

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

A dynamic hardware redundancy mechanism for the

in-field fault detection in cores of GPGPUs

Josie E. Rodriguez Condia†, Pierpaolo Narducci*, M. Sonza Reorda‡, L. Sterpone§
Politecnico di Torino, Torino, Italy

*pierpaolo.narducci@studenti.polito.it, {†josie.rodriguez, ‡matteo.sonzareorda,§luca.sterpone}@polito.it

Abstract—In the past, in most General-Purpose Graphic

Processing Units (GPGPUs) application fields (e.g., multimedia

and gaming), the reliability features were not so relevant.

Nowadays, GPGPUs are used in new domains, such as the

automotive one, where reliability plays a significant role. In this

work, we describe a dynamic duplication with a comparison

(DDWC) mechanism intended to harden the Scalar Processor (SP)

units located in the Streaming multiprocessors (SM) of a GPGPU.

The proposed mechanism targets the permanent faults that may

arise inside the SPs. One additional SP unit is included in the

system to compute redundantly the same operations of a selected

SP. Results are compared, and possible failures detected. A

custom reconfiguration instruction allows the dynamic selection of

the target SP to be monitored. Experimental results show that the

proposed mechanism introduces a limited area overhead while it

provides a significant increase in the in-field fault detection

capabilities of the GPGPU. Its flexibility allows selecting the best

trade-off between fault detection latency and performance

overhead.

Keywords—Duplication with Comparison (DWC), Fault detection,

General Purpose Graphics Processing Units (GPGPUs), Graphics

Processors

I. INTRODUCTION

Graphic Processing Units (GPUs) were used in the past,
mainly in commodity applications involving high-data intensive
operations, such as in the gaming and multimedia sectors.
Currently, GPUs have successfully extended their capabilities
and are employed in more complex and demanding
applications, evolving into General Purpose Graphic Processing
Units (GPGPUs). These applications include High-Performance
Computation (HPC) and some in the safety-critical domain [1].
Modern GPGPUs are designed employing the latest technology
scaling approaches to achieve power and performance
requirements. However, some studies proved that these
technologies could be quite prone to faults during the operative
life, thus showing reduced long-term reliability [2].

Designers face reliability challenges in GPGPUs by adding
special structures, such as Error Correcting-Codes (ECCs), to
reduce the sensitivity to faults of some structures, such as
memories, register files, and communication interfaces.
Nevertheless, other internal modules, such as the execution
cores and the task controllers, cannot be easily protected with an
acceptable cost in terms of design and manufacturing. Thus,
these units represent a challenge when dealing with their
protection [3]. Moreover, traditional solutions to extend the
reliability of control and execution units (EUs), such as dual-
core lock-step and design diversity [4], increase the hardware
overhead and the complexity of the device exponentially.

Traditional structures to increase the in-field reliability in
processor-based systems, such as Duplication with Comparison
(DWC), Double, and Triple Modular Redundancy (DMR,
TMR), are mainly neglected in GPGPU products due to
economic and technical reasons. Nevertheless, these solutions
may be used in applications where safety is a major constraint.
In these fields, the additional cost in terms of design and
production can be reasonably accepted due to the reliability
benefits. To the best of our knowledge, there are no hardware
solutions for in-field operation used in real GPGPU cores based
on the previous techniques.

Multiple solutions using DWC as an error detection strategy
have been proposed in the literature for GPGPU devices and are
based on two main approaches: software and hardware. In both
cases, the main target is to provide the detection or correction of
faults. However, hardware approaches may be complex to
develop and implement, but these are more efficient than
software approaches.

On the one hand, software DWC mechanisms exploit time
redundancy by repeatedly executing instructions [5-7],
functions [8], or application tasks [8-10]. At the end, results are
compared to detect faults. These mechanisms introduce zero
hardware overhead but cause significant performance
degradation, additional switching activity, and also a moderate
overhead in the memory and similar resources. Similarly, in
[11], the authors proposed an automatic multithreading
environment to modify the program of a GPGPU and duplicate
the operations. This solution may use spatial and time
redundancy, but performance degradation directly depends on
the behavior of the application.

On the other hand, hardware solutions exploit spatial
redundancy and consist of adding special structures in the
design to increase the reliability by allocating operations into
redundant and independent modules. Results are then compared
to detect possible faults. The main advantage of these
mechanisms is a reduced performance degradation. However,
the hardware overhead directly depends on the redundant
modules to be added and modified. In [12], a mechanism
duplicates the fragment cores in a Shader module of a GPU.
Special structures are added in the input and output modules to
process the data operands and the interconnections.
Nevertheless, the mechanism was only evaluated resorting to a
structural simulator; hence, the hardware overhead and the
resulting performance degradation were not quantitatively
assessed. In [13], the warped-Dual Modular Redundancy was
proposed, which uses the free execution cores inside the
Streaming Multiprocessor (SM) to provide a redundant
mechanism and detect errors. The inactive threads are

configured using a Register Forwarding Unit (RFU), which can
be configured either as EUs or as comparators. The RFU uses
the original structures to monitor and verify the cores using
timing redundancy. Although this method was evaluated in a
simulator, results showed that the associated hardware overhead
might be significant, considering the RFU existing in each core.
In [14], additional execution units are included in the design of
a GPGPU to replace faulty units at the end of the manufacturing
phase. In [15], the authors propose and addition of
heterogeneous cores to detect faults in a multi-core processor
when executing out-of-order operations. Finally, another
approach includes parallel execution cores aiming to repair
faulty units during the in-field operation of a GPGPU [16]. The
repairing method may use SBST, DfT, or a combination of both
as a fault detection mechanism to identify a defective module.

In this work, we propose a dynamic redundancy mechanism
targeting the detection of permanent stuck-at faults in the EUs
or SPs of a GPGPU. The proposed solution is called Dynamic
Duplication with Comparison (DDWC), and it is based on the
adaptation of the classical DWC mechanism to protect
structures in a GPGPU. This solution is intended to introduce
small or null performance overhead and minimal modifications
to the existing structures.

More in detail, the DDWC mechanism is based on the
addition of one spare EU module that performs the same
operations as one of the original ones and also checks the
coherence of the results. A custom instruction (DDWC_i) is
introduced, which identifies the EU modules to be monitored.
This solution combines the flexibility provided by the software
to identify the target module, combined with the low-
performance degradation and spatial redundancy obtained by
the hardware solutions, thus providing an effective fault
detection mechanism. This technique can be employed for the
in-field test by slightly modifying the application code by just
adding the new DDWC_i instruction at specified locations, so
apart from the DDWC_i instructions, the DDWC mechanism is
entirely transparent to the programmer. Moreover, the designer
can choose a suitable trade-off between fault detection latency
and performance overhead by selecting the frequency of
execution of the DDWC_i instruction.

The DDWC solution was implemented and evaluated,
resorting to an enhanced version of the FlexGrip GPGPU
model, which owns the same micro-architecture of some
NVIDIA devices. Results proved that the DDWC strategy
increases the fault detection capabilities of the system with a
limited cost in terms of hardware and performance overhead.
Moreover, since the selection of the SP core to be monitored is
made in software by an ad hoc instruction, we can select the
best frequency for its activation, trading-off fault detection
latency, and performance degradation.

The paper is organized as follows. Firstly, section II
introduces the basic overview of the enhanced open-source
GPGPU model. Section III describes the proposed DDWC fault
detection mechanism. Then, section IV outlines its
implementation in the FlexGrip model. Finally, section V
reports the gathered experimental results and estimates the
detectability enhancement provided by the strategy. Section VI
draws some conclusions and highlights future works.

II. THE FLEXGRIP GPGPU MODEL

FlexGrip is an open-source soft-GPGPU model described in
VHDL and aimed initially to be synthesized in Xilinx FGPA
platforms [17]. The University of Massachusetts developed this
GPGPU model, and it implements the G80 GPGPU micro-
architecture by NVIDIA. Moreover, it is compatible with the

standard programming environment for GPGPUs (CUDA in the
SM_1.0 compatibility). This special-purpose processor requires
the interaction with a Host processor to start the execution of an
application program. This Host controls and monitors the
GPGPU operation.

We improved the original version of the FlexGrip model to
remove or correct initial limitations related to compiler
restrictions, structural bugs, and instruction format support. The
enhanced GPGPU model now fully supports 28 instructions in
64 formats. For this work, we employ this improved version of
the model. Readers may refer to [18] for a full list of supported
formats and instructions in FlexGrip and additional details of
the performed modifications.

The architecture of FlexGrip supports the SIMT (Single-
Instruction Multiple-Thread) paradigm. It exploits a custom SM
core composed of five stages pipeline (Fetch, Decode, Read,
Execution/Control-flow, and Write-back), as shown in Fig 1.
The EUs or Scalar Processors (SPs) are only present in the
Execution/Control-flow pipeline stage. The SM executes the
same instruction (warp instruction) for a group of 32 threads. A
warp can be defined as a group of 32 consecutive threads.

Inside the SM, one warp scheduler controller manages the
execution of instructions and controls the operation of threads.
In the SIMT taxonomy, each warp instruction is fetched,
decoded, and assigned for execution to an independent SP in the
SM. The Read and Write-back stages load and store data
operands from/to the Register File (RFs, or the shared, global,
and constant memories. It is worth noting that FlexGrip can
only process operations of integer type. The original design of
the G80 architecture includes 8 SP cores in the SM. FlexGrip
can configure the parallel EUs among 8, 16, and 32 SPs.

The SPs are regular structures within the SM of a GPGPU
and are composed of multiple sub-modules (Fig. 2). Each SP
core executes all the signed and unsigned logic and arithmetic
operations required by a thread task. A thread task can be
defined as the sequence of operations to be executed by one of
the threads in a parallel program.

The input operands of an SP core are organized in data
channels (SPCs). The SPCs are composed of 32 bit-size input
data operands (SRC1, SRC2, and SRC3) and the predicate flags
(4 bit-size). Each SP core has an independent and statically
assigned SPC by a warp scheduler in the SM.

In the Read stage, the input operands are loaded from
memory and sent to each SPC. External control signals
redundantly configure each SP core according to the instruction
to be executed. The output data channel (SPDC) of each SP
core is composed of the result data (DST) and the output
predicate registers. These values are statically connected to the
next pipeline stage.

Fig 1. The general architecture of the SM in FlexGrip (adapted from [19])

Fig 2. A general scheme of the architecture of an SP core in FlexGrip

III. PROPOSED FAULT DETECTION TECHNIQUE

The proposed in-field fault detection strategy (DDWC) is
based on a dynamic mechanism able to detect permanent faults
in modules of processor-based systems or accelerators, such as a
GPGPU. DDWC is an adaptation of the classical DWC
structure and employs the concept of sphere of redundancy (Fig
3), which is based on replicating one or more modules to
increase the fault detection or to mitigate the fault effect in a
system.

The DDWC structure is mainly composed of an input
selector module, a redundant module, which is a copy of the
target module, an output selector module, and a comparator.
Finally, one controller manages the input and output selectors to
provide the data and feed the redundant and comparator
modules with a selected option in the controller. The controller
is dynamically programmed through a custom instruction that
activates and selects the input data channel of one of the
modules in the sphere of redundancy. The input and output
selector modules are composed of crossbar or meta-crossbar
structures. Some additional decoders and registers could be
included in the DDWC structure.

It should be noted that the sphere of redundancy can be
applied at multiple levels of granularity in a system. However,
the DDWC structure could be unfeasible to be applied to big
modules, which might represent a considerable hardware
overhead for a system, such as pipeline blocks in a processor or
a GPGPU. Moreover, the non-regularity of some structure could
limit the adaptation of the DDWC to keep low performance and
hardware costs. It is worth noting that this work focuses on the
fault detection mechanism, so error handling is out of the scope
of this paper, and additional mechanisms might be required to
perform the error handling tasks.

A. Basic operation

Once the DDWC module is active, the controller selects

one input data channel, and all input operations are redundantly

executed by both: the target module and the redundant. This

comparison and fault detection structure is well-known and

contributes to reducing the performance latency for fault

detection. Then, the results of both modules (the target module

and the redundant one) are compared. The fault detection is

performed based on a direct comparison of results and output

flags. A fault is detected if there is at least one mismatch in the

results. The comparator generates an output error signal

triggering the logic state that indicates the possible fault

detection.

B. Proposed Architecture for the SPs in a GPGPU

The DDWC structure is intended to detect permanent faults
during the in-field operation of the GPGPU.

Initially, we explore multiple modules in the GPGPU to
implement the DDWC strategy. Firstly, the entire Execute
pipeline was considered as a target module in the sphere of
redundancy. However, as commented before, the non-regularity
of its internal structures limited the adaptation of the fault
detection technique, so causing unacceptable hardware

overhead in a GPGPU. Then, we considered the possibility of
focusing on the internal structures in the SPs in the SM. In this
case, each sub-module should be duplicated, reaching a similar
overhead. On the other hand, by exploiting the regularity of the
SPs, and using them as the main target of the sphere of
redundancy, it is possible to duplicate these structures
temporarily. A combination between the regularity of the SPs
and the reconfiguration mechanism contributes to reducing the
total overhead costs in the system. In the end, we propose the
addition of only one SP, and a newly introduced custom
instruction allows selecting a target SP with the comparison
structure. Fig 4 summarizes a general scheme of the mechanism
using SP cores as the main modules in the sphere of
redundancy.

The input switch collects all the SPCs and activates one of
the data paths coming from the previous pipeline stage and
feeds the redundant SP core. In contrast, the output switch
collects all SPDCs for the active SPs, selects one among them,
and feeds the comparator module. A switch controller is
included to manage the channel selection in both switches
(input and output). The signals decoded by the DDWC_i
instruction are employed to reconfigure both switching
structures.

A redundant SP is placed in parallel to the existing SP
modules, and the inputs are directly connected to the input
switching selector. Similarly, the outputs of the redundant SP
are connected to one of the inputs of the comparator module.

The comparator module is a bit-wise comparator of the
output results (SPDCs) coming from a target SP and the
redundant SP. An output strobe flag is included as observability
mechanism to inform the Host, or an exception handler in the
GPGPU, about a possible fault found in one of the SPs. A
mismatch in the results indicates a fault in the SP, hence
triggering the output flag.

Some additional combinational modules, such as decoding
hardware and interconnections, are included in the DDWC
mechanism. Similarly, a register retains the configuration of the
DDWC structure after using the DDWC_i instruction. It is
worth noting that the DDWC mechanism starts in a disable
mode after a reset or switch-off event and should be activated
with the DDWC_i instruction. The explicit selection of the
target SP core using the DDWC_i instruction may affect the
optimal fault detection performance of all elements in the
sphere of redundancy. Moreover, input operations and the
frequency of the custom instruction can also limit the number of
patterns applied to each core to identify errors. Thus, the
DDWC mechanism requires a balance between the selection of
the target core and the insertion of the DDWC_i instruction in
the application code to obtain the best fault detection
performance.

It is worth noting that other modules in the GPGPU, such as

memories and control units, were not targeted and are out of the

scope of the proposed DDWC solution. The use of the DDWC

mechanism in these modules may introduce hardware overheads

DST

Data Operands (SRC1, SRC2, SRC3) Control

Lines

Adder /

Subtractor
Multiplier Shifter

Logic

unit
Min /

 Max
Conversion

Output Predicate flags

Input Predicate flags

Fig 3. A general scheme of the concept of sphere of redundancy applied to the
DDWC strategy

greater than 100%, considering the duplication of modules and

the required additional structures, such as registers,

comparators, and interconnections.

IV. IMPLEMENTATION DETAILS

The enhanced version of FlexGrip was used to implement
and evaluate the fault detection capabilities of the proposed
DDWC strategy experimentally. Three pipelines modules
(Decode, Read, and Execution/Control-flow) were modified to
include the DDWC structures.

In the Decode stage, the DDWC_i instruction was
implemented by carefully adding some combinational logic.
The instruction set architecture (ISA) in FlexGrip (SASS) was
analyzed, and the available operation code was selected for its
description. The format of the DDWC_i instruction includes 5
bits for SPC channel and SP selection, 2 bits to enable or
disable the DDWC module, and 6 bits stating instruction type.

In the Read stage, a bypass structure was included. This
bypass is composed of registers and keeps the pipeline
coherence during the execution of the instruction by managing
the operands and configuration DDWC signals to be used in the
Execution/Control-flow stage.

The Execution/Control-flow stage was modified, adding a
copy of an SP core (SPx), the input and output multiplexers
(implementing the input and output selector switches), and a
logic comparator (Fig 4).

The two multiplexers are placed in the inputs and outputs of
the SP core (SPx) to select the data channel from each thread
(SPC (in) and SPDC).

The comparator is built with XOR gates. The output
multiplexer selects and feeds one of the inputs of the
comparator with results in one SPDC coming from SP cores.
The other input is connected to the outputs of the redundant
core (SPx). An output flag in the comparator is propagated to
the next stage and then used to indicate the Host that an error
was detected. This flag is intended to activate an interrupt in the
host and indicate the presence of a fault in the SP core.

An additional controller, one decoder, and some registers
were also included to configure both multiplexers. As
previously mentioned, this configuration is based on the
decoding signals from the DDWC_i instruction.

The data-path interconnections for the input (SPC) and
output (SPDC) data channels were duplicated to feed the
multiplexer units. On the other hand, the control-path fields in
SPC were not considered as these are shared among the SPs and
SPx. The controller also propagates the configuration code to
the Host. This code can be used to locate a faulty SP core in the
SM by the Host.

Under the inactive mode of the DDWC structure, both
multiplexers are unconnected without feeding the SPx core and
the comparator to avoid unnecessary switching activity in both
modules, thus reducing the dynamic power during inactivity
periods. It is worth noting that the selection of a sphere of
redundancy targeting the SPs only for implementing the
DDWC, contributed to avoiding any modification in the original
memory hierarchy and the warp scheduling of the GPGPU.

In principle, the code of any application requires a minor
modification to use the DDWC mechanism for in-field
detection. It is suggested to include the DDWC_i instruction at
the beginning of the application code to reduce performance
degradation. Similarly, the DDWC_i instruction can be placed
in strategic locations in the code (i.e., before any logic-

arithmetic instruction) or in a periodical manner (after a given
number of instructions). However, in both cases, the
performance degradation for the application must be considered.
In any case, during the in-field execution, the output flag signal
in the comparator is directly assigned as a source of fault
identification.

It is worth noting that the DDWC structure is intended to be
used during the in-field operation of the GPGPU. Once the
DDWC structure is active, the redundant core should swap
among the SPs of the SM. For this purpose, the program code is
modified by adding some DDWC_i instructions. Depending on
the application and on the selected frequency for the swap, the
locations where the DDWC_i instructions are inserted can be
suitably selected. A higher rate reduces the fault detection
latency but increases the performance overhead stemming from
the DDWC_i instruction addition. The method is flexible since
it allows adopting the solution which best fits the target system
specifications.

V. EXPERIMENTAL RESULTS

In the experiments, all possible SP core configurations (8,
16, and 32 SP cores) of the FlexGrip model were considered.
This model flexibility allows us to analyze the benefits of the
proposed structures under multiple SP core configurations.

The applications executed by the GPGPU with 8 and 16 SP
core configurations employ the DDWC mechanism four times
and twice per SP core, respectively. The explanation for this
behavior is directly related to the thread management in the SM
under these SP configurations. The warp controller, of an SM,
configured with 8 or 16 SPs, distributes the thread-tasks into the
available SPs. Thus, for an 8 SPs configuration, four thread-
tasks share the same SP. Similarly, for a 16 SPs configuration,
the controller assigns two threads to each SP. Thus, for every
configuration of the DDWC structure, the comparison, and
possible fault detection are performed twice or four times with
instructions belonging to the same warp.

The experimental performance results were found resorting
to a gate-level version of the modified FlexGrip model. The
Synopsis toolchain (Design Vision) was used to estimate the
hardware overhead and performance degradation. The NAND-
Open-cell library [19] was used for synthesis purposes.

A. Hardware overhead

Both GPGPU models (including the DDWC structure and
the original one) were compared for all configurations of SP
cores. Results in terms of size of cells are reported for the
affected modules and the whole design in Table 1. Results do
not include the cost of cells in memories and RFs in FlexGrip.

Results show that the hardware overhead is relatively low.
In the Decode stage module, this overhead represents only 3%

and seems to be insignificant (≈0.1%) in the Read stage

module. In contrast, in the Execution/Control-flow pipeline
module, the overhead is inversely proportional to the number of

Fig 4. A general scheme of the proposed structure for fault detection

SPs in the SM. Hence, a lower number of SPs introduce a
higher overhead cost. However, this overhead seems to be

moderate (≈3.5-10%). Analyzing the overhead cost in the

whole design, this is lower than 3% for all SPs configurations.
These results support the initial intention of limiting the impact
in the hardware overhead by the DDWC structures.

The above results allow us to claim that the proposed
DDWC mechanism represents a practical solution as a fault
detection strategy without including a critical impact in the area
of the GPGPU.

TABLE 1. HARDWARE AND PERFORMANCE OVERHEAD OF THE DDWC

MECHANISM FOR MULTIPLE CONFIGURATIONS IN THE GPGPU MODEL

Modules
SP

cores

Number of Cells
Area

overhead

(%)

Time delay in the

critical path (pS) Performance

degradation

(%) FlexGrip

FlexGrip

+

DDWC

FlexGrip

FlexGrip

+

DDWC

Decode
8/16/

32
1,229 1,266 3.04 1.72 1.77 1.16

Read
8/16/

32
142,397 142,545 0.10 3.65 3.65 0

Execute

8 60,309 65,959 9.37 6.51 7 7.52

16 113,293 118,739 4.81 6.69 7.68 14.79

32 219,261 226,822 3.45 7.52 8.54 13.56

All

8 229,515 235,964 2.81 11.88 12.42 4.54

16 280,132 286,360 2.22 12.06 13.1 8.62

32 386,100 394,516 2.18 12.89 13.96 8.3

B. Performance overhead

The performance overhead is evaluated at the module and
design levels. Initially, the critical path delay was determined
for each modified module and the whole design. It is worth
noting that in both cases, the synthesis and analysis were
performed without adding constraints or optimizations in the
synthesis tool. A clock period of 10 ns was selected for the
synthesis. The results are presented in Table 1.

By looking at the results, it can be noted that the additional
structures in the Decode module added a small percentage of
performance degradation (1.16%). In the Read module, a bypass
register was added. Nevertheless, this does not introduce any
overhead. This behavior can be explained by observing that the
bypass register was concatenated with existing structures in the
module, thus guaranteeing the same functionality of the original
structures. In contrast, the performance degradation in the
Execution/Control-flow module seems to be directly affected by
the number of SP cores. For a low number of SP cores, the
critical delay path is increased by 7.52%. The configuration of
16 SP cores seems to present the maximum percentage of
performance overhead with 14.79%. In contrast, the overhead
drops for the 32 SP cores. Although the total delay overhead is
higher for 32 SPs, the delay overhead is lower. This behavior
can be explained considering that added SPs are placed parallel
in the design, thus adding a low timing overhead. However, the
most representative timing effects are due to the added modules
in the path. These modules are the input and output switches
and the comparator.

C. Fault detection capabilities

A set of benchmarks with different workloads was
employed to validate and evaluate the detection capabilities of
the DDWC strategy experimentally. The fault injection
campaigns were performed in the FlexGrip model with and
without the DDWC mechanism and considering single stuck-at
faults at the RT level. On each fault campaign, the GPGPU
model was configured with 8 SPs and 32 threads per block.
Each benchmark was adapted to include the DDWC_i
instruction activating the DDWC structure. Gathered results
were combined to mimic the long-term operation of the GPGPU
with the DDWC mechanism rotating among the SPs.

The fault injection environment is based on the ModelSim
framework, and the injection methodology we used is the same
introduced in [5, 20]. Further details regarding the descriptions
and configurations of the used benchmarks can be found in [18].
The output flag from the comparator was included as an
observability mechanism to detect faults in the simulation
environment.

Results from the experiments showed a 35% average
increment in fault detection capabilities. The final Fault
Coverage that can be achieved on each SP resorting to the
proposed method strongly depends on the application.
Moreover, it should be considered that the DDWC strategy
requires the explicit selection of a target SP core to perform
fault detection. Thus, a balance between the frequency of the SP
switching and the application features is required to obtain
optimal in-field fault detection.

D. Estimation of the fault detection time

The proposed DDWC strategy increases the fault detection
capabilities concerning faults in the target structures. However,
as the DDWC structure is intended to select the SP to be
monitored during in-field execution dynamically, the overall
fault detection capabilities of the DDWC strategy depends on
several parameters, such as the switching and detection time,
and the detection capabilities of the test patterns. A test pattern
is one or a sequence of values applied to the inputs of the target
SP to excite a fault and propagate the error to the outputs.

Considering a fault-free DDWC structure and an SM
composed of n SPs, the SM in principle cannot detect
permanent faults in the SPs. Hence, fault detection capabilities
are zero. Using the DDWC mechanism, the fault detection
capabilities in the system increase. This increase can be
estimated by resorting to the relation between the fault
observability and the required time to detect a fault. The fault
observability (Ob) [21] in one SP can be defined as:

 ()

 ()

Where Np and Nnp are the numbers of input patterns that
propagate and do not propagate a fault effect to the output,

respectively, and P=Np+Nnp is the number of patterns, assuming
that the average observability remains constant across the time.
In the DDWC mechanism, the patterns are mainly generated by
the execution of instructions and data operands.

The time for detecting a fault (tt) is composed of a set of
time intervals needed to perform the fault detection in an SP. If
a fault arises in the system at time t=0, the fault is excited by a
pattern after a time t1. Then, it is propagated to the output after a
time t2, and finally, it is detected after a time t3. Thus, it is
possible to estimate the time for fault detection (ETFD) in a
continuous fault detection structure case as:

 ()
 ()

 ()

In the expression (2), short times are desirable to perform
fault detection. However, the configuration of the DDWC
strategy directly depends on the time interval employed to
switch among SP cores t4 and the time required to execute the
configuration instruction t5. In this way, it is possible to express
the time for fault detection (ETFD) in the SPs using the DDWC
mechanisms as:

 ()
 () (∑ ()

)

 ()

Where n is the number of SPs in the SM, and time t5 is
proportional to the number of instructions between two
sequential configuration instructions.

Figure 5 represents the worst-case scenario for fault
detection in an SP, assuming that the switching among the
available SPs is performed every 100 instructions in the
program code. The expression is calculated using a clock period
of 10 ns, an average time for instruction execution of 20 clock
cycles, and times for pattern injection, fault propagation and
fault detection at a fixed rate of 3 clock cycles. It is assumed
that the fault can be propagated to the output by one of the test
patterns.

Fig 5. The maximum value of ETFD for multiple frequencies of the DDWC_i
instruction (100, 200, 300, and 400 instructions) in the application code and
under multiple SPs configurations in the SM

The expression in (3) can be used to find an optimal trade-

off between switching frequency for the DDWC mechanism
among the SPs and the performance degradation in the
application by the insertion of DDWC_i instructions.

E. Comparison with other fault detection strategies

A comparison of the proposed mechanism with classical
fault detection methods, such as lock-step and Build-In Self-
Test (BIST), shows that the lock-step structure requires the
duplication of each structure in the design. Thus, the hardware
overhead overcomes 100%, considering the additional
structures. On the other hand, a BIST mechanism can be an
effective solution for the end-of-production test. Nevertheless,
the same approach could be challenging to use to the SPs during
the operational phase of a GPGPU. These difficulties are based
on the required execution time to perform fault detection.

Moreover, the required structures for implementing such a
solution may be equal to or greater than the DDWC strategy in
terms of hardware overhead. Other fault detection solutions
based on Software-Based Self-Test (SBST) mechanisms add
zero cost to the system. However, the time required performing
the test pattern injection, and fault detection are higher in
comparison with the time in the DDWC mechanism. Finally,
the DDWC could be combined with an SBST technique to
increase the fault observability.

The previous analysis allows us to claim that the DDWC
mechanism is more convenient for in-field fault detection than
lock-step and BIST by the lower cost in terms of hardware.
Moreover, the proposed mechanism may coexist with other
structures to detect, mitigate, or repair faults in the SP cores.

VI. CONCLUSIONS

A dynamic fault detection strategy (DDWC) was described

and evaluated, targeting the in-field detection of permanent

faults in the execution units (SPs) in SMs of a GPGPU. DDWC

is based on the duplication with comparison strategy and

exploits the structural regularity of the SP cores. The SP core to

be monitored can be dynamically selected, resorting to one ad

hoc instruction. Thanks to its flexibility, low hardware

overhead, and moderate performance degradation, this strategy

could be effectively employed to increase the reliability of

GPGPUs when they are adopted in safety-critical applications.

As future works, we plan to develop and evaluate dynamic

fault detection mechanisms for other critical modules in the

GPGPU, such as the scheduling controllers.

ACKNOWLEDGMENTS

The European Commission has partially supported this

work through the Horizon 2020 RESCUE-ETN project under

grant 722325.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware

implementation for visual perception system in autonomous vehicle: A

survey," Integration, vol. 59, pp. 148-156, 2017.
[2] S. Hamdioui, et al., "Reliability challenges of real-time systems in

forthcoming technology nodes," in 2013 Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2013, pp. 129-134.
[3] S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, "High-Integrity

GPU Designs for Critical Real-Time Automotive Systems," in 2019

Design, Automation & Test in Europe Conference & Exhibition (DATE),
2019, pp. 824-829.

[4] NVIDIA. (2016). NVIDIA Announces World’s First Functionally SafeAI

Self-Driving Platform. Available: https://nvidianews.nvidia.com/news/
nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform.

[5] M. Gonçalves, M. Saquetti, F. Kastensmidt, and J. R. Azambuja, "A

low-level software-based fault tolerance approach to detect SEUs in
GPUs' register files," Microelectronics Reliability, vol. 76-77, pp. 665-

669, 2017.

[6] M. Gonçalves, M. Saquetti, and J. R. Azambuja, "Evaluating the
reliability of a GPU pipeline to SEU and the impacts of software-based

and hardware-based fault tolerance techniques," Microelectronics

Reliability, vol. 88, pp. 931-935, 2018.
[7] M. Goncalves, F. Fernandes, I. Lamb, P. Rech, and J. R. Azambuja,

"Selective Fault Tolerance for Register Files of Graphics Processing

Units," IEEE Transactions on Nuclear Science, 2019.
[8] D. A. G. Oliveira, et al., "Modern GPUs Radiation Sensitivity

Evaluation and Mitigation Through Duplication With Comparison,"

IEEE Transactions on Nuclear Science, vol. 61, pp. 3115-3122, 2014.
[9] D. Sabena, M. Sonza Reorda, L. Sterpone, P. Rech, and L. Carro, "On

the evaluation of soft-errors detection techniques for GPGPUs," in 2013
8th IEEE Design and Test Symposium, 2013, pp. 1-6.

[10] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler,

"Optimizing software-directed instruction replication for GPU error
detection," in International Conference for High Performance

Computing, Networking, Storage, and Analysis, Dallas, Texas, 2018.

[11] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K.
Skadron, "Real-world design and evaluation of compiler-managed GPU

redundant multithreading," ACM SIGARCH Computer Architecture

News, vol. 42, pp. 73-84, 2014.
[12] J. W. Sheaffer, D. P. Luebke, and K. Skadron, "A hardware redundancy

and recovery mechanism for reliable scientific computation on graphics

processors," in Graphics Hardware, 2007, pp. 55-64.
[13] H. Jeon and M. Annavaram, "Warped-DMR: Light-weight Error

Detection for GPGPU," in 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 2012, pp. 37-47.
[14] J. R. Nickolls, "EFECT TOLERANT REDUNDANCY," NVIDIA

Corporation, 2009.

[15] S. Ainsworth and T. M. Jones, "Parallel Error Detection Using
Heterogeneous Cores," in 2018 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2018, pp.

338-349.
[16] J. E. R. Condia, P. Narducci, M. Sonza Reorda, and L. Sterpone, "A

dynamic reconfiguration mechanism to increase the reliability of

GPGPUs," in VTS 2020: VLSI Test Symposium, San Diego, USA, 2020.
[17] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for

FPGAs," in 2013 International Conference on Field-Programmable

Technology (FPT), 2013, pp. 230-237.
[18] B. Du, J. E. R. Condia, and M. Sonza Reorda, "An extended model to

support detailed GPGPU reliability analysis," in 14th IEEE International

Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS), 2019.

[19] J. Knudsen, "Nangate 45nm Open Cell Library," CDNLive, EMEA, 2008.

[20] J. E. R. Condia and M. Sonza Reorda, "Testing permanent faults in
pipeline registers of GPGPUs: A multi-kernel approach," in 2019 IEEE

25th International Symposium on On-Line Testing and Robust System

Design (IOLTS), 2019, pp. 97-102.
[21] S. Hurst, "VLSI testing and testability considerations: an overview,"

Microelectronics Journal, vol. 19, pp. 57-69, 1988.

