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Abstract. Cerebellar synaptic plasticity is vital for adaptability and fine tuning
of goal-directed movements. The perceived sensory errors between the desired and
actual movement outcomes are commonly considered to induce plasticity in the
cerebellar synapses, with an objective to improve the desirability of the executed
movements. In rapid goal-directed eye movements called saccades, the only
available sensory-feedback is the direction of reaching error information received
only at end of the movement. Moreover, this sensory-error dependent plasticity
can only improve the accuracy of the movements, while ignoring the other essential
characteristics such as the reaching in minimum-time. In this work we propose
a rate-based, cerebellum-inspired adaptive filter model to address the refinement
of both the accuracy and movement-time of saccades. We use optimal-control
approach in conjunction with the information constraints posed by the cerebellum
to derive bio-plausible supervised plasticity rules. We implement and validate
this bio-inspired scheme on a humanoid robot. We found out that, separate
plasticity mechanisms in the model cerebellum separately control accuracy and
movement-time. These plasticity mechanisms ensure that optimal saccades are
produced by just receiving the direction of end-reaching-error as an evaluative
signal. Furthermore, the model emulates the encoding in the cerebellum of
movement kinematics as observed in biological experiments.
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1. Introduction

Primates can carry out precise and fast movements,
in the complete absence of sensory guidance (Iwamoto
& Kaku 2010). The possible erroneous motions due
to the absence of sensory feedback, are generally
hypothesized to be corrected by the acquisition of
predictive models in the cerebellum, regarding the
state of the environment, and of the body itself (Xu-
Wilson et al. 2009, Stein 2009, Wolpert et al. 1998).
However, the acquisition of these models should be
supervised by temporally unspecific error estimates,
available in a delayed processing stage. For example, in
the case of ballistic eye movements called saccades, the
total error information delivered to the cerebellum, is
available only at the end of the eye movements (Hopp
& Fuchs 2004). In addition, the received feedback
from different movement directions is based only on the
scalar sign of the movement error, without any sensory
representation of the entire trajectory (Soetedjo &
Fuchs 2006).

This poses a question: how can the cerebellar
mechanisms achieve a supervised fine movement
control in the absence of a temporally descriptive error
information?

Biological systems and their robotic counterpart
need to satisfy certain kinematic and dynamic
constraints of movement desirability. For example,
fast movements can be produced by instantaneous
switching between maximum positive and negative
control commands, to accelerate and decelerate a given
robotic or biological system towards a given goal
location. However, this kind of control strategy is not
desirable in terms of energy expenditure (Riazi et al.
2015) and accuracy in the presence of signal-dependent
noise (Harris & Wolpert 1998). These task-related
constraints are generally incorporated in robotics and
behavioral models (Ivaldi et al. 2012, Scott 2012),
by means of fitness or cost functions, that evaluate
the quality of a trajectory in terms of an abstract
representation of the movement goal.

However, in lieu of the aforementioned sensory in-
formation constraints, it is unclear how the neural sub-
strate that underlies the fast movements, especially in
the cerebellum, can implement this fitness evaluation.
An elucidation of this problem can facilitate simplified
implementations of fast reaching movements, with re-
gard to efficient sensory requirements and supervised
control strategies.

1.1. Background

A classic modeling strategy used for examining
cerebellum is to consider it as an adaptive filter
(Fujita 1982, Dean & Porrill 2011). In this perspective
the cerebellum is considered to perform three major

signal processing operations: 1. the expansion of
input mossy fiber (MF) contextual information into
high-dimensional components in the granular layer -
composed of granule cells (GrC) and golgi interneurons
(GoC); 2. the linear combination of the available
granular layer signals transmitted through parallel
fibers (PFs) to generate Purkinje cell (PC) output; 3.
adjustment of the strength of PF-PC connections by
means of the teaching signal available as the climbing
fiber (CF) activity. Several other connections regions
of plasticity are also observed (Luque et al. 2016),
which are not the topic of discussion of this paper. The
applicability of this adaptive filter modeling approach
is verified vastly in tasks such as VOR/smooth
pursuit (Dean & Porrill 2011, Franchi et al. 2010,
Zambrano et al. 2010, Vannucci et al. 2015) and arm
reaching movements (Spoelstra et al. 2000, Tolu et al.
2013). These tasks can be viewed in the supervised
learning framework, where the task objective is to
minimize the continuous error between the desired and
executed movements in time. The task error itself
is often available as continuous CF activity through-
out the movement, albeit delayed. When this error
minimization is formulated as a least mean square error
reduction problem, the resulting local covariance rules
corroborate the plasticity mechanisms of biological
cerebellum (Fujita 1982, Porrill & Dean 2008).

Particularly interesting case arises when the task
objective and the available error information do not
have such direct relationship (Harris 1998). This lack
of a highly descriptive error information is evident in
a class of fast eye movements called saccades.

Saccades are fast eye movements carried out by
primates, to bring a given target into the center of the
fovea. The striking feature of saccadic eye movements
is the suppression of vision during the movement,
eliminating any chance of visual information being
employed for online feedback control. At the same
time, proprioceptive information has been observed
to have little significance during the saccadic eye
movement(Lewis et al. 2001). In (Harris & Wolpert
1998, Harris 1998), the authors proposed that the
highly stereotypical relationship between the eye
movement amplitude, speed and duration are due to
the computational objective or desirability employed
by the central nervous system to minimize the variance
associated with the eye movements. This variance itself
is a result of inevitable signal-dependent noise in motor
commands, that is proportional to the magnitude of
the command signal. Hence, when the eye is provided
with high motor command for faster movement, the
accuracy in reaching would be compromised due to
high noise level. On the contrary, low magnitude
motor commands lead to an increase in the reach
time, although they improve movement accuracy. The
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resulting trajectories of eye movements were considered
to be a balance these two opposing costs.

In most of the cerebellum specific neural models
of saccades in both neuroscience and robotics (Dean
et al. 1994, Gad & Anastasio 2010, Quaia et al.
1999, Antonelli et al. 2015, Falotico et al. 2010), the
cerebellum is mainly simulated to account for the
accuracy of the eye movement. However, lesions in
cerebellum causes a loss in accuracy and speed as well
as increase in the duration of the movement (Robinson
et al. 1993), pertaining to the loss in stereotypical
optimal characteristics. Recent works in (Saeb et al.
2011, Kalidindi et al. 2018), simulate the optimal fast
eye movement characteristics by considering the effect
of cerebellum induced adaptation, but do not include
the information constraints on the available sensory
feedback such as the absence of continuous movement
trajectory information.

1.2. Contribution

The main contribution of the paper is to show that
by optimizing our custom fitness formulation for
saccadic eye movements, we can derive plasticity rules
that agree with the synaptic plasticity mechanisms
in cerebellum. Mapping the movement optimality
with the cerebellar plasticity mechanisms is non-
trivial, if we take into account the fact, that the
cerebellum is composed of large number of neurons
and multiple synaptic plasticity mechanisms. Notably,
the weight-update rules that emerge from the optimal
control formulation, follow the local covariance-based
synaptic plasticity rules in the cerebellar PF-PC
synapses. The approach that we follow is to formulate
saccade adaptation as an optimal control problem,
while including reasonable constraints posed by the
information flow in biological cerebellum. Such
constraints are (i)the complete absence of sensory
feedback during the movement and (ii)the occurrence
of endpoint error that signifies only the direction in
which the eye missed the target, without any detailed
magnitude information. Hence the adaptive filter
in our model learns to compensate for the missing
sensory feedback, while also maintaining the movement
optimality or vigor.

Our model indicates that the PC layer activities
of the adaptive filter are correlated to the eye move-
ment kinematics, similar to the neurophysiological ev-
idences that the cerebellar PC populations encodes a
prediction of the eye speed and displacement (Herzfeld
et al. 2015). This justifies the biological implication of
the proposed model, by providing a working hypothesis
on the potential plasticity mechanisms that are respon-
sible for movement encoding in the PC populations.

Overall, we demonstrate the ability of the
proposed model to enable fast and precise eye

movements, in the absence of online-sensory processing
and exact knowledge of the humanoid robot plant. We
show that the lack of trajectory information during the
movements do not hinder the eye movement adaptation
over learning trials.

2. Computational model and methods

The overall saccade control system (shown in Fig.
1), is similar to the high-level control architecture
presented in (Dean 1995). This control system is
mainly composed of the brain-stem component and the
cerebellum based adaptive filter. The adaptive filter
uses the information regarding the target, yd, and an
afferent copy of brain-stem activity, v, as its input.
The brain-stem is simulated to reproduce the faulty
eye movement characteristics, namely target overshoot
with reduced peak speed and increased duration, in the
case of cerebellar lesions. Sensory errors experienced
during erroneous movements are utilized to improve
the motor commands for subsequent movements, by
updating the adaptive filter read-out weights (namely
PF-PC connection weights wpf−pc).

2.1. Saccade control inputs

Neuronal structures like Superior Colliculus that
generates target movement command and relays error
related information; and Omnipause Neurons that
inhibit the eye movements are not explicitly included
in this model. For the camera image processing
and target detection (see Fig. 1), to substitute the
capability of retina and superior colliculus in the
target detection, we used a tracking model(Taiana
et al. 2010, Vannucci et al. 2014) based on Particle
Filtering methods. This exploits knowledge on the
shape and color of the known object to be tracked
(in our case a sphere). In this filter, each particle
is a hypothetical state for the object, composed of
its 3D position. Particles are weighted through a
likelihood function. Color and luminance differences
between the sides of the hypothetical object silhouette
are indicators of the likelihood of the object pose.

2.2. Adaptive filter model

In our computational model, several simplifications
have been made in the original cerebellar information
processing to make this suitable for robot application.
The design considerations behind the proposed simpli-
fications are described in the supplementary material
in section S2.

2.2.1. Model The adaptive filter model shown in
Fig. 1 is mainly comprised of input information
representing the sensorimotor states, referred to as
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Figure 1: Control architecture for studying the optimal control principles of cerebellum. Cerebellum based
adaptive filter regulates the desirability or fitness of the fast eye movements by updating the PF-PC weights
(shown in red colored lines). Difference between the current eye orientation and the target orientation from the
image processing step drives the burst generator. The burst generator input is further regulated by the local
feedback integrator. The burst generator output is used as velocity command to drive the robot eye. Model
cerebellum is comprised of the input mossy fibers, Purkinje cell layer and the nucleus, and influences the burst
generator through the nucleus. The gate determines whether or not to move the eyes when a target is presented
on the camera

mossy fiber (MF) inputs; Expansion layer, instead of
a bio-realistic granule cell layer (GrC), expands the
input sensorimotor information into higher dimensions;
Purkinje cell layer (PC layer) to recombine the
expanded signals, and produce the output through the
Nucleus (Nuc).

This model follows a rate-based formulation of the
underlying neuronal population activity. In this, the
neuronal components affect the movement output by
their firing rates measured in Hz (where 1 Hz = 1
spike/sec). These neuronal firing rates are simulated
to arise from leaky-integrator differential equations
with a non-linear saturation, at fixed lower and upper
bounds on the total input received by the neuronal
components. i.e., the firing rate of each of the specified
neuronal component is considered to be zero below a
specified lower bound. This firing rate increases with
increase in the total inputs to the neuronal component,
and saturates at a fixed value at which the total input
reaches an upper-bound. For the sake of brevity, the
inputs to each of the neuronal component are scaled to
let the component operate within the saturation limits.

The expansion layer, modeled as an echo-
state network, is composed of N = 300 leaky-
integrator units, represented as an N × 1 vector of
neuronal activities z. These units receive the saccade
sensorimotor context as MF firing rate information,
and their neuronal firing rate is represented as:

τ
dz

dt

(t)

= −z(t) + S(t) + z(t)o (1)

where, τ is the network time constant, z(t) is the

vector of N expansion unit activities at time t. zois
the background activity of the expansion layer units.

Further the lower limit of each component of z is
set to be equal to 0.

S(t) represents the combined excitatory inputs
from the MF firing rate activity composed of mfd
and mfu, and strictly inhibitory projections, −wz(t),
within the expansion layer.

S(t) = f(winmf(t) −wz(t)) (2)

Where f is the non-linear function that bounds the
input firing rate to the expansion layer units between
fixed lower and upper limits. win is an N × 1 vector
drawn from standard uniform distribution between
[-0.5, 0.5]. w is constructed by drawing N × N
samples from uniform distribution of strictly non-
negative numbers between [0, 0.5], and further dividing
each sample by the spectral radius, ρ, of the resultant
weight matrix. The resulting weight matrix can be

denoted as w = U(0,0.5)
ρ(w) . The ratio of number of

non-zero connections to the total possible connections
is set to be 0.4 to ensure sufficient network sparsity.
By normalizing the weight matrix with its spectral
radius and by adjusting the sparsity of connections,
we verified that the expansion layer activities wash-
out any network initial conditions as indicated in
(Lukoševičius 2012, Rössert et al. 2015).

The expansion layer activity (z) is transmitted by
means of parallel fiber (PFs) connections (p) to the
Purkinje cell layer (PCs). The PFs are considered to
relay the expansion layer activity for simplicity, thus
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z = p. The modulation in the PC layer activity, δrpc,
for a given PF activity is represented as follows:

δr(t)pc = δwpf−pcz
(t) = δwpf−pcp

(t) (3)

δwpf−pc represents the PF-PC weight vector of
length N . δwpf−pc is used instead of wpf−pc to have
a general formulation in which there can be non-zero
background activity in the PCs, and non-zero synaptic
strengths.

The total output from cerebellar adaptive filter,
δrnuc, is available through the nucleus, and is
a combination of excitatory MF connections and
inhibitory PC connections.

δr(t)nuc = −wpc−nucδr
(t)
pc + wmf−nucmf(t) (4)

In this paper, we consider wmf−nuc as a zero
vector, implying no direct MF contribution on nucleus
activity. Furthermore, setting wpc−nuc to be equal to
1 results in the following equation,

δr(t)nuc = −δr(t)pc (5)

PF-PC weights are considered to be the only plas-
ticity connection strengths in this model. Appropriate
configuration of wpf−pc should be estimated from ex-
perienced errors and adaptive filter outputs in a mech-
anistic way, i.e., from the movement feedback available
from physical robot experiments.

2.3. PC control of brain-stem burst and motor drive

The PC output from cerebellum exerts an indirect
control of the ongoing motor command. The PCs
project onto the cerebellar nucleus, the nucleus
modulates the activity of the brain-stem burst that
subsequently modulates the motor command or drive
delivered to the motor neurons. As shown in Fig. 1
, the cerebellum based adaptive filter is represented
as a grouped control block, that controls horizontal
eye movements. The question that the model faces
is whether this single block of adaptive filter activity
contributes positively or negatively to the overall brain-
stem input, that subsequently corresponds to the total
motor drive. Recent experimental observations in
(Herzfeld et al. 2018) indicate that, the direction of
action in the motor space of the end-effectors is parallel
to the direction of preferred error in sensory space.
i.e., when errors are experienced in a certain direction
during movement to a specific target location, the
motor commands in the future movements towards
the same target are adjusted to increase the drive
towards that particular error direction. This additional
drive towards the error direction is achieved by the
modulation in the corresponding PC activity.

A detailed rationale of these findings, applied to
our control block simplification, is presented in the
supplementary material in section S1.

Overall, the total contribution of the PC activity
( δrpc ) to the net brain-stem burst input ( brin )
with respect to rightward horizontal movements can
be written as:

b(t)
rin ∝ δr

(t)
pc (6)

In terms of the nucleus output, when we apply the
transformation from Eq. 5 for the ipsilateral nucleus
activity, we get

b(t)
rin ∝ −δr

(t)
nuc (7)

In addition to the adaptive filter contribution
through the nucleus, the total input to the brain-stem
burst includes a signal representing target displace-
ment information and a local feedback integrator. This
local feedback integrator ensures that the total mo-
tor drive decreases as the movement time increases
(Jürgens et al. 1981, Scudder 1988). To emulate the
effects of this feedback integrator, in our experiments
we emulate the resettable local feedback loop presented
in (Dean 1995, Kalidindi et al. 2018).

By including the effect of the feedback integrator
and the target displacement command (presented in
Eq. 8), the net rightward input to the brain-stem burst
can be represented as:

b(t)
rin = y

(t)
d − k

t∫
0

v(p)dp− δr(t)nuc (8)

k determines the ability of the local feedback loop,
represented by an imperfect integration of brain-stem
output v, to account for the eye progress towards a
given target location in the absence of cerebellum.
The value of k is derived directly from models on
primate eye movements, approximately equal to 0.7
(Dean 1995), and results in inaccurate eye movements
as the estimation does not take oculomotor plant
characteristics into account. In summary, an increase
in the leftward preferring PC activity results in a
decrease in the nucleus activity and the brain-stem
burst input and vice-versa.

2.4. Brain-stem burst

The control command to the iCub oculomotor system
is delivered by the brain stem burst generator block
(see Fig. 1). The shaping of brain stem output
is determined by the net contributions bin from
the desired displacement, re-settable local feedback
integrator, and the adaptive filter. The computation
in the brain-stem control block is emulated from
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(Dean 1995) to have exponential output response as
follows:

v(t) = A× (1− exp−
b
(t)
in
σ ) (9)

’A’ is the peak amplitude of the brain-stem burst.
σ is the parameter that determines the non-linearity of
the brain-stem response.

2.5. Learning mechanisms

The main function of adaptive filter model of cerebel-
lum is to learn from the experienced sensorimotor er-
rors with an objective to reduce them. Errors experi-
enced during movements result in compensatory plas-
ticity at different sites of the cerebellum adaptive fil-
ter (Gao et al. 2012). For the current model, PF-PC
synapses are considered to be the only zone of plastic-
ity.

In an optimization perspective, the PF and CF ac-
tivity dependent plasticity in previous models ((Porrill
& Dean 2007, Porrill & Dean 2008, Fujita 1982)) has
been derived as a gradient-descent based solution to
the minimization of mean-squared movement error, as
described briefly in Eq .10.

J (t) = ||δe(t)||2 + λ

N∑
j=1

δw2
pf−pcj (10)

where δe(t) is the movement error at time ’t’

from the start of the movement, while λ
N∑
j=1

δw2
pf−pcj

penalizes high synaptic parameters. Optimal synaptic
weight modifications (δw?

pf−pc) that minimize this
mean-square error cost were derived as gradient based
incremental plasticity rules, as briefly represented in
Eq. 11 and Eq. 12,

δw?
pf−pc = arg min

δwpf−pc

〈J〉t,s (11)

δw
(n+1)
pf−pc = δw

(n)
pf−pc − η∇J(δw

(n)
pf−pc) (12)

Where ′n′ represents the incremental number
of weight update step, η is the learning rate, and

∇J(δw
(n)
pf−pc) = ∂J/∂wpf−pcj represents the gradient

direction of the movement cost ’J ’ in the adjustable
synaptic parameter space of δwpf−pcj . The cost
gradient is related to the co-occurrence of PF activity
and continuous movement error transmitted as CF
activity, and results in biologically plausible local
weight update rules (Porrill & Dean 2007).

However, this mean-squared movement error
based cost function does not explain two crucial
properties of saccade movement adaptation (Soetedjo
& Fuchs 2006, Soetedjo et al. 2009). First, if the end

movement error is the only quantitative information
available, then how does it result in trajectory control
regarding the improvement in movement speed and
accuracy. Second, the movement adaptation is
dependent on solely the direction of error rather than
a precise magnitude of error.

To examine this puzzle, we formulated a move-
ment cost that penalizes low changes in the adaptive
filter output activity throughout the eye movement du-
ration t, sensory error only at the end of the saccadic
eye movement at t = Tend (as dictated by biology), and
high synaptic weights as presented below:

J (t) =

J
(t)
prim︷ ︸︸ ︷

−α|δr(t)pc |+

J
(t)
end︷ ︸︸ ︷

β|δe(Tend)|+λ
N∑
j=1

δw2
pf−pcj (13)

Where |x| represents the absolute value of a given
variable x. α, β, λ are positive penalty coefficients.

The first cost term,Jprim, penalizes low adaptive
filter PC output during the primary eye movement
duration t = 0 to t = Tend. Since the PC
output is applied to control the movement commands,
and this term is available throughout the movement
duration, Jprim can be a applied to modulate the motor
commands and subsequently the movement kinematics
throughout the movement duration. The error related
term, Jend, is composed of the visual foveation error
observed only at time step t = terror after the
completion of movement at time t = Tend, instead of
entire trajectory of error. Note that terror ≥ Tend,
which means the error information is available only
after the movement ends.

Additionally, even this end foveation error is
available for brief duration in the form of complex spike
activity caused by low probability CF event from terror
to terror+ε, where ε is the width of the error pulse (see
Fig. 2).

Taking the temporal nature of the cost terms into
account, the cumulative costs incurred by the two
terms Jprim and Jend across the duration of saccade,
t, and target stimuli, s, can be described as:

〈Jprim〉t,s = −α
∑
s∈S

Tend∑
t=0

|δr(t)pc | (14)

〈Jend〉t,s = β
∑
s∈S

terror+ε∑
t=terror

|δe(Tend)| (15)

For simplicity in the mathematical expressions, we
omit the summation over stimuli in the rest of the
paper. It should be noted that the weight update rule
additionally includes this across stimulus summation
in the implementation.

By applying gradient descent based incremental
updates to minimize the cost J as depicted in Eq. 11
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and Eq. 12, we derived incremental learning rules that
ensure continuous improvement in movement speed as
well as accuracy. Importantly, the use of absolute value
of the foveation error, denoted by |δe| in Eq. 15 instead
of a commonly used least-mean-square error results in
a learning rule that depends only on the direction of
error (as depicted in the mathematical derivation in
Appendix A). Overall, the incremental weight update
has been derived to be,

δw
(n+1)
pf−pcj = δw

(n)
pf−pcj − η

( ∂Jprim/∂wpf−pcj︷ ︸︸ ︷
−α

Tend∑
t=0

sgn(δr(t)pc )p
(t)
j

∂Jend/∂wpf−pcj︷ ︸︸ ︷
β

terror+ε∑
t=terror

sgn(δe(Tend)).p
(t−ψ)
j

+ 2λδw
(n)
pf−pcj

)
(16)

Where η corresponds to the learning rate.
Additionally the coefficient ψ, referred to as eligibility
constant, temporally aligns the PF signal with the
CF signal that contains delayed error information.

sgn(x) = |x|
x is the sign of a given input quantity x.

The first term in the brackets of Eq. 16 is the
weight update that depends upon the PF activity
(pj) in the absence of any error information δe. The

sgn(δr
(t)
pc ) term ensures that the weights corresponding

to both the rise and fall in PC activity with respect
to the background activity are increased. Note that
the PF activity is integrated in the duration of the
primary eye movement from t = 0 to t = Tend,
and can modify the modify the motor commands
throughout the movement duration. The second term
in the bracket is the most common error (δe) and PF
activity (pj) based covariance update (Sejnowski 1977,
Fujita 1982, Dean et al. 2002), that is responsible for
sensory error reduction. The only difference is in the
integration time from t = terror to t = terror + ε,
where terror represents the onset of error dependent
CF activity and ε is the pulse width as depicted in Fig.
2. Other difference is the dependency of the weight
update only on the sign of the error. Provided the
cost is written in terms of the square of error, the term
would have contained the magnitude of error for weight
update. All the parameters relevant to the presented
model are presented in Table 1.

2.6. Details of the experiment

2.6.1. Humanoid oculomotor configuration For vali-
dation of the proposed adaptive filter learning princi-
ples for optimizing fast-reaching movements, we have

implemented the saccade adaptation task on the iCub
humanoid robot (Beira et al. 2006). The robot has
three degrees of freedom for eye movements, a com-
mon tilt on the vertical axis, and separate pans on
the horizontal axis. The APIs allow to control the
two pans only in terms of vergence and version.
The oculomotor control loop runs at 100 Hz. The
maximum speeds of the eye joints on the horizon-
tal axis are 180 deg /sec, which is lesser than the
biological oculomotor system which is approximately
around 1000 deg /sec (Fuchs 1967) for monkeys, and
700 deg /sec for humans(Boghen et al. 1974). How-
ever, this peak speed discrepancy only results in tra-
jectories with longer durations in robot experiments,
without altering their shape. The experiments were
performed in horizontal direction, using eye version,
with iCub operating in velocity control mode.

Name Parameter Value

learning rate η 10
penalty for Jprim α 0.5
penalty for Jend β 1

penalty for δw2
pf−pc λ 10−3

network time-constant τ 10 ms
foveation error begin time terror 1.5 sec

movement end time Tend 1.5 sec
error pulse width ε 0.1 sec

error eligibility constant ψ 0.4 sec
feedback integrator gain k 0.7

peak brain-stem amplitude A 120 deg/sec
brain-stem non-linearity coefficient σ 10

Table 1: Parameter values for iCub experimenta-
tion.The numerical quantities of all the fixed param-
eters presented in the methods, except for the synap-
tic weight vectors which are already indicated in the
methods write-up

2.6.2. Movement adaptation paradigms Adaptive
filter weights, wpf−pc , must be adjusted in response
to sub-optimal movements (following Eq. 13). These
sub-optimal movements themselves can be caused due
to the insufficiency of brain-stem control for a given
oculomotor system, or due to abrupt jumps in visual
target during the eye movement. We tested adaptive
filter capabilities in both of these conditions.

From the scratch adaptation paradigm (FSA) In this
paradigm, the adaptive filter begins with zero PF-
PC weights (δwpf−pc), resulting in no adaptive
filter contribution to the motor commands during
the beginning of the adaptation procedure. Hence,
before adaptation trials, the eyes move erroneously
to a given random target (sampled between 2 deg to
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30 deg displacement) determined solely by the burst
generator characteristics. The adaptive filter weights
are adjusted according to the update rules described in
Eq. 13 - 16 in a batch mode with fixed sample size after
a set of eye movements to randomly sampled target
stimuli in the visual field. The complete set of eye
movements towards randomly sampled stimuli in the
fixed batch are referred to as a single roll-out. Batch
updates refer to a procedure where weight updates
are performed at the end of each roll-out and remain
constant for movements within a single roll-out. These
learning roll-outs are repeated until the cumulative
cost from Eq. 13 on the training set has a stable
convergence. The efficacy of learning is characterized
by movements on randomly generated, fixed test target
locations.

Target jump adaptation paradigm In this paradigm,
the adaptive filter learning compensates for sensory
errors caused due to abrupt target jumps during the
eye movements, as depicted in Fig. 2. We followed
a protocol similar to that of primate behavioral
experiments (McLaughlin 1967) followed in conducting
saccade experiments on humans/primates. First, the
robot is commanded to move towards a randomly
generated target location. During the movement the
target is displaced to a new location, resulting in
a foveation error that is available only for a 100
milliseconds after the end of the eye movement.

3. Results

3.1. Adaptive filter learning leads to improvement in
movement speed and accuracy

In this section we evaluate the capability of the
proposed learning rules to counter inaccurate and
slower eye movements produced by the brain-stem
burst controller. The training procedure follows
the FSA paradigm described in the methods. The
differences between the eye movement characteristics
of the iCub robot before and after the adaptation, are
illustrated in Fig. 3.

Fig. 3(a) depicts the pre and post adaptation
eye displacement attained for an exemplary test target
location, while Fig. 3(b) presents the speed modulation
effected by the same adaptation. The total cost (J ,
Eq. 13) of the saccadic eye movement has been
plotted as a function of the number of adaptation trials
or roll outs in Fig. 3(c). As it can be observed,
during the adaptation, the eye speeds increased in
peak value, with a simultaneous reduction in the
eye movement duration. The trained model did not
take an alternative strategy to reach with unchanged
peak-speed, by just modulating the duration of the
movement. Notably, the behavioral strategy followed

Figure 2: iCub target jump experiment. The iCub,
shown in the left panel, is required to move its eye
from initial focus location (represented as black lines
and black circle) to a target location (represented
as red lines and red circle), with yd as desired eye
displacement. As the movement initiates, the target
is shifted to arbitrary new location (shown as blurred
red circle) resulting in a foveation error e even for
appropriate eye displacement yd , as depicted in the
middle panel of the figure. The foveation error e
caused by this intra-saccadic target jump is observed
only at the end of the eye movement, while no
sensory information is available regarding the whole
eye movement trajectory. Inset picture (the right
panel) shows the tentative nature of the foveation error
signal used to drive the iCub saccade adaptation.

Figure 3: Movement characteristics before and after
adaptation are similar to biological eye movements
(Robinson et al. 1993). (a) Eye displacement to a
given target location (b) Corresponding eye speed (c)
Characteristic total movement cost, J , with respect
to increasing learning trials/roll-outs. Yellow vertical
lines represent the sufficiently long, but, fixed time
horizon for minimizing the total cost J , from t = 0
to t = Tend
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by our model confers with biological observations. The
differences between the pre and post adaptation trials
are qualitatively comparable to that of the monkey
eye movements with bilateral deactivation of the deep
cerebellar nucleus activity, and with an intact nucleus(
see Fig. 12 in (Robinson et al. 1993)). Naturally, as
the maximum achievable speeds in the robot and the
humans/monkeys differ, we will not be able to observe
exact quantitative similarities in the kinematics.

This result highlights the applicability of the
proposed weight update rules to modulate the accuracy
as well as the speed and duration of the eye movement,
even in the presence of only the end foveation error
information.

3.2. Robustness of the method to increase in the
movement dimensions and changes in the target
representation
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Figure 4: Applying the cerebellar adaptive control
rules on randomly generated test targets in the iCub
camera frame. (a) Eye movements (red lines) executed
towards test targets (blue dots) in the camera pixels.
(b) Total training cost over mini-batches of randomly
generated targets, in auxillary units since cost function
includes different quantities such as angles and filter
activities (c) Comparison of pre and post-adaptation
test errors on a fixed set of randomly generated test
targets

Given that our adaptive control method was able
to achieve low movement costs in the previous case,
we tested its general applicability by changing the
targets specification from joint angle representation
to the pixel-based representation in the iCub camera.
Moreover, the robot was free to move its eyes in

horizontal (X-axis) and vertical directions (Y-axis) by
using its pan and tilt rotations. Even in this case
the learning signal consists of the direction of the
reaching error in the X and Y directions relative to
the centroid of the camera image, rather than the
exact magnitude of reaching error. Hence, we have a
signed directional error-vector in the X and Y camera
coordinates. Network was trained on random pixel-
based targets that appeared on the iCub camera frame.

After training the controller on a set of pixel
locations using the FSA paradigm, resulting in total
cost in auxiliary units shown in Fig. 4b, we present
the performance of the system by randomly selecting
10 locations as test set in Fig. 4.

Fig. 4a shows the eye displacement (shown as red
line) to the test targets (shown as blue dots). Fig 4b
shows the reduction in the cumulative reaching error
post adaptation. The reaching error post-adaptation
has median 1.1 deg (inter-quartile range of 0.51 deg),
which is clearly reduced compared to the median
7.8 deg (inter-quartile range of 3.9 deg) in the pre-
adaptation trials (see Fig 4c).

3.3. Separate adaptive filter plasticity mechanisms
exert distinct control on the eye movement optimality

The wpf−pc weight update involves multiple terms
that are separately active during the eye movement
t ∈ (0, Tend), and at the end of the eye movement t >
Tend. Through this section, we illustrate why is each
term important in maintaining a specific aspect of the
movement optimality. Importantly, we present how the
resultant weight update rules are similar to the local
synaptic plasticity rules reported in the Cerebellum.

In the derivation of the plasticity rules, we
assumed that the penalty (Jprim) results in solely
PF activity dependent increase in PF-PC weights
during the eye movement, independent from the error
information. Jend on the other hand accounts for the
error-dependent CF and PF covariance weight update.

Fig. 5(a) and Fig. 5(b) depict the characteristic
eye movement kinematics after adaptation in two
different cases using the FSA paradigm. In one case,
the total desirability of the saccades is comprised of
both Jprim and Jend terms. In the second case, the
only desirability of eye movements is to reach the
target accurately by considering only Jend, without
any further constraints on optimality. Although both
kinds of adaptation lead to accuracy in reaching a given
target, significant differences can be observed in their
resultant trajectories. The adaptation regulated by
the combined Jprim + Jend factors leads to increased
speed and reduced duration in reaching the target
(presented as blue colored movement profiles in Fig.
5(a) and Fig. 5(b)). Jend-only regulated adaptation
achieves accuracy by decreasing the peak eye speed
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Figure 5: Proposed fitness J , regulates the optimal movement characteristics, while also explaining the functional
significance of local plasticity rules in the Cerebellum. (a) and (b) show the different trajectories obtained with
purely error dependent fitness formulation (only Jend, shown in red color) in comparison with the inclusion of
additional penalty for output PC activities (Jprim, shown in blue color). (c) shows the behaviour of the learning
in terms of the total cost decrease, flight time decrease and foveation error decrease. Finally, (d) and (e) compare
the synaptic weights as a result of learning by including different cost terms, showing that in the Jend only case,
a depression mechanism that depends upon the foveation error is prominent.

and letting the eye movement follow time durations
that are close to pre-adaptation trials (presented as
red colored movement profiles). This indicates that
the error dependent Jend penalty accounts only for
the precision in reaching a given target displacement.
Hence, using only end foveation error as the movement
fitness would result in the eye not reaching the target as
fast as possible. On the other hand, adding a penalty
on low PC activities (imposed by Jprim) can modulate
eye speed and duration by considering only the PF
activity into account, without necessity for any sensory
feedback during the movement.

A depiction of the cost behaviors in each case is
presented in Fig. 5(c). The total cost starts at the
same value for both cases due to initialization of PF-PC
synapses at ’0’ values. However, Jend-only regulated
adaptation saturates at a higher value compared to

the Jprim + Jend case (left panel of Fig. 5(c)). Main
differences can be observed in the plots of flight-time
and foveation error. The inclusion of Jprim in the
adaptation trials results in flight-time reduction over
increasing number of learning trials. On the other
hand, Jend-only modulated adaptation does not have
any significant effect on the flight time (middle panel
of Fig. 5(c)). Furthermore, the foveation error plots
show that the Jend cost leads to quick improvement of
movement accuracy (with foveation error close to zero).
In contrast, the composite cost function converges
slowly in terms of movement accuracy, due to the
opposing effect of eye speeding on the movement
accuracy caused by the Jprim term (right panel of
Fig. 5(c)). This results in a pronounced saw shaped
waveform when the reaching error is reduced to 0 deg,
due to the relatively nullified contribution from Jend
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term compared to the opposing Jprim term. This saw-
shape waveform in the reaching error can be controlled
by adjusting the α and β coefficients that determine the
relative penalties on the error-independent and error-
dependent costs respectively.

The changes in the PF-PC synaptic strengths
that are responsible for modulation of eye movement
kinematics, due to their effect on the cerebellar output
rnuc, are presented in Fig. 5(d) and Fig. 5(e).

Adaptation to the composite cost is enforced by
increase in the PF-PC synaptic strengths wpf−pc in
positive and negative regions as depicted in Fig. 5(d).
In contrast, only Jend adaptation does not cause a
significant wpf−pc increase in the positive weight space,
but a pronounced reduction in the negative weight
space. It should be noted that the positive and
negative weight are considered for simplicity in the
adaptive filter model. In biological systems however,
the positive PF-PC strength arises due to excitatory
synaptic connections onto the PCs, and negative PF-
PC strength arises due to the inhibitory connections
of the molecular interneurons onto the PCs (Jörntell
et al. 2010).

3.4. Adaptive filter displays similarity to cerebellum
recordings

Further we asked, whether the model adaptive-filter
can predict any of the brain recordings from cerebellum
during saccadic eye movements?

Recently it was observed that the PC popula-
tions in the biological cerebellum display a definite
prediction of the saccadic eye movement kinematics in
(Herzfeld et al. 2015). Inorder to emulate these bi-
ological recordings, in this section, we take into ac-
count the preparatory activity displayed by the MFs
and PCs before movement onset (t < 0 sec), that indi-
cates motor planning. The MF activity regarding the
target orientation is simulated to gradually build-up
to the tonic level (similar to MF activity in (Gad &
Anastasio 2010)) at movement initiation instead of a
sudden build-up at t = 0 sec. This provides the ba-
sis for motor preparation in the downstream adaptive
filter nodes in the granule layer and the PC layer.

Fig. 6(a) illustrates the resulting adaptive filter
PC population activity at various saccade speeds.
A definite correspondence can be observed between
the plots of different eye speeds and respective PC
population activities. Fig. 6(b) presents similar
PC population activity plots at different saccade
amplitudes. It is important to note that, the
negative PC population activity in Fig. 6(a) and
Fig. 6(b) represents the drop in PC activity
from spontaneous/background firing rate activity, and
does not suggest the existence of negative neuronal
spike frequency in Hz (or spikes/sec). The main

Figure 6: Kinematic encoding in the PC layer
responses. the PC population activity anticipates
the speed of the eye during the movement (a),
for different saccade amplitudes (b). (c) and (d)
show the proportionality between peak PC population
activity and amplitude and speed of the robot
movement, an observed phenomenon in biological
saccadic movements. However, there are quantitative
differences in the amount of response and duration
of the activity due to differences in robot operation.
Yellow vertical lines represent the sufficiently long, but,
fixed time horizon for minimizing the total cost J , from
t = 0 to t = Tend

observation from the PC layer is the near linear
increase in the peak PC activity for both increasing
eye speeds and eye displacements, shown in Fig.
6(c) and Fig. 6(d) respectively. This is inline
with the neurophysiological observations in (Herzfeld
et al. 2015) regarding the correlation of cerebellar PC
population activity with saccade kinematics.

However, the adaptive filter PC activity differs
from that of the biological observations in two aspects:
1. the adaptive filter PC layer is active in the durations
spanning 1 − 1.5 sec compared to the biological PC
populations that span 200 − 300 ms. This is because
the biological eye movement typically ends in 100 −
150 ms duration, while the robot movement lasts for
long time due to the limits in the peak speed. The
relatively longer duration of the saccade command and
the corresponding MF inputs to the adaptive filter
actively sustain the PC layer activity for appropriate
control of the robot eye movement.

2. The quantities of peak adaptive filter PC
activities are in the range of 50 − 200 Hz, while the
PC population activities in the biological experiments
(Herzfeld et al. 2015) are in the range of 1000 −
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1500 Hz. This is due to the different neuronal activity
scaling in biological motor control and the presented
robot control.

3.5. Adaptation to target jump

Target jump adaptation experiments were carried out
as described in the methods section. Our aim is to
see if our model can predict the changes in average
PC population activity and synaptic updates, that
might occur during the de-facto standard target jump
experiments in monkeys. In Fig. 7, we present
characteristic adaptation result on a target that is
initialized at approximately 20 deg , and exhibits
a jump to 16 deg during the eye movement, thus
resulting in a foveation error close to 4 deg when the
adaptive filter configuration that is previously trained
under the FSA paradigm to compensate for inaccurate
brain-stem control is used.

Figure 7: PC activity modulation for an example intra-
saccadic target jump of 4 deg, from 20 to 16. The
saccade amplitude decreases with successive roll outs
to account for the error of 4 deg caused by target jump
(a), in correspondence with a monotonic decrease in
PC population average burst (b) and pause activities
(c). (d) changes in the synaptic weights as a result of
the adaptation procedure.

Fig. 7(a) depicts the continuous reduction in
the saccade amplitude reached by the iCub eye with
increasing number of roll outs. In Fig. 6, it can
be seen that the PC population activity display an
early rise from the spontaneous/background activity
(referred to as burst in PC activity), and a late dip from
background level (referred to as pause in PC activity)
approximately at the time when the eye reaches peak
speed. We calculated the difference in the average
burst and pause activities in the model PCs before
and after saccade adaptation trials, and plotted the

results in Fig. 7(b) and Fig. 7(c). Average PC
population burst undergoes decrease with relatively
lesser slope (reduction of 3 Hz in 50 roll-outs) than the
decrease in average PC population pause (reduction of
10 Hz in 50 roll-outs). These results are qualitatively
similar to the modulation in simple spike responses of
PC populations over increasing number of adaptation
trials in monkeys (see Fig.6 and Fig. 7 in(Kojima
et al. 2010)). Fig. 7(d) depicts the bi-directional
changes in PF-PC connection strengths.

4. Discussion

We have presented a model of cerebellum based on
adaptive filter operation for accurate control of fast
reaching movements, in the presence of restricted
sensory information. The only sensory information
required to enforce adaptive corrections in control
was the sign of end foveation error, available at the
completion of the movement.

Furthermore, even in the presence of the men-
tioned sensory constraints, we proposed that the adap-
tive filter actively influences the entire movement tra-
jectory, to improve the cumulative fitness with respect
to the flight-time (movements with high vigor), and ac-
curacy. We have presented a mathematical derivation
of the local PF-PC weight updates, from behavioral
level specification of the task.

The model was successfully implemented on
saccadic eye movements of the iCub humanoid robot,
with a continuous improvement in trajectory fitness
over a period of adaptation trials. The method was
applicable even in the camera pixel coordinates rather
than the joint coordinates, and is of potential use
to robot gaze control. The contributions of adaptive
filter PC activity is in qualitative agreement with
the neurophysiological observations in the monkey
cerebellum (Herzfeld et al. 2015, Kojima et al. 2010).
However, there are explainable quantitative differences
of the model results with biological system. Majorly,
as the robot moves at low speeds compared to the
biological eye, the MF and brain-stem signals in the
robot experiments are prolonged compared to the
biological system. This results in certain accountable
differences in the amplitude and duration of the
adaptive filter PC layer compared to the biological
PCs.

4.1. Simplification of adaptive control by
cerebellum-like processing

One of the intention behind this cerebellum model was
to pave the way towards less computationally intensive
algorithms like local covariance based learning in
artificial systems, that the cerebellum is usually known
to carry-out by using the perceived sensory errors
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as supervisory instructive signals for task execution
(Marr 1969, Porrill & Dean 2007). In previous
studies (Harris 1998), it was shown that the visual
error information available to biological cerebellum
cannot explain the minimum-time characteristics of
fast eye movements. This led to a hypothesis of
possible reinforcement learning based exploration in
adaptive parameter space of the cerebellum(Harris
1998). Reinforcement learning is a computationally
expensive strategy due to the exploration in large
number of synaptic connection parameters. The other
option to tackle the trajectory correction was to have
a priori knowledge, or a model of the plant itself
(Chen-Harris et al. 2008, Saeb et al. 2011). In
contrast, we deduced from saccade behavioral studies
that, instead of increasing the complexity of the
model or the computational algorithm, the cerebellum
could be simplifying the trajectory-fitness (or) cost
function itself, to accomodate the sensory constraints.
Local covariance based plasticity mechanisms in our
study ensured that the movements are accurate
as well as optimal, even if the error information
is highly constrained. In another related study,
we empirically demonstrated a similar approach on
the kinematic control of a high-degree-of-freedom
soft-robot simulation for online adaptive control,
without the need for computationally expensive
adaptation algorithms (which demand a separate
offline learning/exploration phase) (Kalidindi et al.
2019).

4.2. Biological relevance of the derived plasticity rules

The adaptive filter plasticity rules have been purely
derived from the specification of the behavior level ob-
jectives of the saccadic eye movements, by account-
ing for several, but not exhaustive information con-
straints faced by the biological cerebellum. Hence,
it is worthwhile to compare the model characteristics
to that of realistic bottom-up spiking neural network
models of cerebellum (Antonietti et al. 2015, Antonietti
et al. 2016). Realistic cerebellar models comprise sev-
eral neuronal types with different regions of plasticity
as presented in (Casellato et al. 2015). In our model,
we focused on the PF-PC synaptic plasticity and func-
tionally divided this into two terms as presented in
Eq. 16 : (i) error-independent term that minimizes the
eye movement cost Jprim and (ii) error-dependent term
that minimizes the movement error related cost Jend
available after the end of the movement. In more bio-
realistic models (Casali et al. 2019), even the synaptic
projections to the PC layer are divided into direct PF-
PC connections that are excitatory in nature, and in-
direct PF-MLI-PC connections that have an inhibitory
effect on the PCs. Further both these direct and in-
direct synaptic pathways to the PC layer can display

plasticity (Porrill & Dean 2008, Jörntell et al. 2010).
In our experiments, the error-independent term

resulted in an early increase in the PC population
activity as depicted by the net increase in positive (or
excitatory) PC synaptic strengths in Fig. 5(d), and
resulted in faster movements. This effect of increase
in PC population activity can be biologically achieved
by means of error-free long term potentiation (LTP)
of the direct excitatory PF-PC synaptic connections
or error-free long term depression (LTD) of the
PCs by means of the indirect PF-MLI inhibitory
connections. On the other hand, error-dependent
plasticity term determined the late reduction in the
overall PC population activity below the spontaneous
level in order to decelerate the eye, and directly
affected the eye movement accuracy. This can be
associated to an LTD mechanism driven by the
movement error (via CF activity) in the direct PF-
PC synaptic pathway, or to an LTP mechanism
through the indirect PF-MLI connections onto the
PCs. Importantly, it should be noted that the error-
independent plasticity in the model is related to the
PF-PC activity during the movement, in contrast to
the error-dependent plasticity that occurs at the end
of the movement. Considering these common features,
it would be beneficial to combine the insights from
our adaptive control model with more biorelalistic
bottom-up models (Carrillo et al. 2008, Casellato
et al. 2015, Antonietti et al. 2016) inorder to bridge
between behavior-level computational understanding
and neural circuit level implementation in the brain
(Marr 1969)

4.3. Model predictions for the climbing fiber
instructive signals to modulate movement speed and
accuracy

If a complete trajectory of error information is
available, both the speed and accuracy can be
modulated by means of the purely error dependent
learning in the cerebellum (Saeb et al. 2011), where the
error information carried by the CF connections onto
the PCs can serve as a supervised instructive signal.
In case of incomplete movement error information
presented in this paper, how does the CF activity carry
sufficient information to modulate both the speed and
accuracy of the eye movements?

Weight update rule in Eq. 16 indicates that the
Jprim related plasticity term controls the peak eye
speed, and the Jend related plasticity term controls
the movement accuracy. Pertaining to the cerebellar
physiology, both of these weight update terms can be
achieved through an active modulation of the climbing
fiber (CF) instructive signals that project onto the PF-
PC connections.

Briefly, potentiation (increase in PC excitation)
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can be induced in an individual PF-PC synapse if the
increase in PF activity is not followed by a concurrent
increase in CF activity. Conversely, depression in an
individual PF-PC synapse can be induced by the co-
occurrence of PF and CF activities. Following this
logic, positive weight changes in the PF-PC weights
during the eye movement ( shown in Eq. 16 and
Fig. 5(d)) can be achieved by a decrease in CF
activity during the entire eye movement. On the
other hand, the second term in Eq. 16 depends
on the error information available at the end of
the movement by means of increased CF activity,
and results in ensuring movement accuracy (Fig.
5(c) and Fig. 5(e)). Both kinds of CF activity
modulation have been previously reported in the
experimental literature addressing monkey cerebellum.
Regarding the former characteristic, in (Soetedjo &
Fuchs 2006) it was reported that the CF activity
displays characteristic pauses in activity during the
entire duration of the eye movement. Our current
model predicts that the plasticity induced by these
pauses is necessary to ensure faster eye movements.
Regarding the later characteristic, in (Herzfeld et al.
2018) it was shown that the CF activity at the end
of the eye movement correlates with the movement
error in orienting towards a given target. Our model
clarifies that the CF activity at the end of the
movement reduces the movement error by inducing
error-dependent plasticity in the synaptic connections
that onto the PC populations.

4.4. Forward model cerebellum

Our adaptive eye control paradigm comprised of two
components. First, assembling a fixed motor plan for
the ballistic movement. Second, continuous alteration
of this fixed motor plan by the cerebellar feedback
loop. Much of the evidence indicates the ability of
the biological systems to maintain fast and accurate
eye/limb movements during the disruption of the
sensory feedback that could help in online control of
the movement (Desmurget & Grafton 2000).

A common hypothesis is that the existence
of kinematic estimation in the motor system can
compensate for the absence of sensory information in
the control of fast reaching movements. We suggested
through our model, how this kind of movement state
encoding should arise in the cerebellar neural circuit,
and how can this encoding be useful in online control
of ballistic movements even with partial error feedback.
We predict that the cerebellum makes use of both the
sensory-errors at the end of the movement, as well as
intrinsic neuronal activity (the cerebellar PC activity)
during the movement to update an internal forward
model regarding the movement. This is in contrast
with previous models that focus on purely sensory

error dependent forward model updates (Antonelli
et al. 2015, Dean et al. 1994). Subsequently, this
forward model estimate in the cerebellum provides
online control for the fast movement towards a given
target location.
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Appendix A. Proof of covariance weight
update rules

Figure A1: Simplified representation of the eye
movement control architecture. Desired movement
input is provided to the Brain-stem (B), that generates
the motor command to the robot plant (R). Cerebellum
(C) takes into account the errors encountered due
to imperfect movements, and provides compensatory
inputs to the brain-stem, depending upon the weight
updates discussed in the paper.

The cost formulation in Eq. 13 involves the
sensory error term (δe), the PC activity from
background level δrpc and the regularization term
on high synaptic strengths δwpf−pc. The objective
of the optimization procedure is to solve the credit
assignment problem of how changes in δwpf−pc weights
is related to these cost fitness terms. So, the first
step is to write the sensory error, PC activity and the
regularization term in terms of δwpf−pc weights. Once
we have this functional relationship, we can proceed to
derive the gradient of these fitness terms with respect
to the PF-PC weights. Further the PF-PC weight
update, ˙δwpf−pc, that can minimize the movement
costs can be directly related to the gradient of the cost,
J , with respect to the PF-PC weights.

The total PC output is directly related to the
δwpf−pc as δrpc(t) = Σj=1:Nδwpf−pcjpj(u, t). Here,
j represents the number of PF connections that result
in the total PC activity.

The gradient of the primary movement cost with
respect to the PF-PC synaptic weights is given by
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∂Jprim
∂(δwpf−pcj )

. Applying partial differentiation with

respect to jth PF-PC weight on Eq. 14 results in:

∂〈Jprim〉t,s
∂(δwpf−pcj )

= − α
∂
Tend∑
t=0
|δr(t)pc |

∂(δwpf−pcj )

= − α
Tend∑
t=0

sgn(δr(t)pc )
∂δr

(t)
pc

∂(δwpf−pcj )

= − α
Tend∑
t=0

sgn(δr(t)pc )

N∑
j=1

∂(δwpf−pcjpj(v, t))

∂(δwpf−pcj )

= − α
Tend∑
t=0

sgn(δr(t)pc ) ·

·
N∑
j=1

[pj(v, t)
∂(δwpf−pcj )

∂(δwpf−pcj )
+

+ (δwpf−pcj )
∂pj(v, t)

∂(δwpf−pcj )
] (A.1)

Summation over target stimuli is not indicated in
the above formula to avoid excessive symbols, however
included in the experiments. Provided the change in
the PF-PC synaptic strengths (δwpf−pcj ) is small, the
last term in Eq. A.1 can be neglected. The resulting
derivative is given by,

∂〈Jprim〉t,s
∂(δwpf−pcj )

≈ − α
Tend∑
t=0

[sgngn(δrpc)] ·

·
N∑
j=1

[pj(v, t)
∂(δwpf−pcj )

∂(δwpf−pcj )
]

= − α
Tend∑
t=0

sgn(δrpc)pj(v, t) (A.2)

The second cost term Jend is dependent upon the
difference between desired eye displacement yd and
actual eye displacement ye. ye is indirectly influenced
by the modulation in PF-PC synaptic weights δwpf−pc
as it affects the cerebellar output δrc, and subsequently
on the motor command of iCub robot plant R shown in
Fig. A1. The derivative of this kind of indirect or distal
gradient can be solved by following the algebraic loops
approach as demonstrated in (Porrill & Dean 2007).
We follow the same approach in deriving the error
dependent weight update term Jend. The weight
update conditions are slightly modified from (Porrill
& Dean 2007) to consider the sign of the end foveation
error, δe(Tend), instead of error magnitude from the
entire movement duration δe(t∈[0,Tend]).

The rightward motor drive v of the brain stem (B)
at any time instant t can be written as a function of

given desired displacement command yd and cerebellar
nucleus output δrc. This can be written as:

v(t) = B(y
(t)
d − δr

(t)
nuc)

= B(y
(t)
d + δr(t)pc )

= B(y
(t)
d +

N∑
j=1

δwpf−pcjpj(v, t)) (A.3)

The brain-stem component B in the above
equation can be inverted to give,

y
(t)
d = B−1(v(t))−

N∑
j=1

δwpf−pcjpj(v, t) (A.4)

Under the assumption that an unknown vector
of optimal weight update δw?

pf−pc exists, for which
actual eye displacement ye in the time interval
t ∈ (terror, terror + ε) is equal to the desired eye
displacement yd. For this assumption of optimal
weight configuration δw?

pf−pc, ye which is a robot plant
function R(v) can be expressed similar to yd as,

y(t)
e = R(v(t)) = B−1(v(t))−

N∑
j=1

δw?pf−pcjpj(v, t)

(A.5)
Subtracting Eq. A.5 from Eq. A.4, the target

reaching error for eye movements with sub-optimal
δwpf−pc weight configuration can be written as,

δe(t) = y(t)
e − y

(t)
d

=

N∑
j=1

(δwpf−pcj − δw?pf−pcj )pj(v, t) (A.6)

Using Eq. A.6, the error related cost term Jend can be
written as:

Jend = β

terror+ε∑
t=terror

|yd(t)− ye(t)| (A.7)

= β

terror+ε∑
t=terror

N∑
j=1

|δwpf−pcj − δw?pf−pcj |pj(v, t)

The above equation shows that the sensory errors
can be expressed as the difference between the current
PF-PC weights to the possible optimal values. The
gradient of sensory reaching-error cost ∂Jend/∂wpf−pcj
following Eq. A.7 can be derived as,
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∂Jend
∂(δwpf−pcj )

= β

terror+ε∑
t=terror

∂|δe(t)|
∂(δwpf−pcj )

= β

terror+ε∑
t=terror

∂|δe(t)|
∂(δe(t))

· ∂(δe(t))

∂(δwpf−pcj )

(A.8)

using Eq. A.6 to represent the error δe in terms if
PF-PC weights, we can write

∂Jend
∂(δwpf−pcj )

= β

terror+ε∑
t=terror

[
∂|δe(t)|
∂(δe(t))

·

·
∂

N∑
j=1

(δwpf−pcj − δw?pf−pcj )pj(v, t)

∂(δwpf−pcj )

]

= β

terror+ε∑
t=terror

sgn(e(t)) ·
[ N∑
j=1

∂[(δwpf−pcj − δw?pf−pcj )pj(u, t)]
∂(δwpf−pcj )

]

= β

terror+ε∑
t=terror

sgn(e(t)) ·
[ N∑
j=1

pj(u, t) ·

· (
∂(δwpf−pcj − δw?pf−pcj )

∂(δwpf−pcj )
) +

+ (δwpf−pcj − δw?pf−pcj )
∂pj(u, t)

∂(δwpf−pcj )

]
(A.9)

In the above equation, sgn(y
(t)
e − y

(t)
d ) is the

direction of reaching error. Importantly, as the sensory
information regarding the eye displacement ye(t) is
known only for the movement end time t = Tend,

only this end foveation value of sgn(y
(t)
e − y

(t)
d ) in the

duration of the CF activation, t ∈ (terror, terror + ε),
is considered. The sign of the end foveation error is

written in short notation as sgn(y
(Tend)
e − yd). In

the experimental results, we have shown that the
consideration of only the foveation error direction, did
not prevent the convergence in saccade adaptation
towards the target location.

Further, provided the change in the PF-PC
synaptic strengths from the hypothetical optimal value
(δw?

pf−pc) is small, the second term in the square
brackets of Eq. A.9 can be neglected, and the net
derivative is given by,

∂Jend
∂wpf−pcj

≈ β
terror+ε∑
t=(terror)

sgn(y(Tend)
e − yd) ·

·
[ N∑
j=1

pj(v, t)

(
∂(δwpf−pcj − δw?pf−pcj )

∂(δwpf−pcj )

)]

= β

terror+ε∑
t=(terror)

sgn(δe(Tend)) · pj(v, t) (A.10)

The above equation represents the gradient of the
total foveation error related cost term. Additionally we
should include an eligibility constant (ψ) to temporally
align the PF activity with the delayed sensory error
signal.

The gradient of the regularization term is straight-
forward to compute and equal to 2λwpf−pcj . The
resulting total weight update follows the gradient-
descent rule already mentioned in Eq. 12. The overall
incremental weight update rule is presented in the
methods as Eq. 16.
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