
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 

of any copyrighted component of this work in other works. 

 

 

 

 

 
 



Analyzing the Sensitivity of GPU Pipeline Registers
to Single Events Upsets

Josie E. Rodriguez Condia∗, Marcio M. Goncalves†, Jose Rodrigo Azambuja†, Matteo Sonza Reorda∗,
Luca Sterpone∗

∗Politecnico di Torino - Department of Control and Computer Engineering (DAUIN)
{josie.rodriguez, matteo.sonzareorda, luca.sterpone}@polito.it

†Federal University of Rio Grande do Sul (UFRGS) - Institute of Informatics - PGMICRO
{mmgoncalves, jose.azambuja}@inf.ufrgs.br

Abstract—Graphics processing units are available solutions
for high-performance safety-critical applications, such as self-
driving cars. In this application domain, functional-safety and
reliability are major concerns. Thus, the adoption of fault
tolerance techniques is mandatory to detect or correct faults,
since these devices must work properly, even when faults are
present. GPUs are designed and implemented with cutting-edge
technologies, which makes them sensitive to faults caused by
radiation interference, such as single event upsets. These effects
can lead the system to a failure, which is unacceptable in safety-
critical applications. Therefore, effective detection and mitigation
strategies must be adopted to harden the GPU operation. In this
paper, we analyze transient effects in the pipeline registers of
a GPU architecture. We run four applications at three GPU
configurations, considering the source of the fault, its effect on
the GPU, and the use of software-based hardening techniques.
The evaluation was performed using a general-purpose soft-core
GPU based on the NVIDIA G80 architecture. Results can guide
designers in building more resilient GPU architectures.

Index Terms—Fault tolerance, graphics processing units,
pipeline registers, single event upsets

I. INTRODUCTION

Graphics Processing Units (GPUs) were originally designed
as accelerators for data-intensive applications, such as multi-
media and graphics processing. However, in the last decade,
the GPUs have evolved into widely-used general-purpose
devices thanks to their high computation power and program-
ming support. These General-Purpose Graphics Processing
Units (GPGPUs) are feasible solutions also for safety-critical
applications, e.g., in the automotive and robotics domains. In
these domains, the use of fault tolerance techniques is manda-
tory to detect or correct faults arising during the operation
of the system. Moreover, the fault detecting and correcting
solutions are crucial, since in the safety-critical applications,
GPUs must operate correctly even in the presence of faults.
In conclusion, how to effectively guarantee the reliability and
functional-safety of GPUs is still an open issue.

Recent GPU devices are designed and implemented employ-
ing high operating frequencies, the latest technology scaling
approaches, and reduced operating voltages to comply with

This work has been partially supported by the European Commission
through the Horizon 2020 RESCUE-ETN project under grant 722325 and
the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES)
- Finance Code 001, CNPq, and FAPERGS.

performance and energy requirements. However, some studies
have found that due to the advanced semiconductor technolo-
gies they are based on, these devices may be prone to suffer by
the effects of faults during the operative life [1], such as those
caused by radiation interference. Radiation-induced errors are
mainly caused by energized particles and can affect the correct
operation of a device, even at ground level, where neutrons are
the primary source of soft-errors [2]–[4]. The most common
error in a device is caused by a fault forcing the change in
the logical state (bit-flip) of flip-flops, registers, or memories.
These faults are known as Single Event Upsets (SEUs) [5].

The architecture of a GPU is based on the Single-Instruction
Multiple-Data (SIMD) paradigm and cores divided in pipeline
stages including pipeline registers (PRs). In these cores, one
instruction is fetched from memory, and then decoded and pro-
cessed in parallel. Multiple execution units are used to operate
the same instruction employing independent tasks (threads).
The GPU employs large Register Files (RFs) to provide and
retrieve data operands and results efficiently to and from the
execution units. Thus, most instructions directly interact and
operate with the RF to mask the latency during the execution
of a parallel application. Nevertheless, the previous conditions
allow the easy propagation into the system of an error caused
by a fault coming from other critical structures, such as the
PRs, which are distributed internally across the main executing
core. The PRs store control signals of the instructions and a
fault can significantly compromise the operation of a running
application [6]. Moreover, these structures are hidden for
the programmer and cannot be controlled or protected with
conventional methods. Therefore, from the reliability view-
point, the Architectural Vulnerability Factor (AVF) analysis
and a fault propagation evaluation are mandatory for designing
countermeasures to protect the execution of an application.

Recently, Software-based fault tolerance techniques for
GPUs were proposed based on the hardening of the RF
structure, so protecting the system against data flow errors
caused by SEUs [7], [8]. Moreover, these techniques can be
adapted to the source code of a program and simplify the task
of software developers in the safety-critical domain [9].

In this work, we indirectly evaluate the sensitivity to SEUs
of the pipeline registers in a GPU when applications are
hardened with low-level software-based hardening techniques



developed to detect SEUs in the register files. The program
codes are adapted at assembly-level and implemented in a
soft-core GPGPU based on the NVIDIA G80 architecture.

II. BACKGROUND

A. Software-based hardening techniques for GPUs

Software-based hardening techniques have been adapted
to GPUs in the past, aiming to detect faults and increase
reliability. Software-baed solutions are mainly classified as i)
program duplication, when the code of the entire program is
duplicated, ii) selective duplication, when only crucial parts
of the code are duplicated, and iii) Algorithm-Based Fault
Tolerance (ABFT) [10], when the hardening directly depends
on the architecture of the algorithm used in the program code.

Program duplication was employed in the past by duplicat-
ing the execution of the entire program [11]. Similarly, the
authors in [7] targeted faults affecting the general-purpose
register files in the GPU by replicating the whole assembly
code in an intertwined fashion and reaching up to 99% error
reduction at a performance cost of up to 78%. On the other
hand, the authors in [12] showed that selective duplication
can reduce costs in execution time and resource overhead by
lowering the detection coverage. Finally, ABFT techniques can
achieve high detection rates with moderate execution time and
resource overhead [13]. However, ABFT is limited by the type
of application to which hardening approaches can be applied.

This work extends the evaluations proposed and introduced
in [7] and [14] by evaluating the pipeline registers structures
located in the datapath of the GPUs. We employ the FlexGrip-
Plus model to perform the experiments [15] [16].

B. FlexGrip Architecture

The FlexGrip model is an open-source soft-core GPGPU
fully described in VHDL that implements the G80 architecture
from NVIDIA [17]. A new version, called FlexGripPlus,
removed some operative and programming constraints by ver-
ifying and correcting the descriptions. The new version can be
fully programmed using the CUDA programming environment
and supports up to 28 instructions [15] [16].

The structure of FlexGripPlus is mainly composed of an
array of Streaming Multiprocessors (SMs) that executes groups
of threads, also called warps, in parallel. Each SM executes
instructions following variations of the SIMD and Single-
Instruction Multiple-Thread (SIMT) taxonomies [18].

The workload in a SM core is assigned by a Block Scheduler
Controller. Internally, the SM includes a Warp Scheduler
Controller (WSC) that distributes the tasks as warps and
dispatches them into the available executions units, also known
as Scalar Processors (SPs). The SM is organized in a five-stage
pipeline (see Fig. 1).

The datapath of a SM is mainly composed of the SPs,
the PRs and the memory modules in the GPU. The memory
hierarchy in the GPGU is composed of the General-Purpose
Register File (GPRF), the local memory, the constant memory,
the shared memory, and the global or main memory. All
these memory modules are visible to the programmer and

Fig. 1. A general scheme of the SM in FlexGrip.

can be configured and accessed directly or indirectly by
the programmer. However, other modules, such as the PRs,
are hidden to the programmer, which reduces the available
methods to control or observe the operational status of these
modules. The PRs are also part of the datapath and serve as
interconnections among the pipeline stages. Each PR is located
between two pipeline stages to temporary store operands for
the execution of an instruction in the SM. However, PRs also
store control signals related to the status of the instruction
under operation.

PRs are grouped and named according to their location in
the design. The PR(W-F), between the Warp and Fetch stages,
stores control signals related with the status of the operation
of an instruction in the SM. These PRs include the following
parameters: Warp Program Counter (WPC), Active Thread
Mask (AThM), shared memory address, and general-purpose
address. Similarly, the PR(F-D), between the Fetch and De-
code stages, includes the same information of the PR(W-F)
and only adds information concerning the operational code of
the instruction.

The PR(D-R), between Decode and Read stages, stores
the decoding signals of instructions, which are employed to
activate the operational modules in the next stage, such as
the memory sources, SPs, and the divergence management
mechanisms. The Read-Execution PR(R-E) includes the Tem-
porary Registers (TRs), which handle the parallel operands and
predicate conditions for every SP core in the execution stage.
Finally, the Execution-Write PR(E-Wr) includes a similar
structure of the TRs, but handles the results of the operations
performed in the execute stage. One additional PR(W-Wr) is
located in the SM to interconnect the Write stage and the
Warp controller of the SM. The PR(W-WR) is only composed
of control signals describing the status and operation of an
instruction in the SM.

From the reliability point of view, as the PRs hold sensitive
information for the operation of the SM (data and control
signals), SEUs affecting them can lead to data corruption or
the interruption of the execution flow. The size of each PRs
in FlexGripPlus are reported in Table I, considering 8, 16,
and 32 SP configuations. The size of the controlpath does not
depend on the number of SPs, but the size of the datapath does.
Therefore, for a 8-SP configuration, the sizes of controlpath



and datapath are almost the same, but the datapath for a 32-SP
configuration if four times the size of the controlpath.

TABLE I
SIZE OF THE PRS ACCORDING TO THE NUMBER OF SPS IN THE SM.

Pipeline Registers Controlpath
Datapath (SPs)

8 16 32
Warp to Fetch (W-F) 140 – – –
Fetch to Decode (F-D) 237 – – –
Decode to Read (D-R) 408 – – –
Read to Execute (R-E) 302 1,024 2,048 4,096
Execute to Write (E-W) 251 512 1,024 2,048
Write to Warp (Wr-W) 133 – – –
Total 1,471 1,536 3,072 6,144

III. EVALUATION OF THE PRS TO SEUS

In this Section, we present the mechanism to evaluate the
SEU sensitivity. Then, we outline the implemented software-
based hardening technique.

A. Fault injection environment

The custom fault injector is based on the ModelSim simu-
lator, which hosts the FlexGripPlus model. The environment
is based on the translation of a fault target into simulator
commands in the hosting framework to represent the injection
of a transient fault in the model. The process of translating and
applying a fault are based on the guidelines introduced in [6],
[19]. Moreover, a parallel multi-thread approach is employed
to reduce the execution time of a fault campaign [20].

The reduction of the fault locations in a target module also
contributes to improve the performance. This reduction (which
does not impact the results accuracy) is based on observ-
ing and analyzing the switching activities and coding styles
of the target application. These analyses are obtained after
performing multiple fault-free simulations. Finally, structural
analyses to identify untestable faults in a target module can
be performed [21].

The injector environment is composed of a fault injector
controller (FIC), a fault decoder (FD), and a fault injector
checker and classifier (FICC). The FIC configures the GPU
model and the simulation framework on ModelSim. Moreover,
it orchestrates the whole fault simulation campaign. The FD
translates one fault into a equivalent sequence of commands
for the simulator. The FD refers to the fault list to load
a random target location for fault injection. Moreover, the
FD computes a random injection time considering the time
intervals when the GPU kernel is operating. The generated
commands are applied in the model before the simulation
starts. The FICC checks the fault effect in the model and the
method used for finishing the simulation. Finally, the FICC
classifies the fault effect.

Each fault is classified as (i) Silent Data Corruption fault
(SDC), when a fault generates mismatches in the memory
results, (ii) Detected Unrecoverable Error (DUE), when a fault

corrupts the execution of an application or affects the correct
termination, or (iii) Masked, when a fault does not affect the
system execution and the results. During the fault injection
campaign, one fault was injected per application execution.

B. Software-based hardening technique

The software-based hardening technique is an adapted ver-
sion of the Full Program Duplication (FPD) mechanism. In
principle, the FPD is a software-based fault-tolerance tech-
nique that can be applied at all abstraction levels of the
software stack. However, in our case, the GPU assembly
language is preferred because we can maintain a deterministic
control during the code adaptation and also guarantee that the
final bytecode retains the modifications applied. Moreover, as
previously mentioned, the user does not have access to the
PRs. Therefore, it is impossible to design a software-based
technique that directly targets the PRs and explicitly modify
its normal behavior. On the other hand, even though the FPD
hardening technique only targets the GPRF, we explore the
possibility of detecting faults in the PR through the program
transformation indirectly. Still, they are built to detect faults
in the register files.

The adaptation of the FPD as software-based technique
includes three main code transformations: (1) datapath dupli-
cation, (2) consistency checking, and (3) host notification.

Datapath duplication (1) starts by duplicating all used regis-
ters over spare ones. A static code analysis is used to identify
the number of used and spare registers per application. Then,
a hash table assigns a spare register as a copy register to each
used register in the application. In case there are not enough
spare registers, selective hardening or register spilling can be
used. Then, all instructions are duplicated, with the replica op-
erating over replicated registers. Instruction duplication forces
the re-execution of the datapath in an intertwined fashion,
completely separating the original and duplicated datapaths,
and taking advantage of Instruction Level Parallelism (ILP) to
speed up program execution. By exploiting ILP, we are able
to absorb a portion of the execution time overhead caused by
the duplication.

The consistency checking (2) is responsible for evaluating
the coherence between the values in the registers and their
replicas. A comparison instruction is used to compare and
set an error flag in case of mismatch. The checking of
consistency decreases the performance obtained by the ILP
and also introduces flow-dependency when the comparison is
performed between the two datapaths. In order to optimize
consistency checks, they are only performed after memory
accesses. By doing so, we guarantee that memory access are
correct. On the other hand, as memory addresses are not
replicated, a fault in the store instruction may still lead to
an undetected error.

The host notification (3) informs the host that a fault
has been detected. The implementation may vary as it may
correspond to a memory write instruction or an exception
signal to the host. Implemented through conditional instruction
execution, these additional code blocks are not executed on



a fault-free execution of an application, and therefore do
not cause any performance degradation under normal circum-
stances.

Combined, these code transformations are able to detect
close to 100% SDC faults affecting the FlexGripPlus GPRF
registers. It is not able to detect all faults because the memory
addresses are not replicated. Therefore, store instructions are
also not replicated, becoming a point of failure. On the other
hand, memory (and store instruction) duplication could be
easily implemented to cover those faults.

IV. EXPERIMENTAL RESULTS

For the experiments, we employed four case-study applica-
tions to evaluate the SEU susceptibility in the PRs. Moreover,
the experiments are also used to observe the effects of the
adapted software-based hardening technique.

The selected benchmarks are matrix multiplication (MxM),
Fast Fourier Transform (FFT), Vector Sum (VectorSum), and
Bitonic Sort (Sort). These benchmarks are selected considering
the different workload and coding styles, generating different
patterns of use in the PRs. MxM and VectorSum are mostly
data-flow oriented, with few conditional deviations, while
FFT and Sort are mostly control-flow oriented, with many
conditional deviations.

Twenty four fault injection campaigns were performed at
register transfer level using the FlexGripPlus model and target-
ing the PRs. All application code and their hardened versions
have had fault simulated under the 8, 16, and 32 SP cores
configurations of the GPU model. A total of 10,000 faults were
injected per application under one of the SP configurations. In
total, 240,000 faults were injected in the experiments.

A. Streaming multiprocessors

Table II, reports the fault rate and the Architectural Vul-
nerability Factor (AVF) of the original applications and the
hardened ones. Although results do not provide evidence of
a clear trend that could be observed for all applications, the
changes in the hardware organization by modifying the number
of SPs show that an increment in the number of SPs also
increases the PR susceptibility to SEUs. This trend is observed
when moving from 8 to 16 SPs in the FFT and VectorSum
applications. However, the behavior shown in the MxM and
Sort benchmarks are different. In both cases, the susceptibility
to SEUs is reduced when increasing the number of SPs in the
configuration of FlexGripPlus.

An explanation for the increment in susceptibility to SEUs
can be found analysing the kernel configurations of the ap-
plications and the effects in the architecture when increasing
the SPs in the GPU. As initially reported in Table I, the
increment in the number of SPs also increases the number
of registers devoted to store operands and results for the
additional SPs. Moreover, the FFT and VectorSum are con-
figured to use the number of available SPs in the system, so
the simultaneous workload (number of threads) executed in
parallel is proportional to the number of SPs. The previous
behavior is also seen in the Sort application. However, this

application has a dependency between the data operands and
the executed instructions that could explain the contradictory
behavior. Finally, MxM is a bi-dimensional parallel program
and is configured to execute 8 threads per warp only. Thus,
increasing the number of SPs has no direct effect in the number
of executed operations. Nevertheless, the kernel configuration
seems to be responsible for the reduction in the SEU effect.

On the other hand, a general observation of the results
of the hardened-code versions of the applications shows a
reduction in the percentage of faults affecting the applications.
For most cases, the hardended applications seem to be partially
effective in detecting faults and reducing the total percent-
age of the fault effects (from 16.2% to 100.0%). However,
for some configurations of the FFT and Sort applications,
the hardening techniques increase the susceptibility to SEU
effects. In this case, both FFT and Sort applications are
mainly control-flow based applications and the coding style
seems to play an important role in the effectiveness of the
software-based technique when changing the configuration of
a GPU. Thus, we can conclude that the effectiveness of a
hardening technique depends on the the coding style of a
target application and the configuration of the GPU. It is worth
noting that the AVF analyses were performed using the same
hardware configuration to reflect the effect of the description
and workload of an application in the GPU.

B. Pipeline registers

A second evaluation is performed dividing the PRs into
datapath and controlpath. Table II reports the results for each
application. The detected faults by the hardening technique are
analysed for each application.

For all applications, the trend shows that the highest percent-
age of SEU effects are caused by the controlpath part of each
PR. This behavior can be explained when considering that the
controlpath fields in the PRs are active permanently during the
execution of each instruction, while the datapath is only active
when processing instructions involving operands. Moreover,
parts of the datapath are inactive when executing intra-warp
divergence paths or executing instructions that require only
one or two input operands.

The reported results show that the distribution of the SDCs
and DUEs in the controlpath and datapath for the analyzed
applications directly depends on the dominant coding style of
the applications.

For the FFT and Sort applications, which are control-
oriented, the hardening technique was effective in reducing
the number of SDCs in the controlpath. On the other hand,
the number of DUEs increased. For the VectorSum and MxM
applications, which are data-oriented applications, the harden-
ing technique was partially effective in reducing the percentage
of SDC affecting the controlpath of the PRs. A similar but less
effective trend can be observed for the detected DUEs. Both
results show that the hardening technique is more effective in
data-oriented programs to reduce the effect of faults, in the
PRs, propagating their effects to the register file.



TABLE II
FAULT RATE AND AVF RESULTS IN THE PRS OF THE GPGPU

Application SPs

Original AVF (%) Hardened AVF (%) AVF Reduction (%)

Datapath Controlpath Datapath Controlpath Datapath Controlpath

SDC DUE Total SDC DUE Total SDC DUE Total SDC DUE Total SDC DUE Total SDC DUE Total

FFT

8 0.96 0.16 1.13 3.96 2.28 6.24 0.58 0.00 0.58 2.09 3.07 5.16 39.53 100.0 48.17 47.14 0.00 17.31
16 1.06 0.08 1.14 4.88 3.92 8.80 0.65 0.08 0.73 3.73 5.93 9.67 38.76 0.49 36.03 23.50 -51.36 -9.85
32 0.64 0.24 0.88 4.87 3.88 8.75 0.23 0.16 0.39 3.81 6.68 10.49 63.35 34.84 55.57 21.64 -72.16 -19.97

Matrix Mult.

8 0.47 0.08 0.55 3.27 2.95 6.21 0.24 0.00 0.24 0.35 2.40 2.75 49.40 100.0 56.63 89.39 18.55 55.79
16 0.41 0.08 0.49 2.72 4.97 7.69 0.41 0.00 0.41 1.11 4.21 5.32 -0.66 100.0 16.12 59.31 15.28 30.85
32 0.34 0.00 0.34 1.73 5.64 7.37 0.00 0.00 0.00 0.53 4.89 5.43 100.0 – 100.0 69.23 13.24 26.40

VectorSum

8 3.83 0.00 3.83 5.73 2.20 7.93 1.89 0.00 1.89 1.27 1.91 3.17 50.55 – 50.55 77.91 13.33 60.00
16 4.09 0.00 4.09 5.93 4.43 10.36 1.98 0.00 1.98 2.40 4.12 6.52 51.60 – 51.60 59.55 6.93 37.07
32 3.39 0.00 3.39 6.68 8.07 14.75 2.51 0.00 2.51 3.87 7.69 11.56 26.02 – 26.02 42.12 4.63 21.61

Sort

8 2.43 0.00 2.43 2.61 2.07 4.68 0.81 0.08 0.89 1.61 2.69 4.31 66.81 – 63.49 38.27 -30.32 7.98
16 0.70 0.00 0.70 2.17 2.23 4.40 1.05 0.08 1.13 2.09 3.89 5.99 -50.27 – -61.83 3.68 -74.85 -36.06
32 0.40 0.08 0.48 1.68 2.27 3.95 0.08 0.08 0.16 1.43 4.27 5.69 79.82 -0.90 66.37 15.08 -88.24 -44.26

The Bitonic Sort application is a control-flow intensive, but
also data-dependent application, so the register file is used to
compare operands coming from memory. These comparisons
are then employed to select the next instructions to execute.
An in-depth analysis of the results shows that most of the
faults in the controlpath are detected by one of the check point
mechanisms, so detecting and notifying the fault.

Fig. 2 shows the AVF results for the controlpath in the
PRs analysing the contribution of each field. Each PR includes
registers devoted to store the instruction code (Ins.code), the
thread mask (TAM), the starting address in the register file
(GPRS base), the starting address in the shared memory (Sh.
base), the Warp or line ID, the Program counter (WPC), and
other control signals. The reported results are obtained with
the SM configured with 8 SPs.

As it can be observed in the results, each application shows a
different distribution of SEUs affecting each groups of control
registers. However, it is possible to observe that the Ins.code
and TAM are the most sensible fields in the controlpath of
the PRs for all evaluated applications. In fact, the Ins.code
field stores the signals used to activate the internal modules
to process an instruction in parallel and these registers are
distributed among all PRs. Moreover, this group of registers
also includes the original and the decoded instruction-codes
located in the (F-D) and (D-R) PRs. Similarly, the TAM fields
are present in all PRs and store information regarding the
status of the active threads executing an instruction. Although
these registers are located in all PRs, the susceptibility is
high due to the fact that they are massively used in each
instruction, so any effect can easily propagate and compromise
the execution of an instruction. A fault in the Ins.code field
could cause the stop in the execution of an instruction or
the access to unauthorized modules to process parts of the
instruction as consequence of the SEU. Similarly, a fault in
the TAM could cause the inactivation and stop of threads
during instruction. Another effect caused by SEUs in the TAM
field is the execution of additional threads. In both cases, the
consequence is an error.

The difference in size of the reported results, in Fig.

Fig. 2. AVF in Controlpath of pipeline registers for 8-core SM configuration.

2, clearly shows that in most of the cases, the hardening
code by the hardening technique is effective in decreasing
the susceptibility to SEUs in all groups of registers in the
controlpath of the PRs. This behavior can be observed in
the MxM application, which shows that for each group of
registers, the hardening code effectively reduced most of the
affecting fault in the controlpath.

C. Pipeline stages

Fig. 3 shows the pipeline stages’ AVF classified according
to the individual PRs in the SM for the original (red) and
hardened (blue) applications.

Results for both applications show that each PR is affected
differently by SEUs. It is clear that PRs (Wr-F), (F-D), and (D-
R) are the most susceptible to SEUs registers for all analyzed
applications. This behavior can be explained considering that
these registers store the control signals used to start the
execution of an instruction and also the signals devoted to
activating parallel modules in the SM. Selective hardening of
the 785 flip-flops in the (Wr-F), (F-D), and (D-R) PRs could
be used to reduce the faults effect in a range between 59.0%
and 87.9% of the detected faults for the analyzed applications.

A general overview of the fault effect in the PRs shows that
all applications present the same trend. Also, the susceptibility
of each PR is equivalent for the analyzed applications. More-
over, it shows that some fields in the controlpath of the PRs



Fig. 3. AVF of the Pipeline stage registers for 8-core SM configuration.

are more susceptible to propagate fault effects than others.
Interestingly, some of the most susceptible PRs are not the
largest in size, so the propagation of a fault in the PRs seems
to be directly related to the affected location in a PR instead
of its size in the PR structure.

An in-depth analysis of a group of registers, storing control-
signals, showed that a registers can produce different effects
and propagate differently (as DUE or SDC) depending on the
application and the time of injection. Previous results denote
the relevance of the PRs in the operation of the GPU. The FFT
and Sort applications are examples of a partial effectiveness
of the employed hardening technique. As one can see in Fig.
3, all PRs show a significant reduction in AVF, meaning that
most of them were detected by the hardening technique before
becoming an error.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the sensitivity of the PRs of
a GPU to SEUs. A fault injection campaign was performed
targeting the PRs of a GPGPU running four case-study ap-
plication in three different SM configurations. Results were
categorized according to SMs, PRs, and pipeline stage.

Resulting data showed that control signals are more sen-
sitive to faults and, therefore, more critical in the pipeline.
This happens mainly because a single fault affecting a control
signal can compromise the operation of the whole GPU.
The chosen software-based hardening technique, which was
originally developed to protect register files in a GPU, was
present as a feasible solution to increase GPU reliability. The
correlation among the register file and the pipeline registers
in the datapath allowed the indirect reduction of transient
effects. The results also showed that, for some applications,
the hardening solution also allowed the detection a significant
percentage of faults. However, the coding style affects its
effectiveness.

In the future, we plan to further evaluate the GPU’s dat-
apath and controlpath structures and propose hardware-based
fault tolerance techniques targetting specific registers. We also
intend to combine these techniques with software-based ones
and provide a GPU fully resilient to SEU effects.

REFERENCES

[1] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
scaling on neutron-induced soft error in srams from a 250 nm to a 22

nm design rule,” Electron Devices, IEEE Transactions on, vol. 57, no. 7,
pp. 1527–1538, 2010.

[2] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in International Reliability Physics Symposium, 2011, pp. 1–7.

[3] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An efficient and experimen-
tally tuned software-based hardening strategy for matrix multiplication
on gpus,” IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp.
2797–2804, 2013.

[4] J. R. Azambuja, G. Nazar, P. Rech, L. Carro, F. L. Kastensmidt,
T. Fairbanks, and H. Quinn, “Evaluating neutron induced see in sram-
based fpga protected by hardware- and software-based fault tolerant
techniques,” IEEE Transactions on Nuclear Science, vol. 60, no. 6, pp.
4243–4250, 2013.

[5] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling
of single-event upset in digital microelectronics,” IEEE Transactions on
nuclear Science, vol. 50, no. 3, pp. 583–602, 2003.

[6] J. E. R. Condia and M. Sonza Reorda, “Testing permanent faults in
pipeline registers of gpgpus: A multi-kernel approach,” in 2019 IEEE
25th International Symposium on On-Line Testing and Robust System
Design (IOLTS), July 2019, pp. 97–102.

[7] M. Gonçalves, M. Saquetti, F. Kastensmidt, and J. R. Azambuja, “A
low-level software-based fault tolerance approach to detect seus in gpus’
register files,” Microelectronics Reliability, vol. 76, pp. 665–669, 2017.

[8] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W.
Keckler, “Optimizing software-directed instruction replication for gpu
error detection,” in International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2018, pp. 1–12.

[9] E. L. Rhod, C. A. L. Lisbôa, L. Carro, M. Sonza Reorda, and
M. Violante, “Hardware and software transparency in the protection of
programs against seus and sets,” Journal of Electronic Testing, vol. 24,
no. 1-3, pp. 45–56, 2008.

[10] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6, pp.
518–528, 1984.

[11] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, P. Prinetto,
D. Rolfo, and P. Trotta, “Increasing the robustness of cuda fermi
gpu-based systems,” in 2013 IEEE 19th International On-Line Testing
Symposium (IOLTS), 2013, pp. 234–235.

[12] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for gpgpu,” in IEEE
International Parallel Distributed Processing Symposium, 2011, pp.
287–300.

[13] L. L. Pilla, P. Rech, F. Silvestri, C. Frost, P. O. A. Navaux, M. Sonza
Reorda, and L. Carro, “Software-based hardening strategies for neutron
sensitive fft algorithms on gpus,” IEEE Transactions on Nuclear Science,
vol. 61, no. 4, pp. 1874–1880, 2014.

[14] M. M. Goncalves, J. R. Azambuja, J. E. R. Condia, M. Sonza Reorda,
and L. Sterpone, “Evaluating software-based hardening techniques for
general purpose registers on a gpgpu,” in 2020 IEEE 21th Latin-
American Test Symposium (LATS). IEEE, 2020, pp. 1–6.

[15] B. Du, J. E. R. Condia, and M. Sonza Reorda, “An extended model to
support detailed gpgpu reliability analysis,” in 2019 14th International
Conference on Design Technology of Integrated Systems In Nanoscale
Era (DTIS), 2019, pp. 1–6.

[16] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone, “Flex-
gripplus: An improved gpgpu model to support reliability analysis,”
Microelectronics Reliability, vol. 109, p. 113660, 2020.

[17] K. Andryc, M. Merchant, and R. Tessier, “Flexgrip: A soft gpgpu
for fpgas,” in 2013 International Conference on Field-Programmable
Technology (FPT), 2013, pp. 230–237.

[18] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, March 2008.

[19] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, “Evaluating the effects
of single event upsets in soft-core gpgpus,” in 2016 17th Latin-American
Test Symposium (LATS), April 2016, pp. 93–98.

[20] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A survey on fault injection
techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186, 2004.

[21] J. E. R. Condia, F. A. Da Silva, S. Hamdioui, C. Sauer, and M. Sonza
Reorda, “Untestable faults identification in gpgpus for safety-critical ap-
plications,” in 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2019, pp. 570–573.


