible),
their correct behavior is critical for the safe GPGPU behavior.

Moreover, efficient in-field test techniques for these modules
are still missing. Additionally, a compact mechanism to test the
Vector Register File (RF) is proposed.

For the purpose of this work, we used FlexGripPlus [15],
which is an enhanced GPGPU model we developed starting
from the open-source FlexGrip model [16], mimicking the G80
Nvidia architecture and allowing us to assess the effectiveness
of the proposed SBST solutions quantitatively.

The paper is organized as follows: Section II describes the
general organization of the GPGPUs, and the model used in the
experiments. Moreover, this section introduces the memory
hierarchy. Section III presents the methods to test the memories
in the main cores of a GPGPU using a functional approach
based on SBST. Section IV reports some experimental results,
and Section V finally draws some conclusions.

II. BACKGROUND

A. General organization of a GPGPU

GPGPUs are based on the Single-Instruction Multiple-Data
(SIMD) architecture, according to Flynn’s taxonomy [17]. The
implementation is composed of multiple parallel execution units
(also called Streaming Multiprocessors, or SMs). Internally,
each SM includes various execution units (EUs, also known as
Scalar Processors, or SPs), some cache (shared) memories, a
Register File (RF), a warp scheduler controller (WSC), and
some dispatcher controllers. Moreover, the SM employs
multiple pipeline stages to process warp instructions and
improve performance. Nevertheless, the implementation details
of these structures are commonly unknown. The available SPs
can operate on floating-point or integer numbers to handle an
assigned task. Each task is also known as a thread, and the SM
can process groups of 32 to 128 threads (also known as Warps
or Work-groups) almost in parallel.

In the SM, the WSC submits an available warp to the SPs to
execute the same instruction on each thread. In this parallel
architecture, it is common that each thread employs different
data operands to execute the instructions, thus generating
multiple accesses to the memory system for load and store
purposes. Modern architectures of GPGPUs include a hierarchy
composed of various levels of memories to reduce the latency
and race conditions during the load and store operations.

B. The FlexGripPlus model

FlexGripPlus [15, 18] is an open-source VHDL model and
is an improved version of the original FlexGrip [16]
implementing the G80 micro-architecture by Nvidia. This new
model is fully compatible with the commercial programming
environment of Nvidia (CUDA-Toolkit under SM 1.0
compatibility level). FlexGripPlus supports 28 instructions of
either 32 or 64 bits in more than 64 formats. The SPs in the
model can be configured with 8, 16, or 32 cores.

A set of external parameters are defined in the GPGPU
model before starting the operation. These parameters are the
number of Blocks per core, the Block dimension, and the Grid
dimension. Moreover, other settings are configured by setting
proper values in the constant memory, such as the number of
registers per thread and the number of blocks per SM core.

More in detail, the micro-architecture of FlexGripPlus is
based on a variation of the SIMD taxonomy that is called SIMT
(Single-Instruction Multiple-Thread) paradigm. The model
exploits a custom SM core with five stages of pipeline (Fetch,
Decode, Read, Execution/Control-flow, and Write-back).

The SM uses a WSC to manage the operation of each
thread. In this model, one instruction is executed in parallel per
warp or group of 32 threads. It means that one warp instruction

is fetched, decoded, and distributed into independent SPs to be
processed in the SM.

C. Memory hierarchy in FlexGripPlus

The SIMD taxonomy uses a large set of data operands to
operate the same instruction in parallel. This structure generates
bottlenecks and race conditions when accessing operands from
the memory system. For this purpose, the GPGPUs include
multiple memory levels to reduce the latency. These
mechanisms are optimized to process data operands mostly
organized as arrays or matrices. In this way, each SM includes
multiple data memory resources to optimize the information
flow for each thread. These resources are the RF, the shared
(Sh_mem), Global (G_mem, or main), constant (C_mem), and
the local memory (L_mem), as in Fig 1. Moreover, some
special-purpose memories store the memory addresses
(A_mem) and predicate registers (P_mem).

The memory hierarchy includes several controllers and
arbiters to access every memory resource. Initially, a master
memory controller activates a separate memory controller when
accessing an operand from that particular resource. In the
FlexGripPlus architecture, the controllers are located inside the
Read and the Write-back pipeline stages to perform the load and
store of operands, respectively.

When processing a program, the compiler usually selects the
best trade-off in terms of performance to locate the data
operands using the available memory resources in the SM. In
particular, the RF stores individual operands. The L_mem stores
the operands behaving as arrays. Similarly, C_mem stores
constant variables during the operation of a program, and
Sh_mem stores those operands used among the threads in a
block. Finally, G_mem is used to locate all input data sources
and the output results of a program.

The master memory controller decodes the commands
coming from the incoming fetched warp instruction. This
controller selects the target memory resource and submits a
request to the specific memory controller. It is worth noting that
both the Read and the Write-back stages can activate up to 3
simultaneous operations on the memories considering the
required number of sources or destinations by the instruction.
Some modules operate in parallel and determine the target
memory locations to perform the reading or writing operations,
depending on the source or destination number.

Memory arbiters manage and order access into the target
memories. These arbiters organize the memory access for the
threads in a warp, considering that up to 32 loads or stores can
be generated per warp parallelly.

The RF is a massive structure composed of 16KB general-
purpose registers and located inside of an SM. The WSC
divides the RF among the available SPs and the configured
threads in a program kernel. The RF is one of the most critical
units in the operation of a thread in the SM since most

FIG 1. GENERAL SCHEME OF THE SM IN THE FLEXGRIP GPGPU

instructions require a load or a store from/to memory.
Moreover, the RF feeds the execution units with the data
operands for each thread. The RF also stores the indices for
memory addressing, the kernel parameters, and the data and
address operands during the execution of one warp instruction.

The P_mem or predicate register file (PRF) stores the
predicate flags after each comparison or logic-arithmetic
instructions. When the model is configured with 8 SPs, 512
registers of one bit-size are assigned per SP. These registers are
distributed in groups of four registers among the available
threads. The four registers store the logical state of the zero (Z),
the sign (S), the carry (C), and the overflow (O) flags for each
thread. The flags remain constant in the subsequent clock cycles
until the execution of a new instruction affects their state.

The A_mem or address register file (ARF) adresses the
shared and constant memories with additional indices indirectly.
The shared memory is commonly used in programs to optimize
the performance and is used to access sectors of data organized
as arrays or matrices by multiple threads in a program kernel
efficiently. Moreover, the ARF reduces the latency in data used
frequently by a kernel. Each one of the eight SPs has an
associated ARF module composed of 512 registers of 32 bit-
size holding up to 128 threads. In this way, four registers (A0,
A1, A2, and A3) are assigned to each thread.

III. METHODOLOGY FOR FUNCTIONAL TEST

The proposed strategy uses a functional test approach based
on SBST programs to detect permanent faults according to the
stuck-at fault model in the RF, PRF, and ARF. Although the
target modules correspond to memory, and several sophisticated
fault models have been proposed for memories, for the purpose
of this paper we only deal with the stuck-at faults affecting
single cells: in fact, these memories are likely to be
implemented as SRAMs, and the strict time constraints for in-
field test would not allow targeting more complex fault models.

A. General features in the memory hierarchy of a GPGPU

The strategy takes advantage of the characteristic features of
each target memory and the behavior of the controllers in the
memory hierarchy. These features are:

 The target structures ARF and PRF are fully independent for a
given SP core. Similarly, the RF is divided among the available
SP cores in an SM and managed independently

 Each memory location can be accessed by threads operating in
a kernel program, so the maximum thread parallelism allows
the lowest latency during a test procedure.

The proposed general strategy functionally tests each
memory cell in the target memories considering these two
features. Moreover, taking into account that the structures or
parts of them are fully independent for a given SP and can be
assigned to each thread, the test program must use the
maximum capacity of active threads in the SM to access each
memory location.

The application of each test pattern employs one out of two
strategies. The first employs direct memory movements among
registers and a target memory location. The second uses intra-
warp divergence. Both methods are effective mechanisms to
provide test controllability and generate the required test
patterns in the target structures.

The Signature per Thread strategy (SpT) [12] can provide
the observability of a fault in a parallel architecture. The SpT
allows the individual observation of a fault present in one of the
target locations by performing sensitizing operations and
updating exclusive signatures according to the presence or
absence of a fault. One SpT is assigned to each thread and
stores status information of every target location in a module.

The SpTs are stored in one or more consecutive memory
locations in the G_mem, considering the target of the test: fault
detection or diagnosis, respectively.

The thread divergence generation can update each SpT
through two execution paths (the faulty path and the fault-free
path) depending on a comparison checking the presence of a
fault. On each path, the program loads and updates an SpT with
a representative value to propagate the fault in the memory. At
the end of the test routine, some external comparisons are
performed between the golden values and the SpTs to detect a
fault. Since the target structures for the test are memories, the
golden values are directly loaded from immediate instructions,
so avoiding the use of any memory resource.

B. Proposed general strategy

 The proposed methodology is composed of four steps. For
each target structure, these steps may be subject to minor
adaptations. The steps are:

1) Load test pattern

Immediate instructions (in this case, the pattern is included
in the instruction op-code) loads and applyies a pattern to a
target memory location. The same mechanism is used to load
the golden results for comparison purposes. This approach
avoids the use of any memory resource in the SM and potential
faults affecting these structures. Four test patterns are
employed: 0xFF…, 0xAA…, 0x00…, and 0x55… targeting
stuck-at-0 (S/0) and stuck-at-1 (S/1) faults, respectively. If a
transparent test is required, the actual values in the registers of
the RF or the ARF and their inverted values can also be used
replacing the proposed test patterns without major changes.

2) Applying a test pattern

The application of a test pattern uses one of two possible
mechanisms: intra-warp divergence and direct memory
movements. In case of transparent testing, the actual value is
considered as starting pattern.

A test pattern for the PRF requires an indirect approach. In
this case, a set of consecutive thread divergence operations
(control-flow instructions) are executed, forcing a change on a
target predicate flag. A subsequent comparison is employed to
update the SpT and propagate the fault. On the other hand, one
direct movement instruction applies one test pattern to a target
location in the RF or ARF.

3) Parallel propagation of test patterns

The maximum thread capacity in an SM is configured in the
test programs to test all memory locations. The same functions
are executed on each thread, and the test pattern is propagated
almost in parallel. It is worth noting that some minor latency
can be present when spreading a test pattern in a target module
due to the scheduling of warps in the SM. However, the
independent access of each thread into every assigned memory
location avoids the inaccuracy of the test caused by the latency
so that this latency effect can be neglected.

4) Evaluation and updating of the SpT

When the execution of all threads propagates a test pattern,
the SpT is loaded from global memory, and one comparison is
performed between a golden value and the value from a register
or predicate flag. The fault identification is achieved by using
thread divergence paths, starting from a divergence point, see
Fig.2 . From this divergence point, two paths are generated (the
fault-free path and the faulty path). Each comparison is
performed following a predefined fault-free path, which updates
the SpT with golden values only. In this way, a fault is detected
in the SpT when one or multiple faulty paths are taken (as an

effect of faults in the module), and the updated value is different
from the golden one.

After the convergence point, the SpT is stored in memory.
Finally, the previous process is applied again for the missing
test patterns or the inverted value. It is worth noting that the
functional test of the state machines in the memory hierarchy
controller of an SM is out of the scope of this work, and it is
planned as future work.

IV. IMPLEMENTATION

We use the native language of the Nvidia GPGPUs (Shader
Assembly language, or SASS) to implement each test program,
considering the compatibility supported by FlexGripPlus.

A. Predicate register file PRT

In this module, each thread uses control-flow instructions to
generate controlled divergence paths to apply a test pattern
indirectly into the registers of this structure. Initially, the first
group of divergence paths evaluates S/0 on each register. Then,
other groups of divergence paths test the S/1 condition. The
activation (logic one) of a flag in the register and a successive
comparison can detect a permanent S/0. Similarly, deactivation
(logic zero) and a comparison can detect the S/1 condition in a
register field. A predicate flag is activated or inactivated as a
product of one comparison (X_SET type) instruction.

Each divergence path uses carefully selected logic-
arithmetic operations to propagate a fault to the main memory.
The divergence paths update and store back the SpT to identify
and to disseminate a fault in a memory cell. In this way, the
golden path updates the SpT with an acumulative golden value.
On the other hand, the faulty path performs a faulty update.
Thus, a later evaluation can identify a fault in one of the flags of
the PRT as an error observed in the G_mem memory. It is worth
noting that the test program targets an individual flag in the
register per divergence paths.

One convergence point indicates that a thread finished the
divergence operation, and a new one starts targeting a different
flag in the predicate register. Thus, multiple consecutive and
independent divergence paths are effective to test the PRF.

The generation of each divergence path is intended to keep
thread coherence in the test program. In this way, if a fault is
present in one of the threads, a faulty path would be executed,
and the SpT of this individual thread would denote the fault by a
change in a signature. However, the program execution is not
stopped or hanged by the detection of a fault in this module, so
allowing the detection by observing the memory content, only.

Once the comparison is executed, a target flag is modified
and stored in the PRF. It is worth noting that the effect of this
comparison in the flag is extended and remains for multiple
instructions cycles. In this way, after the application of a test
pattern, two consecutive control-flow instructions are executed,
checking the target flag, thus reading the target predicate
register. In each case, the faulty or fault-free paths are executed,
updating the SpT, as described below. The previous process can
be used to detect S/0 faults. In the case of the S/1, the process is
similar. In this scenario, the flags are forced to zero (cleaning
operation) by carefully selecting one operation. Then, the

execution of the two paths updates the SpT to detect ay fault in
the flag. Finally, after the evaluation of each flag in the register,
a new register is targeted to perform the same procedures.
Figure 3 shows the assembly instructions describing the test
procedure for the PRF and ARF modules.

B. Vector Register File RF:

The test of permanent faults in the RF can follow the
classical method from the literature, such as March algorithms.
However, this method can compact the test patterns using the
features in the RF module, the available instructions, and the
redundant operation of the threads in the program.

The method injects test patterns targeting S/0 and S/1
independently. This independent approach reduces the number
of instructions required to update the SpT. Three SpTs (SpT1,
SpT2, and SpT3) are employed in the method to test and
compact the detection of a possible fault. SpT1 and SpT2 are
signatures devoted to store any S/0 and S/1, respectively. SpT3
is the compact signature to detect any fault independently of the
type. It is worth noting that using these three signatures, it is
possible to perform detection and also diagnosis.

In the first stages of the GPGPU execution, the register R0
contains the thread indexes. These indexes are used by each
thread to access the memory resources, so this register is the last
to be tested, avoiding the loss of the thread indices.

In the proposed method, the indices are combined with the
target memory locations to store and load the SpT. Initially, R0
handles the address of the SpT in memory and sustains this
value during the program execution. The implemented SBST
procedure consists of the following steps:

1) Initialization of the registers in RF (excluding R0) with one test

pattern (all 0s or all 1s)

2) Execution of one logic operation between a target register and a

constant value. The AND and the OR bit-wise operators evaluate

the S/1 and the S/0 conditions, respectively

3) Store the result in global memory as SpT1

4) Change of the address value in R0. Repeat steps 1, 2, and 3 using

the missing test pattern and logic operation

5) Store the result in global memory as SpT2

6) Move the content of R0 to other registers, assigning the first test

patterns to R0

7) Load SpT1 and operate with R0, Store the result as SpT1

8) Repeat steps 6-7 with the missing pattern and store results as SpT2

9) Load SpT1 and SpT2 and compact as SpT3.

SpT3 can represent the fault effect of a permanent fault in
the RF. The expected value is all 1s. A mismatch in this value
represents the fault in one of the registers assigned to each
thread. It is worth noting that one SpT is stored in the memory
for each of the configured threads in the test kernel.

The diagnosis is performed by sequential comparisons of the
SpT1 and SpT2 with golden values. This method is useful to
detect any individual fault in any register of the RF. It should be
noted that only one fault can be detected. If two or more
permanent faults are present in a register, the last one is reported
only, due to the sequential comparison. These comparisons
require the use of one predicate flag. The result of this flag
determines if a fault is present in a register location, then new
comparisons are performed. After each comparison, a cleaning
procedure cleans the flag to avoid inconsistent fault detection.

C. Address Register File ARF

The direct movement instruction between a data register and
one address register in ARF starts the injection of a test pattern.
Then, an address movement (ADA), see Fig. 3, propagates the
test pattern among the registers. Moreover, it is assumed that the
RF module operates correctly.

Update SpT with

Golden value

Inject test pattern

Load SpT

Flow-program of one thread

Fault-free

path

Divergence point

Faulty

path

Update SpT with

a faulty value

Next injection of a test pattern and comparison

FIG 2. A GENERAL SCHEME OF THE METHOD USED TO UPDATE THE SPTS

The test program uses the maximum capacity of threads
(1,024) in the SM to test the entire ARF. More in detail, each
thread can access four address registers (A0-A3). Moreover, the
SpT uses two consecutive memory locations and propagates the
effect of a permanent fault in any address register. The first
location stores the type of the fault (S/0 or S/1) with logic states
and the location of the fault in the register. The second location
in memory indicates if a fault is present. It is worth noting that
each update to the SpTs uses different paths in the program.
These paths are generated using internal comparisons.

This test method applies test patterns 0xAA… and 0x55…
and forces a sequence of individual comparisons with a golden
value on each thread and identifies faults by mismatches in the
target address register. Those comparisons generate test paths.
Each test path was optimized to execute a minimum number of
instructions. In the end, each path has the same amount of
instructions to maintain an equivalent execution time.
Moreover, the same predicate register is reused to reduce the
resource overhead. One comparison instruction affects the
predicate register cleaning the flag before each comparison. A
test pattern is applied via the following steps:

1) Movement of a test pattern from one General Purpose Register

(GPR) into one of the address registers in the ARF

2) Copy of the test pattern to the address registers

3) Retrieve information from ARF into a set of four GPRs

4) Compare GPR 1 with the golden value

5) Classify the possible fault (or fault-free)

6) Repeat steps 4 and 5 for the missing address registers

7) Change the test pattern and restart again.

V. FAULT INJECTION ENVIRONMENT

The valiadation of the developed SBST test programs was
performed in a custom fault injection environment based on the
ModelSim framework. The fault injector follows the guidelines
introduced in [12, 19], and for the purpose of this work, injects
permanent faults in the target memories. The injector is
composed of the fault injector controller (FIC), a fault injector
decoder (FID), and a fault injector checker and classifier
(FICC). The FIC manages the configuration of the GPGPU
model and the simulation framework. Moreover, it begins and
finishes the fault simulation. The FID translates, from an input
fault list, one fault into an equivalent sequence of commands
managing a fault. These commands are applied to the model
before the simulation starts. The FICC checks the fault effect in
the model and the method used for finishing the simulation.
Finally, the FICC classifies the fault effect. The faults are
classified as i) Silent Data Corruption fault (SDC), when a fault
generates mismatches in the memory results, allowing its
detection. ii) Hanging or Crash fault, when a fault stops the
program execution or avoids the correct termination. iii)
Timeout fault, when a fault affects the system and produces a
change in the execution time of the program. In this case, the
memory results are not affected, and iv) Masked when a fault
does not affect the system execution and the results.

A fault injection campaign starts by defining and sending an
input fault list to the FIC. The fault list is composed of the target
fault model (Stuck-at) and the location in the target module.
Each line in the fault list includes a target location for fault
injection. Then, the FIC starts a fault-free (golden) simulation to
store the memory results and the simulation time as reference
parameters during the fault campaign. The fault simulation time
is fixed as twice the golden simulation time to detect potential
timeout fault effects. Then, the FICC compares the results in
memory and the execution time to classify a fault.

A new fault simulation then starts again by reading another
line from the input fault list and finishes when there are no more
lines in the fault list. At the end of the fault campaign, one fault

report file is created that describes the effect of every fault in
the system. A second fault report includes a quantitative
classification of the faults.

VI. EXPERIMENTAL RESULTS

The FlexGripPlus model was programmed with 8 SPs, and
each test program was configured with the maximum number of
threads per block affordable for an SM. The fault simulation
experiments were performed on a workstation with an Intel
Xeon CPU running at 2.5 GHz, equipped with 12 cores, and
256 GB of RAM. During the fault injection campaign, a set of
representative benchmarks and the developed test programs
were evaluated, targeting the PRT, RF, and ARF modules.

Three representative applications are selected to compare
the capabilities of fault detection of typical workloads with
those of the proposed test strategies (PRF_T, ARF_T, and
VRF_T). These applications are the matrix multiplication
(MxM), the Bitonic Sort (Sort), and the Fast Fourier Transform
(FFT). The MxM application uses the shared memory to load
parameters and employing a tiling approach to operate them
efficiently. In contrast, the Sort application is based on thread
divergence and use of the RF to perform the sorting of data
operands. Finally, the FFT implements a butterfly structure that
operates the Fourier transformation in one dimension.
Additional details regarding the selected benchmarks can be
found in [12, 18]. Table 1 reports the key parameters about the
representative benchmarks and the implemented test programs
for each module under test.

As explained previously, the same test program is executed
in parallel by each thread targeting different locations in the
tested structures. In each case, 4,096 memory locations (bytes)
are required to store the detection results as SpTs. It is worth
noting that the reported version of the PRF test program uses
sequential reading and writing operations to update the SpT of
each thread. This condition causes an additional latency
(observed in total execution time) by the continuous operations
in G_mem. On the other hand, the representative benchmarks
were configured with 1,024 threads for the MxM application
and 64 threads for the Sort and FFT applications.

An initial fault campaign injected faults in the entire
structures of the PRF and the ARF. In this case, the fault list
was divided into 8 and 32 pieces for the parallel fault
campaigns. For the PRF and the ARF, a total of 32,768 and
262,144 faults were injected, respectively.

The target memories are regular structures in the GPGPU
design, which are distributed equally among the available SPs.
Moreover, test programs are designed to access data operands
independently. Thus, it is possible to perform the fault injection
in one structure belonging to any SP and determine the
complete fault coverage (FC) of all similar structures in the SM.
The FC is computed using all faults detected and classified in

1 … 1 …

2 MVI R8, 0x0; 2 MVI R2, 0x55555555;

3 MVI R7, 0xaaaaaaaa; 3 R2A A1, R2;

4 SSY 0x8c; // Divergence Point 4 ADA A2, A1, 0x00;

5 ISET.S32.C0 o [0x7f], R7, R8, NE; 5 …

6 BRA (C0.NE), 0x7c; 6 A2R R5, A3;

7 GLD.U32 R8, global14 [R0]; // faulty p. 7 MVI R8, 0x55555555;

8 IADD32I R8, R8, 0x6; 8 ISET.S32.C0 o [0x7f], R5, R8, EQ;

9 BRA 0x8c; 9 GLD.U32 R8, global14 [R0];

10 GLD.U32 R8, global14 [R0]; // fault-free p. 10 SSY 0x190; // Divergence point

11 IADD32I R8, R8, 0x1; 11 BRA (C0.NE), 0x188;

12 NOP.S; // Convergence Point 12 IADD32I R8, R8, 0x10000;//fault-free p.

13 GST.U32 global14 [R0], R8; 13 BRA 0x190;

14 … 14 IADD32I R8, R8, 0x1; // faulty p.

15 15 NOP.S; // Convergence point

16 16 GST.U32 global14 [R0], R8;

17 17 …

FIG 3. FRAGMENTS OF THE IMPLEMENTED SBST TO TEST THE PRF (LEFT) AND

ARF (RIGHT) MEMORIES

one of the possible classifications different from masked as
described previously in section V.

TABLE 1. PERFORMANCE PARAMETERS OF THE IMPLEMENTED TEST PROGRAMS
Benchmarks or

SBST kernels

Execution time

(Clock Cycles)

Number of

Instructions

MxM 774,437 294

Sort 233,720 26

FFT 96,373 168

PRF_T 1,890,106 434

ARF_T 338,240 122

VRF_T 108,958 82

TABLE 2. FC FOR THE TWO VERSIONS OF THE FAULT CAMPAIGN
Fault campaign PRF ARF

Complete
Fault list size 32,768 262,144

SDC (%) 100.0 100.0

Reduced
Fault list size 4,096 32,768

SDC (%) 100.0 100.0

TABLE 3. FC FOR BENCHMARKS AND TEST PROGRAMS
Benchmark or

SBST kernel

Target

module
Total faults SDC (%) Halt (%) Total FC (%)

MxM

PRF 32,768 0 0.38 0.38

ARF 262,144 25.07 0.0 25.07

RF 262,144 18.26 8.24 26.5

Sort

PRF 32,768 0.16 0.04 0.20

ARF 262,144 0.0 0.0 0.0

RF 262,144 0.18 0.07 0.25

FFT

PRF 32,768 0.15 0.19 0.34

ARF 262,144 0.0 0.0 0.0

RF 262,144 0.19 0.21 0.4

PRF_T PRF 32,768 100.0 0.0 100.0

ARF_T ARF 262,144 100.0 0.0 100.0

VRF_T RF 262,144 100.0 0.0 100.0

We performed individual fault campaigns targeting only one
memory structure of a particular SP at a time. Then, we
repeated the experiments, focusing on all memories belonging
to all SPs in the SM. In the end, the fault lists were reduced on
each case, and 4,096 and 32,768 faults were injected for the
individual fault campaigns targeting the PRF and ARF modules,
respectively. Table 2 presents the FC results for both targets in
the fault campaign (complete and reduced). Detection results of
Timeout and Halt are zero (0%) for both versions. Results allow
us to affirm that in case of massive fault injection campaigns,
the performance increases significantly (by reducing the
execution time) when the target of the fault injection includes
identical modules in structure and function. Both reduced
versions of the fault campaign compressed the entire fault
simulation in a proportion of 8 (as the number of SPs). It is
worth noting that the target structures are evaluated by the test
programs using embarrassingly parallel instructions. Moreover,
there is no interaction among the threads and their operands.

Nevertheless, the previous procedure is not entirely valid
when a program includes intra-warp divergence, warp barriers,
or when the execution depends on data operands. Table 3
reports the results of the experiments for the representative
benchmarks and the test program for the different modules
under test. Finally, no faults causing timeout conditions were
detected for each benchmark or implemented SBST strategies.

As observed in the results of Table 3, the proposed methods
are useful in testing the PRF, the ARF, and the RF modules
independently. The propagation of the fault effect into global
memory is the main advantage of the proposed technique, and
100% of detections are mapped to the G_mem using the SpT
mechanism. In contrast, the representative benchmarks are
ineffective in detecting faults from the modules under test. The
previous behavior can be explained considering that all the
applications employ only parts of the RF, ARF, and PRF during
the execution of the program, so some faults are not propagated
or affect the functionality of the program. However, it shows
that an elaborated test program is required to test special
structures such as the ARF and PRF. Although we used the
FlexGripPlus model to develop and validate the proposed SBST
strategies. We claim that the proposed methodology can be

adapted and used for the most recent GPGPU architectures,
such as Maxwell and Pascal, which include similar structures.

VII. CONCLUSIONS

We introduced a methodology to develop self-test routines
targeting some of the memories composing the memory
hierarchy in GPGPU devices. The proposed solutions take
advantage of the regularity of these structures. We proved that
SBST methods can be effectively developed when targeting
regular structures in GPGPUs.

We adopted the proposed methodology to test the targeted
structures in a sample GPGPU. In each case, the use of different
test patterns was critical for accessing the structures. The use of
the Signature per Thread (SpT) mechanism, to support the
observation of fault effects, is particularly effective when
addressing the test of complex structures in parallel
architectures. The gathered results show that 100% of stuck-at
faults affecting single cells of each memory can be detected. In
contrast, a very low fault coverage figure can be obtained,
resorting to usual application codes.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A

survey," Integration, vol. 59, pp. 148-156, 2017/09/01/ 2017.

[2] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and
P. Bonnot, "Reliability challenges of real-time systems in forthcoming

technology nodes," in 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2013, pp. 129-134.
[3] P. Rech, C. Aguiar, R. Ferreira, C. Frost, and L. Carro, "Neutron

radiation test of graphic processing units," in 2012 IEEE 18th

International On-Line Testing Symposium (IOLTS), 2012, pp. 55-60.
[4] Infineon Technologies. (2020). https://www.hitex.com/tools-components

/software-components/selftest-libraries-safety-libs/

[5] ST Microelecronics, "AN3307 Application note Guidelines for obtaining
IEC 60335 Class B certification for any STM32 application," , 2016.

[6] Cypress, "AN204377 FM3 and FM4 Family, IEC61508 SIL2 Self-Test

Library," ed, 2017.

[7] Renesas Electronics. (2020). https://www.renesas.com/eu/en/products/

synergy/software/add-ons.html.

[8] Microchip Inc., "DS52076A 16-bit CPU Self-Test Library User’s
Guide," ed, 2012, p. 52.

[9] ARM. (2020). https://developer.arm.com/technologies/functional-safety.

[10] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "About the
functional test of the GPGPU scheduler," in IEEE 24th International

On-Line Testing Symposium (IOLTS), 2018.

[11] S. Di Carlo, J. E. R. Condia, and M. Sonza Reorda, "An On-Line
Testing Technique for the Scheduler Memory of a GPGPU," IEEE

Access, vol. 8, pp. 16893-16912, 2020.

[12] J. E. R. Condia and R. Sonza Reorda, "Testing permanent faults in
pipeline registers of GPGPUs: A multi-kernel approach," in 2019 IEEE

25th International Symposium on On-Line Testing and Robust System

Design (IOLTS), 2019, pp. 97-102.
[13] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, P. Prinetto, D.

Rolfo, et al., "A software-based self test of CUDA Fermi GPUs," in

2013 18th IEEE European Test Symposium (ETS), 2013, pp. 1-6.
[14] S. Di Carlo, G. Gambardella, I. Martella, P. Prinetto, D. Rolfo, and P.

Trotta, "Fault mitigation strategies for CUDA GPUs," in Test

Conference (ITC), 2013 IEEE International, 2013, pp. 1-8.
[15] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone,

"FlexGripPlus: An improved GPGPU model to support reliability

analysis," Microelectronics Reliability, vol. 109, p. 113660, 2020.
[16] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for

FPGAs," in 2013 International Conference on Field-Programmable
Technology (FPT), 2013, pp. 230-237.

[17] M. J. Flynn, "Some Computer Organizations and Their Effectiveness,"

IEEE Transactions on Computers, vol. C-21, pp. 948-960, 1972.
[18] B. Du, J. E. R. Condia, and M. Sonza Reorda, "An extended model to

support detailed GPGPU reliability analysis," in 14th IEEE International

Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS), 2019.

[19] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, "Evaluating the

effects of single event upsets in soft-core GPGPUs," in Test Symposium
(LATS), 2016 17th Latin-American, 2016, pp. 93-98.

