
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 

of any copyrighted component of this work in other works. 

 

 

 

 

 
 



Evaluating Software-based Hardening Techniques
for General-Purpose Registers on a GPGPU

Marcio M. Goncalves∗, Jose Rodrigo Azambuja∗, Josie E. Rodriguez Condia†, Matteo Sonza Reorda†, Luca Sterpone†
∗Federal University of Rio Grande do Sul (UFRGS) - Institute of Informatics - PGMICRO

{mmgoncalves, jose.azambuja}@inf.ufrgs.br
†Politecnico di Torino - Department of Control and Computer Engineering DAUIN

{josie.rodriguez, matteo.sonzareorda, luca.sterpone}@polito.it

Abstract—Graphics Processing Units (GPUs) are considered a
promising solution for high-performance safety-critical applica-
tions, such as self-driving cars. In this application domain, the use
of fault tolerance techniques is mandatory to detect or correct
faults, since they must work properly even in the presence of
faults. GPUs are designed with aggressive technology scaling,
which makes them susceptible to faults caused by radiation
interference, such as the Single Event Upsets (SEUs), which
can lead the system to a failure, and that is unacceptable in
safety-critical applications. In this paper, we evaluate different
software-based hardening techniques developed to detect SEUs
in GPUs general-purpose registers and propose optimizations to
improve performance and memory utilization. The techniques
are implemented in four case-study applications and evaluated
in a general-purpose soft-core GPU based on the NVIDIA
G80 architecture. A fault injection campaign is performed at
register transfer level to assess the fault detection potential of
the implemented techniques. Results show that the proposed
improvements can be tailored for different scenarios, helping
engineers in navigating the design space of hardened GPGPU
applications.

Index Terms—Graphics Processing Units, fault tolerance,
software-based hardening techniques

I. INTRODUCTION

Graphics Processing Units (GPUs) have been originally
designed for graphics applications, but soon evolved into
general-purpose applications due to the high computing power
and the advent of significant programming support. Over the
last decade, the rapid proliferation of GPUs reached safety-
critical applications, such as automotive. In this application
domain, the use of fault tolerance techniques is mandatory
to detect or correct faults, since safety-critical applications
must continue to work correctly despite the existence of faults.
However, the reliability of GPUs is still an open issue.

Increases in operating frequencies and transistor density
in cutting-edge technology combined with the reduction of
voltage supplies have made GPUs more susceptible to faults
caused by radiation interference. Such faults, mainly caused
by energized particles, make the newest GPUs prone to expe-
rience radiation-induced errors [1], [2], even on applications

This work has been partially supported by the European Commission
through the Horizon 2020 RESCUE-ETN project under grant 722325,
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) -
Finance Code 001, CNPq, and FAPERGS.

running at ground level, where neutrons are the primary source
of soft errors [3], [4]. Among the most observed faults induced
by radiation are the Single Event Upsets (SEUs), which affect
memories and registers by causing bit-flips [5].

Modern GPUs are designed with a Reduced Instruction Set
Computing (RISC) architecture that relies on large register
files to perform high-performance computations over large
blocks of data in parallel. In this sense, most instructions in
a kernel operate directly on these registers, thus allowing a
fault to propagate in the system easily. From a reliability point
of view, the register file is a critical resource, as knowing
the probability of an error in a register to propagate to the
outputs may be sufficient to characterize the vulnerability of
an application.

Software-based fault tolerance techniques have been pro-
posed for GPUs in the past years, presenting high detection
rates [6]. Their main goal is to protect the system against data
flow errors, such as bit-flips in registers [7]. These techniques
can be automatically applied to the source code of a program,
thus simplifying the task for software developers: by protecting
the system during software construction, the development costs
can be reduced significantly [8].

This paper presents an evaluation of low-level software-
based hardening techniques developed to detect SEUs in GPU
register files and proposes optimizations to improve perfor-
mance and memory footprint. Program codes are transformed
at assembly-level and implemented in a soft-core General-
Purpose GPU (GPGPU) based on the NVIDIA G80 architec-
ture. Results in terms of execution time and program memory
footprint are evaluated, as well as the fault detection rates.

II. BACKGROUND

A. Related Work

Software-based hardening techniques used in GPUs are
classified mainly in three classes: (1) naı̈ve duplication, where
the whole program is duplicated, (2) selective duplication,
where only critical parts of the code are duplicated, and (3)
Algorithm-Based Fault Tolerance (ABFT) [9], where particular
types of algorithms can be protected.

A naı̈ve duplication to detect faults in GPUs’ general-
purpose registers is proposed in [6], where the authors replicate
the whole assembly code in an intertwined fashion and reach



up to 99% error reduction at a performance cost of up to
78%. Selective duplication is able to lower costs in execution
time and resource usage overheads by lowering the detection
coverage, such as in [10], where a tool called Hauberk is able
to reduce errors by 85% at a 15% execution time overhead,
but only injected faults at protected high abstraction level
variables. ABFT techniques are able to achieve high detection
rates at low execution time overheads [11] but are limited to
a specific group of applications.

This work extends [6] by proposing and evaluating improve-
ments to save execution time and memory footprint. Also,
the experiments presented in this work are performed in an
optimized version of the FlexGrip, the soft-core GPGPU used
in the previous work, which has been enhanced to correct some
limitations and functional restrictions presented in the original
version of the model [12].

B. FlexGrip Architecture

The FLEXible GRaphIcs Processor (FlexGrip) is an open-
source soft-core GPGPU described in VHDL that implements
the micro-architecture of the NVIDIA G80 Architecture [13].
FlexGrip is programmed using the CUDA programming en-
vironment and supports up to 27 instructions. The GPGPU
consists of an array of Streaming Multiprocessors (SMs)
that executes threads in parallel. Fig. 1 depicts the general
organization of the SM in the FlexGrip architecture.

The SM can execute instructions in a parallel man-
ner following the Single-Instruction Multiple-Thread (SIMT)
paradigm [14]. The SM core is managed by a Block Scheduler
Controller, which distributes the task workload to each SM
available in the system. Internally, the SM is divided into a
five-stage pipeline and includes one Warp Scheduler Controller
managing and monitoring the concurrent execution of a group
of 32 threads denoted as warp. Some pipeline registers are
also present in the design and are located among the pipeline
stages. The memory hierarchy in the GPGPGU is mainly
composed of the General-Purpose Register File (GPRF), the
Predicate Register File (PRF), the local memory, the constant
memory, the shared memory, and the global memory.

The most relevant and used module in the memory hierarchy
of a GPGPU is the GPRF, which contains the General-Purpose
Registers (GPRs) and is used for every thread to store data
operands and addresses during the program execution. The
PRF has Predicate Registers (PRs) for every thread, which
store the result of logic-arithmetic or comparison instructions,
and each thread is assigned with four PRs. These registers
are generally used by control-flow instructions to generate
conditional or divergence paths. The local memory is mainly
employed to store data arrays. Similarly, the constant memory
is employed to store constant values for all threads during
the execution of a program. The shared memory stores data
operands that can be used among threads belonging to the
same block. Finally, the global memory stores the initial inputs
and the final results of a program kernel. These values are then
retrieved by the host.

Fig. 1. A general scheme of the SM in FlexGrip.

III. EVALUATED FAULT TOLERANCE TECHNIQUES

The software-based fault tolerance techniques discussed in
this paper aim to detect faults that affect specifically the GPRs
and to inform the host when a fault is detected. Software-
based techniques can be applied to the program code at
different abstraction levels, such as at the CUDA level or at the
assembly level. In our implementation, techniques are applied
at the lowest level, in order to provide better control on the
code transformation.

In order to detect a fault in the GPRF, static code analysis
and three code transformations must be performed at the kernel
assembly: (1) datapath instruction duplication, (2) consistency
checking, and (3) host notification. The static code analysis is
performed to find out which registers are being used by the
application and which are not (spare registers). Then, a hash
table is created, assigning a spare register as a copy register
to each used register.

The first transformation (1) is responsible for duplicating
all datapath instructions. This is the core of all discussed
software-based techniques to detect faults in the GPRF, as
it forces the hardware to execute twice the datapath in an
intertwined fashion, being able to exploit Instruction Level
Parallelism (ILP) from the GPGPU architecture much better
than a simple duplication with comparison (which cannot take
advantage of ILP). The replicated instructions also perform
operations on the copy registers, completely separating the
original and duplicated datapaths. In case there are not enough
spare registers, selective hardening or register spilling must be
performed.

The second transformation (2) is responsible for checking
the consistency between the values of registers and their
copies. To do so, it uses a comparison instruction, which then
sets a PR in case of divergence. The main issue with checking
register consistency is that it creates a dependency between
both datapath flows, unifying both paths into the comparison
instructions and therefore decreasing ILP gain. In this work,
we evaluate the insertion of consistency checking after two
classes of instructions: memory access and predicate register
setting. The first directly affects the data being processed,
while the latter affects the program’s control flow.



The final transformation (3) notifies the host that an error
has been detected. It is usually a memory write instruction,
but could also be an exception signal to the host. These in-
structions are not executed on a correct application execution,
and therefore do not usually cause performance degradation
under normal circumstances.

In the following subsections, we will discuss two optimiza-
tions to code transformations and how we grouped them to
evaluate the proposed techniques.

A. Move Optimization
Among all instructions in the FlexGrip ISA, the memory

access ones (load and store) are the ones that require the most
clock cycles to be executed. For example, a load instruction
requires around four times more clock cycles than a move
instruction. In this sense, aiming to decrease execution time
and optimize performance, we propose the Move Optimization,
which directly affects the datapath duplication (transforma-
tion 1) by replacing the replicated load instruction by a move
instruction that copies the read value to the copy register.

While replicating a load instruction with a move instruction
is able to reduce execution time, it inserts a point of failure
on the software-based hardening technique. If a fault affects
the register written by the load instruction before the move
instruction can copy its value to the replicated registers, the
corrupted value is also copied to the replicated register. In
this case, both value and its replica would be corrupt, and
the consistency checking transformation would not be able to
signal a fault. It is important to notice that, even though the
load instruction takes an increased amount of clock cycles to
execute, only a fault that hits the instruction in its late write-
to-register stage would actually upset the destination register,
and therefore this point of failure is not as large as the time
taken from fetch-to-fetch.

B. Conditional Optimization
As mentioned previously, the consistency check is done

through a comparison instruction that sets a predicate register
in case of divergence. The main issue is that it always
overwrites the predicate registers and, therefore, the host
notification must be performed immediately after the check. In
this proposed Conditional Optimization, instead of performing
a comparison, we propose to perform a conditional comparison
(on the condition that a fault has not been detected). By
doing so, the consistency checking will no longer overwrite
the predicate register, and thus the host notification no longer
has to be performed after each consistency checking. Thus,
the Conditional Optimization aims to reduce the number of
checks by postponing the host notification to some strategic
point in the program. In this work, we choose the end of
program execution as the point to notify the host if an error
has been detected.

C. Implementation Groups
In order to evaluate the feasibility and effectiveness of

the evaluated software-based hardening techniques, we imple-
mented four groups of transformations: (I) No Optimization,

without optimizations, (II) Conditional Optimization, with
only the Conditional Optimization, (III) Move Optimization,
with only the Move Optimization, and (IV) All Optimizations,
with both Move Optimization and Conditional Optimization.
Fig. 2 shows the four groups of transformations applied to a
sample program code. The original instructions are represented
in black, while replicated datapath instructions are presented
in green, checking instructions in blue, and host notification
instructions in red. The apostrophes on the registers of the
replicated statements indicate that they are a register’s replica.

The No Optimization group (I) enters the consistency
checks and host notification for both comparison and memory
access instructions just after these instructions. As one can
see in Fig. 2, the original instruction 3, SETP, performs a
comparison between registers R1 and R2, and stores the result
in the predicate register P0. So, the two registers R1 and R2
must be checked to avoid an incorrect comparison result. In
order to do so, a consistency check (instruction 4) is performed
between register R1 and its replica R1’, and the result is stored
in the predicate register PE. The host notification instruction
(instruction 5) is conditioned to the PE value, and will only
be executed when the previous consistency check between R1
and R1’ signals a divergence in PE. The same check and host
notification are performed for register R2 and its replica R2’
by the instructions 6 and 7, respectively.

In order to harden the memory access instructions, the No
Optimization group (I) replicates the original load instruction
(instruction 8) using replicated registers (instruction 9), and
performs the consistency check (instruction 10) on these
registers (R1 and its replica R1’) while instruction 11 notifies
the host in case of discrepancy. The original store instruction,
GST, does not need to be replicated as we do not create
replicas in memory. On the other hand, the consistency checks
must be performed on its two registers R2 and R3, to avoid
incorrect addressing and data. The consistency checks between
the original registers R2 and R3 and their replicas R2’ and R3’
are, respectively, inserted through lines 13 and 15, while host
notification instructions are inserted in lines 14 and 16.

The Conditional Optimization group (II) implements a
conditional execution of the consistency checks to decrease
the number of times that it is performed, possibly running it
only once at the end of the program execution. In this case,
the consistency checks are also placed at lines 4, 6, 10, 13,
and 15, but the checks are conditioned by the negation of the
result of a previous check (@!PE). Thus, if a divergence has
already been detected previously, new consistency checks will
not be performed, and the PE register will not be overwritten
until the end of the program, where the host is notified. It is
important to mention that the PE register must be initialized
at the beginning of the program with a reset value.

The Move Optimization group (III), when compared to the
No Optimization group, replaces the GLD replicas at line 9
by a move instruction, while the All Optimizations group
(IV) implements both Move Optimization and Conditional
Optimization into the same hardened code version.



Original Code No Optimization Conditional Optimization Move Optimization All Optimizations

1: ADD R1, R2, R3; 1: ADD R1, R2, R3; 1: ADD R1, R2, R3; 1: ADD R1, R2, R3; 1: ADD R1, R2, R3;

2: 2: ADD R1’, R2’, R3’; 2: ADD R1’, R2’, R3’; 2: ADD R1’, R2’, R3’; 2: ADD R1’, R2’, R3’;

3: SETP.EQ P0, R1, R2; 3: SETP.EQ P0, R1, R2; 3: SETP.EQ P0, R1, R2; 3: SETP.EQ P0, R1, R2; 3: SETP.EQ P0, R1, R2;

4: 4: SETP.NE PE, R1, R1’; 4: @!PE SETP.NE PE, R1, R1’; 4: SETP.NE PE, R1, R1’; 4: @!PE SETP.NE PE, R1, R1’;

5: 5: @PE MOV RE, 0x1; 5: 5: @PE MOV RE, 0x1; 5:

6: 6: SETP.NE PE, R2, R2’; 6: @!PE SETP.NE PE, R2, R2’; 6: SETP.NE PE, R2, R2’; 6: @!PE SETP.NE PE, R2, R2’;

7: 7: @PE MOV RE, 0x1; 7: 7: @PE MOV RE, 0x1; 7:

8: GLD R2, [R1]; 8: GLD R2, [R1]; 8: GLD R2, [R1]; 8: GLD R2, [R1]; 8: GLD R2, [R1];

9: 9: GLD R2’, [R1’]; 9: GLD R2’, [R1’]; 9: MOV R2’, R2; 9: MOV R2’, R2;

10: 10: SETP.NE PE, R1, R1’; 10: @!PE SETP.NE PE, R1, R1’; 10: SETP.NE PE, R1, R1’; 10: @!PE SETP.NE PE, R1, R1’;

11: 11: @PE MOV RE, 0x1; 11: 11: @PE MOV RE, 0x1; 11:

12: GST [R2], R3; 12: GST [R2], R3; 12: GST [R2], R3; 12: GST [R2], R3; 12: GST [R2], R3;

13: 13: SETP.NE PE, R2, R2’; 13: @!PE SETP.NE PE, R2, R2’; 13: ISETP.NE PE, R2, R2’; 13: @!PE SETP.NE PE, R2, R2’;

14: 14: @PE MOV RE, 0x1; 14: 14: @PE MOV RE, 0x1; 14:

15: 15: SETP.NE PE, R3, R3’; 15: @!PE SETP.NE PE, R3, R3’; 15: SETP.NE PE, R3, R3’; 15: @!PE SETP.NE PE, R3, R3’;

16: 16: @PE MOV RE, 0x1; 16: 16: @PE MOV RE, 0x1; 16:

Fig. 2. Implementation groups for the software-based hardening techniques.

IV. IMPLEMENTATION

Four case study algorithms have been chosen: matrix mul-
tiplication, Fast Fourier Transform (FFT), vector sum, and
bitonic sort. All case studies are simple applications but differ
in their use of the GPGPU control and data paths. In terms
of data- and control-flow characteristics, matrix multiplication
and vector sum are mostly data-flow oriented, with few
conditional deviations, while FFT and bitonic sort are mostly
control-flow oriented, with many conditional deviations.

The case-study algorithms were implemented in CUDA and
compiled with the NVIDIA NVCC compiler. The compilation
process generates the CUDA binary (cubin) file that contains
the assembly code that is effectively executed by the NVIDIA
GPU, as well as by the FlexGrip. This assembly code is called
Source and Assembly (SASS) and can be extracted from the
cubin file through the cuobjdump tool provided by NVIDIA’s
CUDA toolkit. In order to automatically apply the software-
implemented techniques to the case-study applications, we
used a tool called HPCT [15], which was upgraded to support
the FlexGrip ISA as well as the proposed techniques. We input
the SASS code to HPCT, which then automatically applies the
code transformations and generates a hardened SASS file.

The performance and memory footprint costs of the pro-
posed techniques are presented in Tables I and II, respectively.
Results were organized in two categories (Datapath Dupli-
cation and Consistency Checking) that aim to individually
analyze the costs involved in transformations performed by the
proposed techniques, which are (1) datapath duplication, (2)
consistency checking, and (3) host notification, as previously
discussed in Section III. It is important to notice that we did
not include a table for data memory footprint, as the datapath
duplication duplicates all used data, and the consistency check
requires one single predicate register.

Transformation 1 can be seen on the Datapath Duplication

column, separated into No Optimization and Move Optimiza-
tion. As one can see in Table I, results indicate significant
performance improvements when Move Optimization is con-
sidered, where the average cost of runtime drops from 72.3%
to 50.4%. The performance improvement observed in Move
Optimization varies according to the case-study application
due to the amount of memory access performed by each
application. In terms of memory footprint, Table II shows
that the Move Optimization does not reduce program memory
usage when compared to non-optimized implementation, as
both GLD and MOV are 64-bit instructions.

Transformations 2 and 3 can be seen on the Consistency
Checking column. It shows both No Optimization and Condi-
tional Optimization for the transformations to check memory
accesses (Memory) and predicate setting (Predicate) instruc-
tions. To verify the individual costs of these transformations,
we implemented them separately. When compared to the non-
optimized techniques, the results show that the execution time
overheads are almost halved when Conditional Optimization
is used, where the average overhead dropped from 24.5% to
13% for memory access hardening and dropped from 16.4%
to 8.4% for predicate setting hardening. These performance
optimizations mainly happen due to the reduced quantity of
host notifications, which also impacts on memory footprint
overhead, where the cost is also halved when Conditional
Optimization is used. The vector sum does not use PR and
therefore has no data in the Predicate columns.

It is important to notice that, in order to implement a
software-based fault tolerance technique, all three transfor-
mations are necessary, and the final cost is approximately
their sum. We also performed experiments that proved that
the final execution time and program memory footprint of the
selected hardening technique is the sum of the chosen datapath
duplication with the chosen checking transformations.



TABLE I
EXECUTION TIME (ns)

Application
Original

Application [#]

Datapath Duplication [%]
Consistency Checking [%]

No Optimization Conditional Optimization
No Optimization Move Optimization Memory Predicate Memory Predicate

Matrix Mult. 320,340 77.1 49.9 21.1 10.7 10.7 5.6
FFT 963,730 78.3 66.7 16.5 11.5 8.3 5.8
VectorSum 140,640 75.9 46.8 28.0 - 16.7 -
Bitonic Sort 823,900 57.8 38.1 32.4 27.0 16.3 13.6

Average 562,153 72.3 50.4 24.5 16.4 13.0 8.4

TABLE II
PROGRAM MEMORY FOOTPRINT (bytes)

Application
Original

Application [#]

Datapath Duplication [%]
Consistency Checking [%]

No Optimization Conditional Optimization
No Optimization Move Optimization Memory Predicate Memory Predicate

Matrix Mult. 264 78.8 78.8 16.9 6.8 8.5 3.4
FFT 1344 82.7 82.7 9.1 6.5 4.6 3.3
VectorSum 80 80.0 80.0 44.4 - 22.2 -
Bitonic Sort 288 66.7 66.7 20.0 16.7 10.0 8.3

Average 494 77.0 77.0 22.6 7.5 11.3 3.7

V. FAULT INJECTION RESULTS

Fault injection campaigns were automatically performed
through simulation at RTL level in the ModelSim simulator
in two steps, targeting only used registers. In the first step, the
faults were injected during the execution of the original case-
study algorithms to verify the susceptibility of the GPGPU to
SEUs. In the second step, the faults were injected during the
execution of the hardened applications to verify their effec-
tiveness in detecting SEUs. For each fault injection campaign,
10,000 simulations were performed, and only one fault was
injected in each simulation.

In order to evaluate the reliability of the system, we classi-
fied the injected faults according to their effect on the system:
Masked, when the result is correct, Detected Unrecoverable
Error (DUE), when the application crashes or the system
hangs, or Silent Data Corruption (SDC), when the program
finishes correctly, but the result is incorrect.

In order to analyze the impact in fault reduction of each
proposed technique, we individually hardened memory ac-
cess and predicate setting instructions. Thus, we divided the
analysis into three categories to show the impact in error
reduction according to the hardened instructions which are: (i)
Memory access, (ii) Predicate setting, and both (iii) Memory
+ Predicate. Table ?? shows the fault injection results for
the three categories without optimization (No Opt.) and with
the Move Optimization (Move Opt.). The absolute number of
errors for the original case-study applications is shown in the
column Original Application.

Results for the category (i) show an average reduction in
SDCs of 97% and 91.5%, respectively, for the non-optimized
and for the Move Optimization techniques. It was already
expected that the Move Optimization would decrease the error
detection rate due to the point of failure inserted in the program
by this optimization. Such SDC reduction occurs because data-
flow corruptions are more prone to propagate to the memory,
which was protected by this approach. Few reductions in
DUE errors are observed because most of them occur when
control-flow registers are affected, and these registers are no
taken into account in this approach. On the other hand, the
control-flow can be indirectly protected by hardening memory
access instructions when variables that are used by control-
flow instructions are loaded from memory.

Results for category (ii) show the opposite behavior ob-
served in (i), presenting a high reduction in DUE errors and
a small reduction in SDC errors. Such results are due to the
fact that the predicate setting instructions are mainly used for
the program’s control-flow, thus, when the operands of these
instructions are corrupted by a fault, the application is prone to
stick in loops or perform incorrect deviations that cause thread
desynchronization and lead the program to a hang state. Thus,
when hardening these instructions, results show a reduction in
DUE errors of up to 100% for both non-optimized and Move
Optimization implementations. As the vector sum application
does not use any PR and has not presented any DUE in its
original form, we did not consider categories (ii) and (iii) nor
DUE reduction.



TABLE III
FAULT INJECTION RESULTS - FAULTS AND PERCENTAGE REDUCTION

Application
Fault

Classification
Original

Application [#]
Memory [%] Predicate [%] Memory + Predicate [%]

No Opt. Move Opt. No Opt. Move Opt. No Opt. Move Opt.

Matrix Mult.
SDC 3,522 99.8 95.5 0.8 0.3 100 96.2
DUE 1,785 0.1 4.2 100 100 100 100

FFT
SDC 1,379 88.3 88.4 29.9 36.5 100 100
DUE 2,323 32.7 32.0 100 100 100 100

VectorSum
SDC 3,096 100 82.3 - - - -
DUE 0 - - - - - -

Sort
SDC 674 100 100 91.1 85.8 100 100
DUE 1,171 70.5 72.6 0 0 74.3 73.0

The highest reduction rates have been achieved in the
category (iii), where memory access and predicate setting
instructions were hardened, thus, accumulating the advantages
of data- and control-flow protection. The non-optimized hard-
ening was capable of reducing SDCs and DUEs to zero in all
applications but the Sort. Results for the Move Optimization
show that not all errors could be mitigated, but the least
SDC reduction observed was as large as 96.2% for the matrix
multiplication.

VI. CONCLUSIONS AND FUTURE WORK

We presented an evaluation of software-based fault tolerance
techniques designed to harden the GPRF of a GPGPU based
on the G80 architecture against transient faults and proposed
two optimizations to improve execution time and memory
footprint. A fault injection campaign was performed through
simulation to evaluate the GPGPU’s susceptibility to SEUs.

The experimental results demonstrated that the hardening
of memory access instructions achieved an average reduction
in SDC errors of 97%, while the hardening of predicate
setting instructions achieved a reduction in DUE errors of
up to 100%. When both memory access and predicate setting
instructions were hardened, the errors were reduced to zero.
Such results indicate the high efficiency of software-based
fault tolerance techniques to detect faults in the GPGPU
register file, although the average cost to achieve these results
has been 107.1% of program memory footprint and 109.8% of
execution time. When we implemented the Move Optimization
and the Conditional Optimization to mitigate these costs, the
average overheads of program memory footprint and execution
time dropped to 92% and 75.2%, respectively, at the average
cost of 1% of SDC increase.

The results showed that the proposed improvements could
be tailored for different scenarios, helping engineers in navi-
gating the design space of hardened GPGPU applications. In
the future, we intend to developed hardware-based fault toler-
ance techniques and compare the results with the techniques
implemented in this work.

REFERENCES

[1] C. Slayman, “Soft errors—past history and recent discoveries,” in IEEE
Int. Integrated Reliability Workshop Final Report, 2010, pp. 25–30.

[2] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in International Reliability Physics Symposium, 2011, pp. 1–7.

[3] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An efficient and experimen-
tally tuned software-based hardening strategy for matrix multiplication
on gpus,” IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp.
2797–2804, 2013.

[4] J. R. Azambuja, G. Nazar, P. Rech, L. Carro, F. L. Kastensmidt,
T. Fairbanks, and H. Quinn, “Evaluating neutron induced see in sram-
based fpga protected by hardware- and software-based fault tolerant
techniques,” IEEE Transactions on Nuclear Science, vol. 60, no. 6, pp.
4243–4250, Dec 2013.

[5] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling
of single-event upset in digital microelectronics,” IEEE Transactions on
nuclear Science, vol. 50, no. 3, pp. 583–602, 2003.

[6] M. Gonçalves, M. Saquetti, F. Kastensmidt, and J. R. Azambuja, “A
low-level software-based fault tolerance approach to detect seus in gpus’
register files,” Microelectronics Reliability, vol. 76, pp. 665–669, 2017.

[7] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W.
Keckler, “Optimizing software-directed instruction replication for gpu
error detection,” in International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2018, pp. 1–12.

[8] E. L. Rhod, C. A. L. Lisbôa, L. Carro, M. Sonza Reorda, and
M. Violante, “Hardware and software transparency in the protection of
programs against seus and sets,” Journal of Electronic Testing, vol. 24,
no. 1-3, pp. 45–56, 2008.

[9] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6, pp.
518–528, 1984.

[10] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for gpgpu,” in 2011
IEEE International Parallel Distributed Processing Symposium, May
2011, pp. 287–300.

[11] L. L. Pilla, P. Rech, F. Silvestri, C. Frost, P. O. A. Navaux, M. Sonza
Reorda, and L. Carro, “Software-based hardening strategies for neutron
sensitive fft algorithms on gpus,” IEEE Transactions on Nuclear Science,
vol. 61, no. 4, pp. 1874–1880, Aug 2014.

[12] B. Du, J. E. R. Condia, and M. Sonza Reorda, “An extended model to
support detailed gpgpu reliability analysis,” in 2019 14th International
Conference on Design Technology of Integrated Systems In Nanoscale
Era (DTIS), April 2019, pp. 1–6.

[13] K. Andryc, M. Merchant, and R. Tessier, “Flexgrip: A soft gpgpu
for fpgas,” in 2013 International Conference on Field-Programmable
Technology (FPT), Dec 2013, pp. 230–237.

[14] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, March 2008.

[15] J. R. Azambuja, A. Lapolli, L. Rosa, and F. L. Kastensmidt, “Detecting
sees in microprocessors through a non-intrusive hybrid technique,” IEEE
Transactions on Nuclear Science, vol. 58, no. 3, pp. 993–1000, 2011.


