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Abstract1— General Purpose Graphic Processing Units (GPGPUs) 

are effective solutions for high-demanding data processing 

applications. Recently, they started to be used even in safety-critical 

applications, such as autonomous car driving systems. GPGPUs are 

implemented using the latest semiconductor technologies, which are 

more prone to faults arising during the lifetime operation. However, 

until now fault mitigation solutions were not extensively included in 

GPGPUs, due to the limited reliability requirements of the 

applications they were originally intended for (e.g., gaming or 

multimedia). This work proposes a dynamically configurable self-

repairing mechanism aimed at mitigating the impact of permanent 

faults in the Scalar Processor (SP) cores in GPGPUs. The 

mechanism is based on spare modules that can be used to replace 

faulty SPs when a fault is detected. A configuration instruction 

allows dynamically controlling in software the selection of the set of 

active SPs in the SM. The method is extremely flexible since it does 

not require any change in the application software. Experimental 

results show that the solution introduces a moderate area overhead 

while allowing continue working even in the case of any permanent 

faults affecting the SPs. 

Keywords— Fault mitigation, Fault tolerance, General Purpose 

Graphics Processing Units (GPGPUs), Graphics Processors. 

I. INTRODUCTION 

In the last two decades, General Purpose Graphic Processing 
Units (GPGPUs) have become effective solutions mainly 
employed in data-intensive commercial applications, such as 
multimedia, multi-signal analysis and high-performance 
computing (HPC), thanks to their highly parallel architecture. 
Actually, this technology is a promising solution in many 
computationally-intensive applications requiring fast and real-
time signal processing. 

In the automotive field, GPGPUs are already commonly 
adopted in sensor-fusion systems and Advanced Driver-
Assistance Systems (ADAS)[1]. These devices are designed for 
high-performance requirements and low power consumption. 
Thus, it is common to employ for their manufacturing the latest 
technology scaling approaches. Nevertheless, it is well-known 
that these technologies are more prone to suffer from faults during 
both production and lifetime operation, raising some concerns in 
terms of reliability [2]. More in detail, the new devices may suffer 
from critical effects, such as wear-out, causing the dropping in 
long-term reliability of the device, and aging, increasing the 
number of permanent faults in the device. In fact, these 
technologies introduce new reliability challenges in the long-term, 
where traditional end-of-production test approaches are not 
enough [3]. 

                                                           
1  This work has been partially supported by the European Commission 

through the Horizon 2020 RESCUE-ETN project under grant 722325. 

Most commercial GPGPUs include fault mitigation 
mechanisms for memories based on Error Correcting Codes 
(ECCs). In most industrial applications, these ECCs provide the 
required reliability. In the worst case, when the GPGPU stops 
working, it may be replaced. 

A different scenario exists in the automotive industry. For this 
kind of functional safety applications, the effects of a fault may 
cause unacceptable operational failures. Thus, GPGPUs may 
require complementary fault mitigation solutions to be applied 
during real-time operation. 

Traditional solutions to increase the reliability of digital 
design are based on hardware, software, and hybrid approaches. 
The hardware mechanisms are considered as feasible solutions in 
applications with strong requirements in terms of functional 
safety and reliability, such as the automotive one. In this case, an 
additional cost can be justified by the improved features and 
capabilities. Hardware solutions include Duplication with 
Comparison (DWC), Double and Triple Modular Redundancy 
(DMR, TMR), ECC and the hardening of selective logic gates [4]. 
The adoption of these solutions requires a careful evaluation of 
the involved area and power consumption overhead. Moreover, 
some of these techniques are mainly intended to mitigate the 
effects of transient faults in a system. In contrast, mitigation of 
permanent faults requires strategies, such as Built-In Self-Repair 
(BISR), replacing a faulty block with a spare one. 

In BISR, the granularity of the block depends on the target 
module, and the complexity and criticality of the device [5]. In 
the past, BISR has been successfully applied in the memory 
blocks of processor-based systems by adding spare rows, 
columns, and additional controller structures to correct faults 
during the production phase and also during in-field execution [6, 
7]. Other works [8-10] targeted data-path units, such as the 
register file, and some internal components of the execution units 
(EUs)[11]. Similarly, some works proposed reconfiguration 
solutions targeting computational blocks in GPGPUs [12] or other 
modules in the GPGPU, such as the memories [13], and 
functional units [14], or combinations of both aligning the system 
to the specific workload requirements [2, 15]. In [16], the author 
proposes selective hardware redundancy to correct defective 
blocks during the production stage. This method is intended to 
increase the production yield during manufacturing. 

Other works introduced functional tests [17, 18], fault 
detection [19-22], and mitigation [23-25] strategies only based on 
software mechanisms. These solutions are effective in detecting 
most faults and tolerating a high percentage of them. Moreover, 
the added area overhead is zero. Nevertheless, their cost in terms 
of performance degradation and memory overhead may be 
relevant due to these solutions are implemented by instrumenting 
the application code with custom functions. Similarly, in [26], the 



 

authors proposed a software-based redundant multithreading 
mechanism multiplying the threads to be executed. However, the 
performance overhead is directly dependent on the workload and 
the behavior of the application. Moreover, it is required a program 
translation and recompilation, thus limiting the in-field operation 
for embedded systems. Considering the previous works, the 
combination of software mechanisms and additional hardware 
modules in a hybrid structure to achieve the same results may be 
attractive. 

In the present work, we propose a BISR strategy mainly 
aiming at addressing problems related to permanent faults effects, 
during the in-field operation, in the EUs (or Scalar Processor (SP) 
cores) inside the Streaming Multiprocessor (SM) of a GPGPU. 
This BISR strategy leverages on the high regularity of the SPs in 
the GPGPU architecture. We leverage the techniques recently 
described in [17], which allow the detection of permanent faults 
in the SP cores of a GPGPU resorting to software self-test 
procedures. 

The basic idea behind our work lies in introducing a given 
number of Spare SP (SSP) cores, which may substitute any faulty 
SP as soon as a permanent fault affecting it is detected. In our 
proposal, the reconfiguration can be activated via software with 
an additional instruction (Config_SPs), which has been purposely 
introduced in the GPGPU Instruction Set. Moreover, this 
instruction is compatible with the original programming language 
of the GPGPU. Apart from the execution of Config_SPs 
instruction, the mechanism is completely transparent to the 
programmer. The method only allows tolerating faults affecting 
SP cores, which correspond to a significant fraction of the total 
SM area. 

The adapted BISR mechanism is intended to add as minimal 
as possible structural changes into the existing hardware of the 
GPGPU, and thus on its performance. Finally, the proposed 
solution does not require any change in the application code. The 
proposed BISR mechanism (together with the related test) can be 
activated during power-on or at reset when timing constraints for 
fault detection and hardware reconfiguration are not so relevant.  

The proposed BISR solution has been implemented and 
evaluated resorting to an extended version of the FlexGrip model, 
which represents a simplified version of the NVIDIA GPU 
architecture. Extensive experimental results showing its cost and 
effectiveness have been gathered referring to that model. 

Although the usage of spare units is a well-known solution in 
dependable architectures, to the best of our knowledge this is the 
first work proposing its adoption at the SP core level in a 
GPGPU, and exploring in a comprehensive way the costs/benefits 
of its integration in a hardware model representing a real GPGPU. 

The paper is organized as follows. Section II provides an 
overview of the open-source GPGPU model employed for our 
work. Section III describes the proposed fault mitigation method, 
as well as a summary of the software test mechanisms which can 
be used to detect faults in the SP cores and how they can be 
integrated in the proposed solution. Section IV describes the 
implementation of the proposed method in the extended FlexGrip 
model. Section V reports the experimental results and analysis, 
and Section VI draws some conclusions. 

II. THE FLEXGRIP GPGPU MODEL 

FlexGrip is an open-source GPGPU model fully described in 
VHDL. This model was initially developed by the University of 
Massachusetts and optimized for Xilinx FPGAs [27]. FlexGrip 
implements the Nvidia G80 micro-architecture, and it is also 
compatible with the CUDA programming environment under 
SM_1.0 compatibility. 

The original FlexGrip version was substantially improved to 
remove several functional limitations related to compiler 
restrictions, structural bugs, and instruction format support. 
Additional detail can be found in [28]. The improved FlexGrip 
model fully supports 27 instructions in 64 formats. 

The model accepts a set of configuration parameters, such as 
the kernel parameters, including the Grid dimension, Block 
dimension, Blocks per core, number of registers per thread, and 
the number of blocks per SM core. Similarly, for simulation 
purposes, the data memory (global) and the benchmark 
instructions should be specified for the model. 

The internal architecture of FlexGrip is based on the SIMT 
(Single-Instruction Multiple-Thread) paradigm and exploits a 
custom SM core with a five stages pipeline (Fetch, Decode, Read, 
Execution/Control-flow and Write-back), as shown in Fig. 1. This 
special-purpose parallel processor executes the same instruction 
(warp instruction) for a set of threads. A warp is defined as a 
group of 32 threads. Moreover, the SM employs a warp scheduler 
controller (WSC) for thread management. In the SIMT paradigm, 
one warp instruction is fetched, decoded, and distributed to be 
processed on an independent SP within the SM. The Read and 
Write-back stages load and store data operands from/to Register 
Files, shared, global or constant memories. Fig. 1 shows a scheme 
of the GPGPU detailing the interconnections affecting the SPs. 
These input and output interconnections are static for each SP and 
can be divided into data-path and control-path ones. 

Every SP has three input data operands of 32 bits (SRC1, 

SRC2, and SRC3), and predicate flags (4 bit-size) forming a data 

channel. SRC1, SRC2, and SRC3 are selected depending on the 

instruction type and are loaded during the Read stage. Moreover, 

some control signals select and configure the SP during 

execution. As output, the SP produces the result (DST) signals 

and the changes in the predicate flags. The storing location for 

DRT is determined in the Write-back stage. The input and output 

data channels are independent for each SP. In contrast, the 

control-path connections are shared among all SPs. 
 

 
 
 
 

 
 

Fig  2. A general scheme of the internal architecture of the integer SP core  
 

The SPs process signed and unsigned integer operands and 
include hardware modules for addition/subtraction (ADD/SUB), 
multiplication (ML), integer conversion (ICON), comparison 
(COMP), shifting (SHF), and logic unit (LU) with basic logical 
operations (AND, OR, XOR and NOT). As shown in Fig 2,  
FlexGrip was designed to support configurations composed of 8, 
16 and 32 SPs. 

DST 

Data Operands (SRC1, SRC2, SRC3) Control Lines 
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Fig.  1. A general scheme of the SM in FlexGrip detailing the composition and 
interconnections of the SP in the execution/control-flow pipeline stage 

 



 

III. PROPOSED FAULT MITIGATION TECHNIQUE 

Given the complexity of a GPGPU, different mitigation 
methods should be used addressing the different composing parts. 
This work proposes a fault mitigation strategy targeting the SPs in 
the Execution/Control-flow stage of a GPGPU. This method aims 
at increasing the reliability of this stage by disabling an SP once it 
has been labeled as faulty due to a permanent fault, and 
substituting it with a Spare SP core (SSP). The solution is based 
on a hybrid approach.  

The hybrid approach combines some mechanism to detect 
permanent faults in the SPs, based for example, on Design for 
Testability (DfT) or Software-Based Self-Test (SBST) test 
programs. For instance, in [21] we showed that suitable test 
programs can detect a high percentage of permanent faults within 
a single module. Once a faulty SP has been identified, a re-
configuration process is launched. This process executes an ad-
hoc instruction, which replaces the faulty SP by a spare one. For 
the purpose of this paper, we do not focus on the fault detection 
and localization phases but focus on the hardware changes to be 
introduced to support the reconfiguration phase (see Fig 3). It is 
worth noting that in this work, we did not consider fault 
administration structures (FAS) to be activated after a device 
shut-down and recover a previous configuration state in the 
device. These FAS could be composed of flash memories and 
controllers to store the state of SPs and SSPs in the device. 

 

 
Fig 3. A general scheme of the detection, identification, and configuration 

approaches for fault mitigation 
 

A. Fault Mitigation Architecture 

The BISR architecture is based on the addition of a given 
number of SSP modules in parallel to the existing SPs. These 
SSPs are cold stand-by modules, thus reducing the power 
consumption during inactivity. Two switching modules are added 
to control the data-path signals in the existing SP and SSPs. The 
switching units are placed in the Execution/Control-flow stage of 
the GPGPU following the circular switching scheme, see Fig. 4. 
The switching units are based on meta-crossbar structures 
targeting the control of the data-path input and output 
interconnections in the SPs. A controller module is added to 
control SPs and SSPs in the system. Fig. 4 shows the general 
scheme of the configuration structure composed of n SP cores and 
m SSPs added and connected to the SM. It is worth noting that 
the number of input and output signals on each SPs is different. 
Thus, the size of the input and output switches may differ. 
Nevertheless, the same mechanism is employed to manage each 
SP core. 

In order to minimize the impact of the changes on the existing 
architecture, we preserved the original memory hierarchy and 
WSC modules. Thus, each input Thread Data Channel (ThDC) is 
kept at the input of the execution stage. 

The input switching unit includes, as outputs, the additional 
SP-data channels (SPDCs) and also connects them to the SPs and 
SSPs. In this way, each input ThDC is connected with one SPDC 
in the configurable scheme. The output SPDCs, coming from the 
SPs and SSPs, are connected with the output switch unit and the 
original output ThDC of the execute pipeline stage. 

The output switch reduces the total number of data-path 
channels in order to keep the same pipeline interconnections. In 
the adapted mechanism the input switch behaves as a data 

channel de-multiplexer. Similarly, the output switch acts as a data 
channel multiplexer. 

The placement of the two switching modules at the input and 
output of the SP cores contributes to maintaining the original 
memory hierarchy for each thread execution without relevant 
changes in the design. This is achieved considering that each 
ThDC does not include information related to the direct 
association of a ThDC to a specific SP core to perform operations. 
Thus, each thread process uses the original registers and memory 
locations, even when a spare core is active. Hence, the proposed 
solution is entirely transparent to the software, which must not be 
modified in any way. 

The solution we followed does not impact the WSC existing 
in the SM. The WSC traces the execution and the state of each 
thread in a warp, but it does not include information related to the 
SP core allocation, thus remaining without changes. 

The switch controller manages the configuration of both 
switching units using the same input control signals. The custom 
Config_SPs instruction generates the input control signals and 
activates the re-configuration of the SPs.  

More in detail, the instruction selects one SP and one SSP core 
and forces the GPGPU to substitute the former with the latter for 
all the following activities. In the current version, the selected 
configuration is not saved anywhere: hence a test and possible re-
configuration should be performed at each power-on or reset. The 
introduction of a small Non Volatile Memory could allow storing 
the configuration. The format of the instruction is selected 
avoiding any overlapping with the original instruction set of the 
GPGPU. The instruction format is divided into two parts. The 
first part of the instruction picks and enables one of the available 
SSPs in the system. The second part manages the switching units 
by selecting the correct input and output data channels for each 
SP and SSP core. 

B. Fault detection, fault identification, and reconfiguration 

For the purpose of this paper, we assume that the test and 
possible reconfiguration steps are both performed during the 
device power-on (or reset), so the fault detection and location 
phases, as well as the reconfiguration one, can be executed 
without any strict time and memory constraints. 

For the sake of completeness, we summarize here how the 
fault detection and location phases could be implemented. More 
details about this solution can be found in [17]. However, other 
solutions (e.g., based on DfT) could be used as well. 

At the power-on, the BISR structure is inactive. Thus the SP 
cores are initially connected with each ThDC and the SSP cores 
remain in cold standby mode. Then, a set of test patterns is 
applied to the SPs. These patterns are based on the execution of 
well-defined operations to test in parallel each SP in the SM. 

The strategy employed is based on targeting all sub-modules 
in the SP cores and forcing them to execute suitable test patterns 

Detection phase 

Identification phase 

Reconfiguration phase 

End 

Start Up 

Fault location 

 
no yes 

Reconfiguration  

Test Execution 
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Fig  4. A general scheme of the adopted circular switching method for SP core 

configuration 



 

using instructions. The partial thread results are stored in the 
global memory for later analysis. As each thread executes the 
same instructions on different SP cores, a Signature-per-Thread 
(SpT) mechanism is used. Every SpT is compared with a set of 
previously stored results, and depending on the comparison each 
SP core can be labeled as faulty. This method allows for quick 
identification of the faulty SP. 

Assuming that n SPs and m SSPs are available, the test is then 
repeated after reconfiguring the GPGPU so that m SP cores are 
substituted with m available SSP cores. At the end of this phase, a 
full map of the faulty and fault-free cores is available. Based on 
this map, if at least n cores are available, the GPGPU can be 
reconfigured accordingly and can continue working correctly. 

For the sake of simplicity and to avoid reconfiguring the code, 
we assume that the minimum number of cumulative fault-free SPs 
and SSPs in the SM is n. This value is compared each time to 
verify when the SM cannot operate anymore. 

The above procedure assumes that the system does not include 
any Non Volatile Memory (NVM). Hence, at each power-on, a 
complete test is required to build the map of faulty / fault-free 
cores. If an NVM is available, this map can be stored there and 
used to reconfigure the GPGPU accordingly at each power-on. 
The map is then updated with a given frequency, depending on 
the reliability targets and scenario parameters. 

IV. IMPLEMENTATION 

The improved version of the FlexGrip model was used to 
experimentally evaluate the performance of the proposed BISR 
fault mitigation strategy. This mechanism is implemented in the 
Execution/Control-flow pipeline stage of the GPGPU. 
Nevertheless, additional changes were made in the Decode and 
Read stages by the introduction of the configuration instruction. 
The Decode stage was modified by adding new combinational 
logic to decode the added instruction. 

The Read stage includes a bypass register to keep the pipeline 
coherence during instruction execution and also to store the 
configuration information for the SP cores. This information is 
then decoded and employed in the Execution/Control-flow stage. 
In the Execution/Control-flow stage, the description of the 
switching structures is the same for the input and output switches:  
both switching units were designed using the same basic 
descriptions, i.e., multiplexer blocks and bypass register 
structures (see Fig. 5). Moreover, an automatic generation 
mechanism is described to interconnect the SPs and busses with 
the input and output of the multiplexers in the same stage. 
Additional decoding, concatenating and de-concatenating blocks 
control the activation of the module and reduce the number of 
multiplexers in the system. In this way, a big multiplexer module 
is attached to each additional SSP. Similarly, the output switch 
uses multiplexers to interconnect with the output ThDCs. The 
ThDCs are selectable depending on the number of SPs in 
FlexGrip (8, 16 or 32). 

Both switches (input and output) are activated under the same 
control condition, thus reusing the controller structure. This 
switching controller includes additional registers, to store the 
configuration information, and decoders to reduce the total 
number of control bits. This controller information is used to 
design the instruction op-code composed of eleven active bits 
fields. Moreover, these registers maintain the inactive SSPs and 
SPs in a cold standby mode, thus avoiding any unnecessary 
switching activity and reducing the power consumption. 

The management of the information flow (ThDCs and 
SPDCs), allows the usage of the same registers and memory 
locations employed by the SPs and the replacing SSPs, when 

active. In this way, the memory is virtualized from the mitigation 
modules. Instead of a restriction, this condition was exploited to 
add the BISR infrastructures in the GPGPU by employing the 
same memory hierarchy modules. The control-path lines on each 
SP core are not considered as inputs in the switches due to these 
interconnections are shared on all SP cores and can be directly 
assigned on the SSPs. 

The capabilities and flexibility of the FlexGrip model for 
selecting the number of SPs in the SM are also employed in the 
description of the mitigation modules. The same code style is 
used to describe the BISR modules. These structures are 
parametrically generated depending on the total number of SP and 
SSP cores aiming to reduce the hardware overhead in the system 
among configurations. 

V. EXPERIMENTAL RESULTS 

The FlexGrip model was configured in 3 modes (8, 16, and 32 
SPs), so it is possible to analyze the benefits and limitations of the 
proposed BISR strategy under different SPs in the device. We 
implemented the proposed strategy in the model and ran extensive 
simulations to validate its correctness. Moreover, we 
quantitatively evaluated the cost and the benefits of the strategy. 
For each considered case, the number of introduced SSPs ranged 
from 0 to 7. The analyses were performed resorting to a gate-level 
version of the FlexGrip model. The estimation of the hardware 
overhead was done resorting to the Design Vision tool by 
Synopsys using the ultra-compiler configuration. The NanGate 
Open-cell library was employed for the experiments [29].  

A. Hardware overhead 

The modules modified for implementing the BISR strategy 
are the Decode, Read, and Execution stages. These modules were 
modified at the RT level. Then, the GPGPU model was 
synthesized at gate level and compared in size with respect to the 
original design. Table 1 reports the hardware overhead results: for 
each configuration, we reported the required number of cells and 
the percent of area overhead, computed concerning the 
corresponding configuration in the original version of the model. 

The hardware overhead introduced by the BISR strategy can 
be split into two parts: from one side, there is the cost to 
implement the instruction, the switching modules, and the 
switching controller. The “0 SSPs” configuration is used to 
quantify the hardware cost in the BISR structure. The hardware 
overhead of these structures represents a low percentage of the 
whole hardware: for all SP core configurations, the hardware cost 
is in the range from 0.8% to 1.7%. From the other side, there is 
the cost for the SSPs, which linearly grows with their number and 
becomes largely dominant when the SSPs increase. In fact, the 
addition of one SSP core (6,623 cells) introduces hardware 
overhead greater than 3% in all SP configurations. Clearly, the 
hardware overhead rate grows with more SSPs and is higher 
when the SPs are lower. The optimum choice of both parameters 
depends on the design requirements, e.g., connected to the 
computation required by the application, by the probability of 

 
Fig. 5.  A general scheme of the implemented structure in the FlexGrip model 



 

faults (given by the operating environment and by the 
semiconductor technology), by the target reliability and by the 
duration of the mission. In any case, it is worth noting that the 
hardware overhead remains below 20% for all the considered 
GPGPU configurations. 

The last two columns in Table 1 report some figures allowing 

the evaluation of the relative size of the SPs with respect to the 

total size of the FlexGrip model. From the results, it is shown 

that the percent area of the whole SM that can be protected 

resorting to the BISR strategy ranges from about 25%, in the 8 

SPs configuration, to about 55% with 32 SPs. It is worth noting 

that the adopted BISR mechanism was aimed to mitigate faults in 

the SP cores, only. Other solutions can be used to mitigate faults 

in other modules. 

TABLE 1. HARDWARE OVERHEAD OF THE BISR STRATEGY FOR MULTIPLE 

CONFIGURATIONS OF THE GPGPU  

Version 
SP 

cores 
SSPs 

Total Cells in 

design 

Area overhead 

(%) 

Total SP cells 

in the design 

SP/SSP cores 

cells (%) 

Original 

8 0 229,515 - 52,984 23.08 

16 0 280,132 - 105,968 37.82 

32 0 386,100 - 211,936 54.89 

Fault 

Tolerant 

8 

0 231,343 0.8 52,984 22.90 

1 237,279 3.4 59,607 25.12 

2 243,063 5.9 66,230 27.24 

4 254,692 11.0 79,476 31.20 

6 266,182 16.0 92,722 34.83 

7 271,757 18.4 99,345 36.55 

16 

0 283,160 1.1 105,968 37.42 

1 290,034 3.5 112,591 38.81 

2 296,164 5.7 119,214 40.25 

4 309,318 10.4 132,460 42.82 

6 321,529 14.8 145,706 45.31 

7 335,139 19.6 152,329 45.45 

32 

0 392,476 1.7 211,936 53.99 

1 400,902 3.8 218,559 54.51 

2 410,280 6.3 225,182 54.88 

4 425,172 10.1 238,428 54.07 

6 440,576 14.1 251,674 57.12 

7 460,372 19.2 258,297 56.10 
 
 

B. Performance and power overhead 

Since the BISR strategy requires the introduction of some 
complex switching modules to flexibly interconnect all the SPs 
and SSPs with the rest of the system, it clearly impacts the 
GPGPU overall performance. We performed an experimental 
analysis of this phenomenon resorting to the data produced by the 
synthesis tool. In particular, the impact on the performance of the 
adapted BISR strategy has been evaluated by analyzing the 
changes in the critical path delay for all configurations. 

Results showed that for a large number of SSPs (6 or 7), the 
performance degradation reaches up to 20%. This is mainly 
caused by the logic included in the input and output switches and 
inside the switch controller. More in detail, for one SSP, the 
timing degradation is up to 15% and up to 16% for 2 SSPs. 
Clearly, it should be noted that the reported results have been 
obtained without executing any specific optimization to reduce 
such a performance overhead. 

The power overhead can be neglected for this BISR strategy 
by considering that all inactive SSPs and SPs act as cold standby 
modules. Moreover, other structures remain in a configuration 
state. Thus, only static power by leakage current is consumed 
during operation. In a real implementation of the strategy, the 
transistor technology (i.e., 12 or 7nm) presents leakage currents in 
the order of 10nA/µm to 12nA/µm. Thus, the final power 
overhead of the BISR strategy is negligible in comparison with 
the dynamic power consumption produced in the GPGPU. 

C. Reliability advantages 
 

The goal of the adapted BISR strategy is to allow a GPGPU-
based system to continue working even after one or more faults 
arose within the SPs. This strategy is independent of the 

considered fault model, provided that a suitable technique to 
detect it and identify the affected SP core is available. 

 
Fig. 6. Improvement in the reliability of the BISR structure for multiple 
probabilities of correct execution under multiple configurations of the SSPs (m). 
 

 
Fig. 7. Improvement in the reliability of the system RBISR with respect to the 

probability of correct execution for various values of SSPs (m). 
 

The reliability estimation of this strategy is based on the 
probability of correct operation of the system after a time t. 
Considering a GPGPU composed of n SPs and m SSPs, the 
execution of the system is correct if all thread instructions are 
operated without failures in the available execution units of an 
SM. Moreover, the probability of proper operation in the GPGPU 
can be described as the probability of GPGPU failure (when at 
most (m+1) SPs or SSPs fail). Both units (SPs and SSPs) are 
identical and operate independently among them, hence the 
probability of correct operation at time t in the SPs (PSP(t)) and the 
SSPs is equal. In this way, the probability of proper execution, 
using the BISR mechanism (RBISR), follows a cumulative 
distribution function as reported in equation 1. 
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Extracting terms from equation 1 (see equation 2), the first 

one at right represents the probability of correct operation in the 

original GPGPU (PGPU(t)) corresponding to the case where m=0, 

so tolerating a single faulty unit. On the other hand, the second 

term at right represents the added probability of a correct 

operation using the BISR strategy. 
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As PGPU(t) is a component of the probability for the BISR 
mechanism, it proves that              . Thus, the GPGPU 

improves reliability according to the second term in equation 2. 
This term also includes the probability of the correct operation of 
the switching structures Psw(t) and in the controller Pc(t). The 
dominant factor is the total number of SSP units (m) added in the 
BISR structure. Moreover, there is a direct relationship between 
the number of SSPs (m) and RBISR. However, the BISR strategy 
may be feasible when considering a balance among overhead, 
cost, and reliability. In principle, m cannot be higher than n. 

Fig. 6 represents the increment of the reliability of the BISR 
version (RBISR) with respect to the original version for multiple 
values of PST(t) and SSPs (m). From the graph, it can be noted that 
RBISR is strongly dependent on the values of m and PST. In fact, 
RBISR presents a maximum reliability peak whose position varies 
for each combination of PST and m. This peak value can be used to 
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select the number of SSPs in the GPGPU considering a target 
probability of correct execution in the system. After this value, 
the effectiveness of the strategy drops down. 

The graph in Fig. 7 describes the relation among PST(t) and the 
increment of RBISR for multiple values of m. This graph represents 
the gained benefits in terms of reliability for multiple BISR 
configurations. As expected, the increase in the number of SSPs 
(m) has a proportional positive impact on the reliability of the 
target structure. As can be seen from the graph, the BISR 
mechanism provides almost 10% of increased reliability, even 
when the probability of correct execution is dropped by up to 
20%. Figures 6 and 7 can be employed to select the best trade-off 
among the parameters to reach a given target reliability. 
 

D. Comparison with other techniques 

A comparison with other well-known strategies such as lock-
step and TMR can be performed. In principle, a TMR mechanism 
is highly reliable. However, this is not feasible to be used in the 
SPs due to the excessive hardware and dynamic power overhead. 
The lock-step strategy provides a high percentage of fault 
tolerance for most modules in a GPGPU. Nevertheless, it requires 
the duplication of each module. Thus, the hardware overhead is 
equal to or greater than 100%. A similar situation can be found in 
terms of power consumption. In contrast, the adapted BISR 
strategy takes advantage of the regularity of the SPs to reduce the 
hardware overhead to less than 20% even in the worst case. 
Moreover, the inactive SPs remain in cold stand-by mode 
reducing the power consumption of the mitigation strategy. 

It must be also underlined that the proposed BISR strategy, 
based on dynamic reconfiguration, is particularly well suited for 
long-term missions (which are common for example in the 
automotive domain) since it allows avoiding the issues created by 
fault accumulation. 

VI. CONCLUSIONS 

A dynamic Built-In Self-Repair strategy was devised and 
evaluated targeting the mitigation of permanent faults possibly 
affecting the execution units (SPs) in the SM of a GPGPU. The 
BISR strategy is based on the introduction of a new instruction, 
which allows removing a faulty SP from the set of active ones, 
substituting it with one of the available spare SP cores. Results 
show that the structures required to implement the proposed 
technique introduce a relatively low hardware overhead (<4% 
with a single spare core). Moreover, we showed that the area of 
the modules where faults can be tolerated with the BISR structure 
can achieve about 55% of the total SM area. 

The strategy seems particularly suitable for long-term 
missions since it allows mitigating the effects of fault 
accumulation in the SP cores. Although the experiments were 
performed on a specific NVIDIA-based GPU architecture, we 
claim that the proposed solution can be easily extended to other 
architectures as well. As future work, we plan to extend and 
combine mitigation approaches for permanent and transient faults 
in different modules of a GPGPU. 
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