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Abstract—In the past, in most General-Purpose Graphic 

Processing Units (GPGPUs) application fields (e.g., multimedia 

and gaming), the reliability features were not so relevant. 

Nowadays, GPGPUs are used in new domains, such as the 

automotive one, where reliability plays a significant role. In this 

work, we describe a dynamic duplication with a comparison 

(DDWC) mechanism intended to harden the Scalar Processor (SP) 

units located in the Streaming multiprocessors (SM) of a GPGPU. 

The proposed mechanism targets the permanent faults that may 

arise inside the SPs. One additional SP unit is included in the 

system to compute redundantly the same operations of a selected 

SP. Results are compared, and possible failures detected. A 

custom reconfiguration instruction allows the dynamic selection of 

the target SP to be monitored. Experimental results show that the 

proposed mechanism introduces a limited area overhead while it 

provides a significant increase in the in-field fault detection 

capabilities of the GPGPU. Its flexibility allows selecting the best 

trade-off between fault detection latency and performance 

overhead.  

Keywords—Duplication with Comparison (DWC), Fault detection, 

General Purpose Graphics Processing Units (GPGPUs), Graphics 

Processors 

I. INTRODUCTION 

Graphic Processing Units (GPUs) were used in the past, 
mainly in commodity applications involving high-data intensive 
operations, such as in the gaming and multimedia sectors. 
Currently, GPUs have successfully extended their capabilities 
and are employed in more complex and demanding 
applications, evolving into General Purpose Graphic Processing 
Units (GPGPUs). These applications include High-Performance 
Computation (HPC) and some in the safety-critical domain [1]. 
Modern GPGPUs are designed employing the latest technology 
scaling approaches to achieve power and performance 
requirements. However, some studies proved that these 
technologies could be quite prone to faults during the operative 
life, thus showing reduced long-term reliability [2]. 

Designers face reliability challenges in GPGPUs by adding 
special structures, such as Error Correcting-Codes (ECCs), to 
reduce the sensitivity to faults of some structures, such as 
memories, register files, and communication interfaces. 
Nevertheless, other internal modules, such as the execution 
cores and the task controllers, cannot be easily protected with an 
acceptable cost in terms of design and manufacturing. Thus, 
these units represent a challenge when dealing with their 
protection [3]. Moreover, traditional solutions to extend the 
reliability of control and execution units (EUs), such as dual-
core lock-step and design diversity [4], increase the hardware 
overhead and the complexity of the device exponentially. 

Traditional structures to increase the in-field reliability in 
processor-based systems, such as Duplication with Comparison 
(DWC), Double, and Triple Modular Redundancy (DMR, 
TMR), are mainly neglected in GPGPU products due to 
economic and technical reasons. Nevertheless, these solutions 
may be used in applications where safety is a major constraint. 
In these fields, the additional cost in terms of design and 
production can be reasonably accepted due to the reliability 
benefits. To the best of our knowledge, there are no hardware 
solutions for in-field operation used in real GPGPU cores based 
on the previous techniques. 

Multiple solutions using DWC as an error detection strategy 
have been proposed in the literature for GPGPU devices and are 
based on two main approaches: software and hardware. In both 
cases, the main target is to provide the detection or correction of 
faults. However, hardware approaches may be complex to 
develop and implement, but these are more efficient than 
software approaches. 

On the one hand, software DWC mechanisms exploit time 
redundancy by repeatedly executing  instructions [5-7], 
functions [8], or application tasks  [8-10]. At the end, results are 
compared to detect faults. These mechanisms introduce zero 
hardware overhead but cause significant performance 
degradation, additional switching activity, and also a moderate 
overhead in the memory and similar resources. Similarly, in 
[11], the authors proposed an automatic multithreading 
environment to modify the program of a GPGPU and duplicate 
the operations. This solution may use spatial and time 
redundancy, but performance degradation directly depends on 
the behavior of the application. 

On the other hand, hardware solutions exploit spatial 
redundancy and consist of adding special structures in the 
design to increase the reliability by allocating operations into 
redundant and independent modules. Results are then compared 
to detect possible faults. The main advantage of these 
mechanisms is a reduced performance degradation. However, 
the hardware overhead directly depends on the redundant 
modules to be added and modified. In [12], a mechanism 
duplicates the fragment cores in a Shader module of a GPU. 
Special structures are added in the input and output modules to 
process the data operands and the interconnections. 
Nevertheless, the mechanism was only evaluated resorting to a 
structural simulator; hence, the hardware overhead and the 
resulting performance degradation were not quantitatively 
assessed. In [13], the warped-Dual Modular Redundancy was 
proposed, which uses the free execution cores inside the 
Streaming Multiprocessor (SM) to provide a redundant 
mechanism and detect errors. The inactive threads are 



 

configured using a Register Forwarding Unit (RFU), which can 
be configured either as EUs or as comparators. The RFU uses 
the original structures to monitor and verify the cores using 
timing redundancy. Although this method was evaluated in a 
simulator, results showed that the associated hardware overhead 
might be significant, considering the RFU existing in each core. 
In [14], additional execution units are included in the design of 
a GPGPU to replace faulty units at the end of the manufacturing 
phase. In [15], the authors propose and addition of 
heterogeneous cores to detect faults in a multi-core processor 
when executing out-of-order operations. Finally, another 
approach includes parallel execution cores aiming to repair 
faulty units during the in-field operation of a GPGPU [16]. The 
repairing method may use SBST, DfT, or a combination of both 
as a fault detection mechanism to identify a defective module. 

In this work, we propose a dynamic redundancy mechanism 
targeting the detection of permanent stuck-at faults in the EUs 
or SPs of a GPGPU. The proposed solution is called Dynamic 
Duplication with Comparison (DDWC), and it is based on the 
adaptation of the classical DWC mechanism to protect 
structures in a GPGPU. This solution is intended to introduce 
small or null performance overhead and minimal modifications 
to the existing structures. 

More in detail, the DDWC mechanism is based on the 
addition of one spare EU module that performs the same 
operations as one of the original ones and also checks the 
coherence of the results. A custom instruction (DDWC_i) is 
introduced, which identifies the EU modules to be monitored. 
This solution combines the flexibility provided by the software 
to identify the target module, combined with the low-
performance degradation and spatial redundancy obtained by 
the hardware solutions, thus providing an effective fault 
detection mechanism. This technique can be employed for the 
in-field test by slightly modifying the application code by just 
adding the new DDWC_i instruction at specified locations, so 
apart from the DDWC_i instructions, the DDWC mechanism is 
entirely transparent to the programmer. Moreover, the designer 
can choose a suitable trade-off between fault detection latency 
and performance overhead by selecting the frequency of 
execution of the DDWC_i instruction. 

The DDWC solution was implemented and evaluated, 
resorting to an enhanced version of the FlexGrip GPGPU 
model, which owns the same micro-architecture of some 
NVIDIA devices. Results proved that the DDWC strategy 
increases the fault detection capabilities of the system with a 
limited cost in terms of hardware and performance overhead. 
Moreover, since the selection of the SP core to be monitored is 
made in software by an ad hoc instruction, we can select the 
best frequency for its activation, trading-off fault detection 
latency, and performance degradation. 

The paper is organized as follows. Firstly, section II 
introduces the basic overview of the enhanced open-source 
GPGPU model. Section III describes the proposed DDWC fault 
detection mechanism. Then, section IV outlines its 
implementation in the FlexGrip model. Finally, section V 
reports the gathered experimental results and estimates the 
detectability enhancement provided by the strategy. Section VI 
draws some conclusions and highlights future works. 

II. THE FLEXGRIP GPGPU MODEL 

FlexGrip is an open-source soft-GPGPU model described in 
VHDL and aimed initially to be synthesized in Xilinx FGPA 
platforms [17]. The University of Massachusetts developed this 
GPGPU model, and it implements the G80 GPGPU micro-
architecture by NVIDIA. Moreover, it is compatible with the 

standard programming environment for GPGPUs (CUDA in the 
SM_1.0 compatibility). This special-purpose processor requires 
the interaction with a Host processor to start the execution of an 
application program. This Host controls and monitors the 
GPGPU operation. 

We improved the original version of the FlexGrip model to 
remove or correct initial limitations related to compiler 
restrictions, structural bugs, and instruction format support. The 
enhanced GPGPU model now fully supports 28 instructions in 
64 formats. For this work, we employ this improved version of 
the model. Readers may refer to [18] for a full list of supported 
formats and instructions in FlexGrip and additional details of 
the performed modifications. 

The architecture of FlexGrip supports the SIMT (Single-
Instruction Multiple-Thread) paradigm. It exploits a custom SM 
core composed of five stages pipeline (Fetch, Decode, Read, 
Execution/Control-flow, and Write-back), as shown in Fig 1. 
The EUs or Scalar Processors (SPs) are only present in the 
Execution/Control-flow pipeline stage. The SM executes the 
same instruction (warp instruction) for a group of 32 threads. A 
warp can be defined as a group of 32 consecutive threads. 

Inside the SM, one warp scheduler controller manages the 
execution of instructions and controls the operation of threads. 
In the SIMT taxonomy, each warp instruction is fetched, 
decoded, and assigned for execution to an independent SP in the 
SM. The Read and Write-back stages load and store data 
operands from/to the Register File (RFs, or the shared, global, 
and constant memories. It is worth noting that FlexGrip can 
only process operations of integer type. The original design of 
the G80 architecture includes 8 SP cores in the SM. FlexGrip 
can configure the parallel EUs among 8, 16, and 32 SPs. 

The SPs are regular structures within the SM of a GPGPU 
and are composed of multiple sub-modules (Fig. 2). Each SP 
core executes all the signed and unsigned logic and arithmetic 
operations required by a thread task. A thread task can be 
defined as the sequence of operations to be executed by one of 
the threads in a parallel program.  

The input operands of an SP core are organized in data 
channels (SPCs). The SPCs are composed of 32 bit-size input 
data operands (SRC1, SRC2, and SRC3) and the predicate flags 
(4 bit-size). Each SP core has an independent and statically 
assigned SPC by a warp scheduler in the SM. 

In the Read stage, the input operands are loaded from 
memory and sent to each SPC. External control signals 
redundantly configure each SP core according to the instruction 
to be executed. The output data channel (SPDC) of each SP 
core is composed of the result data (DST) and the output 
predicate registers. These values are statically connected to the 
next pipeline stage. 

Fig 1. The general architecture of the SM in FlexGrip (adapted from [19]) 



 

 
 
 

 

 
 
 
 
 
 
Fig 2. A general scheme of the architecture of an SP core in FlexGrip 

 

III. PROPOSED FAULT DETECTION TECHNIQUE 

The proposed in-field fault detection strategy (DDWC) is 
based on a dynamic mechanism able to detect permanent faults 
in modules of processor-based systems or accelerators, such as a 
GPGPU. DDWC is an adaptation of the classical DWC 
structure and employs the concept of sphere of redundancy (Fig 
3), which is based on replicating one or more modules to 
increase the fault detection or to mitigate the fault effect in a 
system. 

The DDWC structure is mainly composed of an input 
selector module, a redundant module, which is a copy of the 
target module, an output selector module, and a comparator. 
Finally, one controller manages the input and output selectors to 
provide the data and feed the redundant and comparator 
modules with a selected option in the controller. The controller 
is dynamically programmed through a custom instruction that 
activates and selects the input data channel of one of the 
modules in the sphere of redundancy. The input and output 
selector modules are composed of crossbar or meta-crossbar 
structures. Some additional decoders and registers could be 
included in the DDWC structure. 

It should be noted that the sphere of redundancy can be 
applied at multiple levels of granularity in a system. However, 
the DDWC structure could be unfeasible to be applied to big 
modules, which might represent a considerable hardware 
overhead for a system, such as pipeline blocks in a processor or 
a GPGPU. Moreover, the non-regularity of some structure could 
limit the adaptation of the DDWC to keep low performance and 
hardware costs. It is worth noting that this work focuses on the 
fault detection mechanism, so error handling is out of the scope 
of this paper, and additional mechanisms might be required to 
perform the error handling tasks. 

A. Basic operation 

Once the DDWC module is active, the controller selects 

one input data channel, and all input operations are redundantly 

executed by both: the target module and the redundant. This 

comparison and fault detection structure is well-known and 

contributes to reducing the performance latency for fault 

detection. Then, the results of both modules (the target module 

and the redundant one) are compared. The fault detection is 

performed based on a direct comparison of results and output 

flags. A fault is detected if there is at least one mismatch in the 

results. The comparator generates an output error signal 

triggering the logic state that indicates the possible fault 

detection. 

B. Proposed Architecture for the SPs in a GPGPU 

The DDWC structure is intended to detect permanent faults 
during the in-field operation of the GPGPU. 

Initially, we explore multiple modules in the GPGPU to 
implement the DDWC strategy. Firstly, the entire Execute 
pipeline was considered as a target module in the sphere of 
redundancy. However, as commented before, the non-regularity 
of its internal structures limited the adaptation of the fault 
detection technique, so causing unacceptable hardware 

overhead in a GPGPU. Then, we considered the possibility of 
focusing on the internal structures in the SPs in the SM. In this 
case, each sub-module should be duplicated, reaching a similar 
overhead. On the other hand, by exploiting the regularity of the 
SPs, and using them as the main target of the sphere of 
redundancy, it is possible to duplicate these structures 
temporarily. A combination between the regularity of the SPs 
and the reconfiguration mechanism contributes to reducing the 
total overhead costs in the system. In the end, we propose the 
addition of only one SP, and a newly introduced custom 
instruction allows selecting a target SP with the comparison 
structure. Fig 4 summarizes a general scheme of the mechanism 
using SP cores as the main modules in the sphere of 
redundancy. 

The input switch collects all the SPCs and activates one of 
the data paths coming from the previous pipeline stage and 
feeds the redundant SP core. In contrast, the output switch 
collects all SPDCs for the active SPs, selects one among them, 
and feeds the comparator module. A switch controller is 
included to manage the channel selection in both switches 
(input and output). The signals decoded by the DDWC_i 
instruction are employed to reconfigure both switching 
structures. 

A redundant SP is placed in parallel to the existing SP 
modules, and the inputs are directly connected to the input 
switching selector. Similarly, the outputs of the redundant SP 
are connected to one of the inputs of the comparator module. 

The comparator module is a bit-wise comparator of the 
output results (SPDCs) coming from a target SP and the 
redundant SP. An output strobe flag is included as observability 
mechanism to inform the Host, or an exception handler in the 
GPGPU, about a possible fault found in one of the SPs. A 
mismatch in the results indicates a fault in the SP, hence 
triggering the output flag. 

Some additional combinational modules, such as decoding 
hardware and interconnections, are included in the DDWC 
mechanism. Similarly, a register retains the configuration of the 
DDWC structure after using the DDWC_i instruction. It is 
worth noting that the DDWC mechanism starts in a disable 
mode after a reset or switch-off event and should be activated 
with the DDWC_i instruction. The explicit selection of the 
target SP core using the DDWC_i instruction may affect the 
optimal fault detection performance of all elements in the 
sphere of redundancy. Moreover, input operations and the 
frequency of the custom instruction can also limit the number of 
patterns applied to each core to identify errors. Thus, the 
DDWC mechanism requires a balance between the selection of 
the target core and the insertion of the DDWC_i instruction in 
the application code to obtain the best fault detection 
performance. 

It is worth noting that other modules in the GPGPU, such as 

memories and control units, were not targeted and are out of the 

scope of the proposed DDWC solution. The use of the DDWC 

mechanism in these modules may introduce hardware overheads 
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Fig 3. A general scheme of the concept of sphere of redundancy applied to the 
DDWC strategy 



 

greater than 100%, considering the duplication of modules and 

the required additional structures, such as registers, 

comparators, and interconnections. 

IV. IMPLEMENTATION DETAILS 

The enhanced version of FlexGrip was used to implement 
and evaluate the fault detection capabilities of the proposed 
DDWC strategy experimentally. Three pipelines modules 
(Decode, Read, and Execution/Control-flow) were modified to 
include the DDWC structures. 

In the Decode stage, the DDWC_i instruction was 
implemented by carefully adding some combinational logic. 
The instruction set architecture (ISA) in FlexGrip (SASS) was 
analyzed, and the available operation code was selected for its 
description. The format of the DDWC_i instruction includes 5 
bits for SPC channel and SP selection, 2 bits to enable or 
disable the DDWC module, and 6 bits stating instruction type. 

In the Read stage, a bypass structure was included. This 
bypass is composed of registers and keeps the pipeline 
coherence during the execution of the instruction by managing 
the operands and configuration DDWC signals to be used in the 
Execution/Control-flow stage. 

The Execution/Control-flow stage was modified, adding a 
copy of an SP core (SPx), the input and output multiplexers 
(implementing the input and output selector switches), and a 
logic comparator (Fig 4). 

The two multiplexers are placed in the inputs and outputs of 
the SP core (SPx) to select the data channel from each thread 
(SPC (in) and SPDC).  

The comparator is built with XOR gates. The output 
multiplexer selects and feeds one of the inputs of the 
comparator with results in one SPDC coming from SP cores. 
The other input is connected to the outputs of the redundant 
core (SPx). An output flag in the comparator is propagated to 
the next stage and then used to indicate the Host that an error 
was detected. This flag is intended to activate an interrupt in the 
host and indicate the presence of a fault in the SP core. 

An additional controller, one decoder, and some registers 
were also included to configure both multiplexers. As 
previously mentioned, this configuration is based on the 
decoding signals from the DDWC_i instruction. 

The data-path interconnections for the input (SPC) and 
output (SPDC) data channels were duplicated to feed the 
multiplexer units. On the other hand, the control-path fields in 
SPC were not considered as these are shared among the SPs and 
SPx. The controller also propagates the configuration code to 
the Host. This code can be used to locate a faulty SP core in the 
SM by the Host. 

Under the inactive mode of the DDWC structure, both 
multiplexers are unconnected without feeding the SPx core and 
the comparator to avoid unnecessary switching activity in both 
modules, thus reducing the dynamic power during inactivity 
periods. It is worth noting that the selection of a sphere of 
redundancy targeting the SPs only for implementing the 
DDWC, contributed to avoiding any modification in the original 
memory hierarchy and the warp scheduling of the GPGPU. 

In principle, the code of any application requires a minor 
modification to use the DDWC mechanism for in-field 
detection. It is suggested to include the DDWC_i instruction at 
the beginning of the application code to reduce performance 
degradation. Similarly, the DDWC_i instruction can be placed 
in strategic locations in the code (i.e., before any logic-

arithmetic instruction) or in a periodical manner (after a given 
number of instructions). However, in both cases, the 
performance degradation for the application must be considered. 
In any case, during the in-field execution, the output flag signal 
in the comparator is directly assigned as a source of fault 
identification. 

It is worth noting that the DDWC structure is intended to be 
used during the in-field operation of the GPGPU. Once the 
DDWC structure is active, the redundant core should swap 
among the SPs of the SM. For this purpose, the program code is 
modified by adding some DDWC_i instructions. Depending on 
the application and on the selected frequency for the swap, the 
locations where the DDWC_i instructions are inserted can be 
suitably selected. A higher rate reduces the fault detection 
latency but increases the performance overhead stemming from 
the DDWC_i instruction addition. The method is flexible since 
it allows adopting the solution which best fits the target system 
specifications. 

V. EXPERIMENTAL RESULTS 

In the experiments, all possible SP core configurations (8, 
16, and 32 SP cores) of the FlexGrip model were considered. 
This model flexibility allows us to analyze the benefits of the 
proposed structures under multiple SP core configurations. 

The applications executed by the GPGPU with 8 and 16 SP 
core configurations employ the DDWC mechanism four times 
and twice per SP core, respectively. The explanation for this 
behavior is directly related to the thread management in the SM 
under these SP configurations. The warp controller, of an SM, 
configured with 8 or 16 SPs, distributes the thread-tasks into the 
available SPs. Thus, for an 8 SPs configuration, four thread-
tasks share the same SP. Similarly, for a 16 SPs configuration, 
the controller assigns two threads to each SP. Thus, for every 
configuration of the DDWC structure, the comparison, and 
possible fault detection are performed twice or four times with 
instructions belonging to the same warp. 

The experimental performance results were found resorting 
to a gate-level version of the modified FlexGrip model. The 
Synopsis toolchain (Design Vision) was used to estimate the 
hardware overhead and performance degradation. The NAND-
Open-cell library [19] was used for synthesis purposes.  

A. Hardware overhead 

Both GPGPU models (including the DDWC structure and 
the original one) were compared for all configurations of SP 
cores. Results in terms of size of cells are reported for the 
affected modules and the whole design in Table 1. Results do 
not include the cost of cells in memories and RFs in FlexGrip. 

Results show that the hardware overhead is relatively low. 
In the Decode stage module, this overhead represents only 3% 

and seems to be insignificant (≈0.1%) in the Read stage 

module. In contrast, in the Execution/Control-flow pipeline 
module, the overhead is inversely proportional to the number of 

Fig 4. A general scheme of the proposed structure for fault detection 



 

SPs in the SM. Hence, a lower number of SPs introduce a 
higher overhead cost. However, this overhead seems to be 

moderate (≈3.5-10%). Analyzing the overhead cost in the 

whole design, this is lower than 3% for all SPs configurations. 
These results support the initial intention of limiting the impact 
in the hardware overhead by the DDWC structures.   

The above results allow us to claim that the proposed 
DDWC mechanism represents a practical solution as a fault 
detection strategy without including a critical impact in the area 
of the GPGPU. 

TABLE 1. HARDWARE AND PERFORMANCE OVERHEAD OF THE DDWC 

MECHANISM FOR MULTIPLE CONFIGURATIONS IN THE GPGPU MODEL 

Modules 
SP 

cores 

Number of Cells 
Area 

overhead 

(%) 

Time delay in the 

critical path (pS) Performance 

degradation 

(%) FlexGrip 

FlexGrip 

+ 

DDWC 

FlexGrip 

FlexGrip 

+ 

DDWC 

Decode 
8/16/ 

32 
1,229 1,266 3.04 1.72 1.77 1.16 

Read 
8/16/ 

32 
142,397 142,545 0.10 3.65 3.65 0 

Execute 

8 60,309 65,959 9.37 6.51 7 7.52 

16 113,293 118,739 4.81 6.69 7.68 14.79 

32 219,261 226,822 3.45 7.52 8.54 13.56 

All 

8 229,515 235,964 2.81 11.88 12.42 4.54 

16 280,132 286,360 2.22 12.06 13.1 8.62 

32 386,100 394,516 2.18 12.89 13.96 8.3 

B. Performance overhead 

The performance overhead is evaluated at the module and 
design levels. Initially, the critical path delay was determined 
for each modified module and the whole design. It is worth 
noting that in both cases, the synthesis and analysis were 
performed without adding constraints or optimizations in the 
synthesis tool. A clock period of 10 ns was selected for the 
synthesis. The results are presented in Table 1.  

By looking at the results, it can be noted that the additional 
structures in the Decode module added a small percentage of 
performance degradation (1.16%). In the Read module, a bypass 
register was added. Nevertheless, this does not introduce any 
overhead. This behavior can be explained by observing that the 
bypass register was concatenated with existing structures in the 
module, thus guaranteeing the same functionality of the original 
structures. In contrast, the performance degradation in the 
Execution/Control-flow module seems to be directly affected by 
the number of SP cores. For a low number of SP cores, the 
critical delay path is increased by 7.52%. The configuration of 
16 SP cores seems to present the maximum percentage of 
performance overhead with 14.79%. In contrast, the overhead 
drops for the 32 SP cores. Although the total delay overhead is 
higher for 32 SPs, the delay overhead is lower. This behavior 
can be explained considering that added SPs are placed parallel 
in the design, thus adding a low timing overhead. However, the 
most representative timing effects are due to the added modules 
in the path. These modules are the input and output switches 
and the comparator. 

C. Fault detection capabilities 

A set of benchmarks with different workloads was 
employed to validate and evaluate the detection capabilities of 
the DDWC strategy experimentally. The fault injection 
campaigns were performed in the FlexGrip model with and 
without the DDWC mechanism and considering single stuck-at 
faults at the RT level. On each fault campaign, the GPGPU 
model was configured with 8 SPs and 32 threads per block. 
Each benchmark was adapted to include the DDWC_i 
instruction activating the DDWC structure. Gathered results 
were combined to mimic the long-term operation of the GPGPU 
with the DDWC mechanism rotating among the SPs. 

The fault injection environment is based on the ModelSim 
framework, and the injection methodology we used is the same 
introduced in [5, 20]. Further details regarding the descriptions 
and configurations of the used benchmarks can be found in [18]. 
The output flag from the comparator was included as an 
observability mechanism to detect faults in the simulation 
environment. 

Results from the experiments showed a 35% average 
increment in fault detection capabilities. The final Fault 
Coverage that can be achieved on each SP resorting to the 
proposed method strongly depends on the application. 
Moreover, it should be considered that the DDWC strategy 
requires the explicit selection of a target SP core to perform 
fault detection. Thus, a balance between the frequency of the SP 
switching and the application features is required to obtain 
optimal in-field fault detection. 

D. Estimation of the fault detection time 

The proposed DDWC strategy increases the fault detection 
capabilities concerning faults in the target structures. However, 
as the DDWC structure is intended to select the SP to be 
monitored during in-field execution dynamically, the overall 
fault detection capabilities of the DDWC strategy depends on 
several parameters, such as the switching and detection time, 
and the detection capabilities of the test patterns. A test pattern 
is one or a sequence of values applied to the inputs of the target 
SP to excite a fault and propagate the error to the outputs. 

Considering a fault-free DDWC structure and an SM 
composed of n SPs, the SM in principle cannot detect 
permanent faults in the SPs. Hence, fault detection capabilities 
are zero. Using the DDWC mechanism, the fault detection 
capabilities in the system increase. This increase can be 
estimated by resorting to the relation between the fault 
observability and the required time to detect a fault. The fault 
observability (Ob) [21] in one SP can be defined as: 

    ( )  
  

      
                                                       ( ) 

 

Where Np and Nnp are the numbers of input patterns that 
propagate and do not propagate a fault effect to the output, 

respectively, and P=Np+Nnp is the number of patterns, assuming 
that the average observability remains constant across the time. 
In the DDWC mechanism, the patterns are mainly generated by 
the execution of instructions and data operands. 

The time for detecting a fault (tt) is composed of a set of 
time intervals needed to perform the fault detection in an SP. If 
a fault arises in the system at time t=0, the fault is excited by a 
pattern after a time t1. Then, it is propagated to the output after a 
time t2, and finally, it is detected after a time t3. Thus, it is 
possible to estimate the time for fault detection (ETFD) in a 
continuous fault detection structure case as: 

       (   )  
 (      )     

  
                             ( ) 

In the expression (2), short times are desirable to perform 
fault detection. However, the configuration of the DDWC 
strategy directly depends on the time interval employed to 
switch among SP cores t4 and the time required to execute the 
configuration instruction t5. In this way, it is possible to express 
the time for fault detection (ETFD) in the SPs using the DDWC 
mechanisms as: 

         (    )  
 (      )  (   ∑ (     )

 
   ) 

  
                 ( ) 

Where n is the number of SPs in the SM, and time t5 is 
proportional to the number of instructions between two 
sequential configuration instructions. 



 

Figure 5 represents the worst-case scenario for fault 
detection in an SP, assuming that the switching among the 
available SPs is performed every 100 instructions in the 
program code. The expression is calculated using a clock period 
of 10 ns, an average time for instruction execution of 20 clock 
cycles, and times for pattern injection, fault propagation and 
fault detection at a fixed rate of 3 clock cycles. It is assumed 
that the fault can be propagated to the output by one of the test 
patterns. 

 

Fig 5. The maximum value of ETFD for multiple frequencies of the DDWC_i 
instruction (100, 200, 300, and 400 instructions) in the application code and 
under multiple SPs configurations in the SM 

 
The expression in (3) can be used to find an optimal trade-

off between switching frequency for the DDWC mechanism 
among the SPs and the performance degradation in the 
application by the insertion of DDWC_i instructions. 

E. Comparison with other fault detection strategies 

A comparison of the proposed mechanism with classical 
fault detection methods, such as lock-step and Build-In Self-
Test (BIST), shows that the lock-step structure requires the 
duplication of each structure in the design. Thus, the hardware 
overhead overcomes 100%, considering the additional 
structures. On the other hand, a BIST mechanism can be an 
effective solution for the end-of-production test. Nevertheless, 
the same approach could be challenging to use to the SPs during 
the operational phase of a GPGPU. These difficulties are based 
on the required execution time to perform fault detection. 

Moreover, the required structures for implementing such a 
solution may be equal to or greater than the DDWC strategy in 
terms of hardware overhead. Other fault detection solutions 
based on Software-Based Self-Test (SBST) mechanisms add 
zero cost to the system. However, the time required performing 
the test pattern injection, and fault detection are higher in 
comparison with the time in the DDWC mechanism. Finally, 
the DDWC could be combined with an SBST technique to 
increase the fault observability. 

The previous analysis allows us to claim that the DDWC 
mechanism is more convenient for in-field fault detection than 
lock-step and BIST by the lower cost in terms of hardware. 
Moreover, the proposed mechanism may coexist with other 
structures to detect, mitigate, or repair faults in the SP cores. 

VI. CONCLUSIONS 

A dynamic fault detection strategy (DDWC) was described 

and evaluated, targeting the in-field detection of permanent 

faults in the execution units (SPs) in SMs of a GPGPU. DDWC 

is based on the duplication with comparison strategy and 

exploits the structural regularity of the SP cores. The SP core to 

be monitored can be dynamically selected, resorting to one ad 

hoc instruction. Thanks to its flexibility, low hardware 

overhead, and moderate performance degradation, this strategy 

could be effectively employed to increase the reliability of 

GPGPUs when they are adopted in safety-critical applications. 

As future works, we plan to develop and evaluate dynamic 

fault detection mechanisms for other critical modules in the 

GPGPU, such as the scheduling controllers. 
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