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Context

@ Stand-alone lecture on Continuation techniques

@ Given in the context of a lecture course Introduction to the
theory of phase transitions

@ Introductory lecture tailored at Bachelor/Master students,
possibly also useful for beginning PhD

@ Sufficiently detailed to enable everyone to create their own
numerical continuation code

@ Accompanied by hands-on tutorials hosted at www.uni-
muenster.de/CeNoS/Lehre/Tutorials/continuation.html
— aka Mlinsteranian Torturials
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Aims part 1

Numerical analysis of bifurcation problems - motivation
Recap Newton’s method in one dimension (root finding)
Multi-dimensional Newton’s method

Simple parameter continuation

e General scheme
e Tangent predictor
@ Newton corrector

Example problem (Predator-prey model)
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Minsteranian Torturials: Continuation (1d)

hosted by Center of Nonlinear Science (CeNoS) of WWU Mdinster
http://www.uni-muenster.de/CeNoS/Lehre/Tutorials/auto.html

wissen leben
WWU Miinster
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Numerical analysis by direct time simulation

@ Normally known how to solve Initial Value Problems
(e.g. for n first order ODE)

dyn

E - f1(}’1a}’2a~-a}/n)
d

% - f2(Y1a}’2a~~7Yn)
d

% - fn(}’17}/27--~aYn)

using single- and multi-step (time-stepping) methods, e.g.,
4th order Runge-Kutta
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Numerical analysis by direct time simulation

@ Convenient vector notation for system of n equations:

dy

o — )
Withy = (y1, Vo, ..., ¥n) T and F = (i, fo, ..., £)7

@ Time-stepping methods

+ give valuable insight into transient behaviour

+ predict system behaviour for given particular parameter
values and initial conditions (IC)

— are tedious, when one is interested in the entire solution
structure of the given nonlinear ODE and its change with
parameter(s)

— are unable to determine unstable solutions, i.e., can only
give an incomplete picture of bifurcations
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Path-continuation and bifurcation techniques

@ Effective way to study the bifurcation structure of ODE (and
PDE) and its change with control parameter(s)
@ Powerful set of techniques based on bifurcation theory that
allow one to
o Follow steady and stationary states in parameter space
(parameter continuation)
o Determine stability of such states
o Identify bifurcation points, i.e. loci where new branches of
states emerge (might be time-periodic states, states of
different symmetry, etc.)
e Follow 'new’ branches in parameter space.
e Follow bifurcation points in (higher dimensional) parameter
space

@ — more complete characterisation of system behaviour,
and for a better understanding of transitions to more
complex behaviour
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Example - Langmuir-Blodgett transfer

Timestepping
— stable steady & time-periodic states, incl. hysteresis
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Data from M. K&pf, S. Gurevich, R. Friedrich, UT, New J. Phys. 14, 023016 (2012);
M. Kopf and UT, Nonlinearity 27, 2711 (2014)
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Example - Langmuir-Blodgett transfer

Continuation (lines) & Timestepping (symbols)
— full bifurcation structure
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Data from M. K&pf, S. Gurevich, R. Friedrich, UT, New J. Phys. 14, 023016 (2012);
M. Képf and UT, Nonlinearity 27, 2711 (2014)
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General problem setting for parameter continuation

@ Assume we have a system of n unknowns y; depending on
one free parameter \

dy 4.~

@ For each ), steady states y (equilibria, fixed points) might
exist, defined by

ay _
at
Denote one fixed point at some \ = \g by Yy, i.e.,

0 ie. G(y,\)=0

G(Yo, Ao) = 0
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General problem setting for parameter continuation

@ One can show that any regular solution (to be defined
later) (Yo, \g) lies on (is part of) a unique one-dimensional
continuum of states (also called a solution branch)

y

i A
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Recap: Newton’s method — 1 dimension

@ Definition of forward difference scheme for f':

f(yU+D) — f(y)
YD — 0

f(y") = with  f(yU")=0

@ gives iterative method for finding solution of equation
f(y) = 0 using steps:

. . f(y™)
(+1) _ i) _
A T(70)

@ Also write as “linear inhomogeneous equation”
f’(y(’))Ay(’) - _f(y(’)) with Ay(’) = y("H) — y(’)
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Recap: Newton’s method — n dimensions

@ Multi-dimensional equivalent can be used to find solutions
y of the system of equations (for particular \)

G(Y,A) =0
using the iterative procedure
Gy (¥, ) Ay = ~G(¥", A) (*)

that gives a (hopefully) converging set of vectors
(¥O.y1.y@.y@, )
o Gg(y(", ) is the Jacobian matrix
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Recap: Jacobian

@ The Jacobian Gy(y'"); A) is the 1st derivative of vector G
w.r.t. the vector y:

0G;  0G, .. 9G
M 9y OYn
~ 862
a _ 0G y
G/y\: —_— =
ay
0Gn ... ... 09Gp
y4 OYn

calculated at (y(), \)
@ Index notation: (av)/k = 0G/0yx = Gk
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Simple parameter continuation - 1st step

@ Determine (¥o, \o) that solves G(Yo, Ao) = 0 (e.g., clever
choice of A where solution is known analytically)
@ Want to obtain the solution (Y1, A1) at Ay = Ao + A
@ Strategy
(1) Use tangent of curve y(\) at point (Yo, \o) to obtain
predictor ?SO) for yy at \y.
(2) Use Newton’s method to iterate at fixed A = \¢ (starting
with ?ﬁo)) and obtain Yy to arbitrary exactness.
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Simple parameter continuation - sketch
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Parameter continuation - obtaining the tangent

Simple parameter continuation - step j + 1

@ Take result of previous step (Y}, \;) that is a numerical
approximation that solves G(Vj, Aj) =0.
@ We want to obtain the solution (Y;1, A1) at
)‘j+1 = )\j + A
@ Strategy

<(0
v,
(2) Use Newton’s method to iterate at fixed A4 (starting with
¥'%)) and obtain ;.1 to arbitrary exactness.

(1) Use tangent of curve y()) at point (Y}, A;) as predictor
for i1 at Aj1.

@ Then repeat to change A to continue along solution branch
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Numerical Continuation

@ How do we get the tangent direction dy/0\?

o Differentiate G(Y()), A) = 0 with respect to A (chain rule):
080y 06 _
oy oA o\

@ Solve inhomogeneous linear algebraic system of equations

Oy .
X a% — _G, ()
for tangent vector 9y /0.
@ Notation: R R
~ 0G ~ 0G
§ = % and G
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Tangent predictor step

1. Start with y; at ;.

2. Get tangent direction gLX|,- at (yj, Aj) solving (x+), i.e

A~

~ o~ 0
G(Y)» \j) v

(and normalising |0y/0\| = 1 - here not done)
3. Obtain initial ‘guess’ Vj(ﬂ at \i 1 = A\j+ A by

Vi1 = ¥i+AA %

J
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Newton correction at fixed A, 1

1. Take initial guess Vj(ﬂ at Aj;1.
2. Obtain next iteration by solving inhomogeneous linear
algebraic system of equations

Gy(V21, A1) AV, = —G(, i)
oli (1) o
for Ay} =¥y~ ¥
inGU+1) g ()
3. Obtain Vigr =V HAY .
Repeat Newton step (1.-3.) until wanted accuracy is reached
(i.e. ||A?/(.’+)1 || smaller than some given threshhold value).
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Example: Predator prey model

@ In studies of the time-evolution of populations of interacting
species one often uses ODEs describing the mean density
or overall number of animals

@ A typical two-species model is

ady;

W = g1(y17.y2a/\)
dya
W - 92(}/17}’&)\)
with
91(y1,¥2, ) = 3y1(1 = y1)—y1ye—A(1 — exp(—5y1))
92(¥1,¥2,\) = —Yy2t3yi)e

where y; and y» are normalized prey and predator
numbers, respectively.

@ Meaning of terms: eating/getting eaten; getting fished;
(saturated) birth/death rates
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Example: Predator prey model
@ Fixed points / equilibria given by

I _de
at ot

0 = 3yi(1—y1) —y1yo — M1 — exp(—5y4))
—Yo +3y1)2

o
|

@ For A = Ao = 0 we have three fixed points Y = (y1, y2)

(0,00 (1,0) <;2>

@ (0,0) is a 'trivial’ fixed point valid for any A
@ Let us focus on the 2nd one: (1,0) and continue it for
A>0.
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Example: Predator prey model

@ We need the Jacobian

. 0G (3 — 6y1 — y2 — S\ exp(—5y1) 4 )

/y\ = — =
oy 3ys 3y; — 1

and the derivative of G with respect to the continuation
parameter

6. _ %G _ (exp(-5y)—1
AT o 0

@ Atyy = (1,0) and )y = 0 we have

Gy = <_03 _21) G\ = (eXp(—éS)—1> _ <_06993)
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Example: Predator prey model

@ The tangent vector is obtained by solving (x*)

-3 -1\ &y| _ (-0.993
0 2)axn, \ o0

We get

oy —0.331 ~(0) _ oy 0.967
it [ = A =

x|, ( 0 ) and Yy~ =Yo A\ 501 (o)

where we specified AX = 0.1.

(0

@ Yy, is our starting guess for the Newton iteration at A4.
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Example: Predator prey model

@ General Newton step at Ay specifies (), i.e.

Gy M)Ay = -GE. ) ()
for Ay(/) y1/+1 /y\g/).
@ Step 1 from y(o) to y( ) corresponds to solving (* » x) for
i=0,i.e.
-2.805 -0.967 A0 — —0.003
00 1901 )V = 0.0
. ~(1) _ 0.966
to obtain  y;’ = < 00
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Example: Predator prey model

@ Step 2 from ym to y( )

i=1,ie.
~2799 —0.966) 1) _ (0.0
( 0.0 1.897)Ay1 - <0.o>
0.966
0.0

corresponds to solving (* x x) with

to obtain yﬁz) = <

@ As y(z) = yﬁ” to 3sd we have found

~ /0.966
Y1 =1 00

@ Now, one would play this again: increase ) to
A2 = A + A, do the tangent prediction and Newton
iterations, etc.
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Parameter continuation - plot of results

0.8 -
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0.6 -
— 5 Newton steps
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Parameter continuation - issues with simple method

@ Method uses predictor based on tangent dy/0\ where \ is
the control parameter of the problem

@ Newton’s method used to correct solution at fixed A

@ This works nicely when locally there is one-to-one
correspondence of solutions y and parameter A

@ Method breaks down at saddle-node bifurcations as there
exist two solutions y for A < A, and none for A > A,

@ With other words: one can not go around folds (that occur
frequently, see our example)

@ How can we fix that?
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Aims part 2

@ Pseudo-arclength continuation

o General scheme
e Tangent predictor
o Newton corrector

@ Example problem (Predator-prey model)
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Pseudo-arclength continuation

@ We need parameter that is unique along a branch even if
the branch undergoes saddle-node bifurcations

@ Good option: Arclength s along the branch

@ Then we treat A\ as an additional element of the solution
vector y, i.e., we introduce X = (Y, A) and determine both
components in dependence of the new control parameter s

@ However, s is not known beforehand
@ Use local approximation (pythagoras)

|AY[Z + (AN)? = (As)?

to obtain additional equation p(y, A, s) = 0 that
supplements G(y,\) =0

Uwe Thiele, Miinster — www.uwethiele.de Numerical Continuation 30

Transform arclength condition

@ Start with
|AY[? + (AN)? = (As)?
@ Use
2o o (Vi1 Y N,
AV = (Y11 — Vj)iHAs FAs~ (Vi — )55 As

and equally

O\
(AN)? = (N1 — )\j)%As

@ Therefore, the additional equation is

A~

~ —~ . 0y oA
P(Y, A 8) = (Vi1 = V) g + (N1 = )5 —As =0
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Pseudo-arclength continuation — Notation

@ Compact notation allows us to use the formalism
introduced for simple continuation scheme

@ Treat \(s) as additional dependent variable beside y(s)
@ Join them into vector X = (y, \)
@ Introduce extended system of equations

9~ () -0

@ with Jacobian

= GA G)\ é?

m
)
Il
<
Il
9>
N——

NN R
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Pseudo-arclength continuation - any step

@ For j = 0 take starting value Xo = (Yo, \g), otherwise take
result of previous step X; = (¥, \;) that solves E(X;, s;) = 0.
(s may be shifted to zero each step, but may also be
monitored)

@ Want the solution (X;.1,5;1) at 5,1 = §j+ As

@ Strategy

(1) Use tangent of curve X(s) at point (X;, s;) as predictor ij(ﬂ
for X1 at 541 = 5+ As.

(2) Use Newton’s method to iterate (starting with i}ﬂ
obtain X1 at fixed s;. 1 to arbitrary exactness.

@ Then repeat to change s to continue along solution branch

) and
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Pseudo-arclength continuation - obtaining the tangent

@ How do we get the tangent direction 9x/0s?

@ Differentiate E(i(s), s) = 0 with respect to s (chain rule):
OE oX  OE
ﬁ % + % = 0 (**)

@ Solve inhomogeneous algebraic system of equations (%)

for tangent vector 6X/0s.
@ Notation:

~  OE ~  JE
Y — = E = —
X ox and 7 9s

@ Problem: (xx) is nonlinear in 9X/ds as it is contained in E;
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Pseudo-arclength continuation - obtaining the tangent

@ Solve (xx) iteratively, i.e.,solve for k = 1,2, ...

Gy G _
y A =0
\ @(k) ‘ ax(k)
as as
G _ 9 9
@ Above we use 92 =0and 32 = —1.
% (0)

@ For starting values 53 of iteration use arbitrary choice in
first continuation step (j = 0), and the values from previous
continuation step otherwise

@ As the final equation of the system above is merely a
normalisation condition, one should iterate only once and
normalise’

'Otherwise result might oscillate between two vectors in tangent direction

with absolute values & and 1/¢ for arbitrary &.
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Pseudo-arclength continuation - tangent predictor step

1. Start with X; at s;.
2. We obtained tangent direction 2%, at (X;, s;)

3. Obtain initial 'guess’ X0

i at s = s+ Asby

X
83

@ _ ox
X = Xj+ As 75

using the normalised tangent direction
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Pseudo-arclength continuation - Newton correction

(+)1 at sjy1.

2. Obtain next iteration by solving inhomogeneous linear
algebraic system of equations (x) at fixed s;,1, i.e.

1. Take initial guess x

Ex(X!)y, 541) AX), = —~E(X);, 541)

for Ax(’)1 = x/(:q” Aj(jr)1
SU+1) _ () (I)
3. Obtain X;, ;" = X'y + AX;
Repeat Newton step (1.-3.) untll wanted accuracy is reached

(i.e. ||Ax 1| smaller than some given threshhold value).
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Example: Predator prey model

@ Remember, a typical two-species model is

dy
~ = GO
with
G, \) = (3}’1(1 = Y1) = Y1y2 — M1 — exp(— 5}’1))>
’ Y2+ 3y1y2
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Example: Predator prey model

@ Fixed points / equilibria given by

G(Y,\) =0

@ Introduce arclength s as control parameter and get
augmented system

with X = (Y, \)
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Example: Predator prey model

@ We need the Jacobian

3 —6y1 — y2 — 5hexp(—5y4) 4 exp(—3yy) — 1
Ei = 3y2 3y1 -1 0
oy oy [
Js 0s as

and the derivative of E with respect to the continuation

parameter s
= 0

= OE

E = — =

5[5
@ Atyy = (1,0) and )y = 0 we have
& _ (-3 -1 ~  [exp(-5)—1\  [(—0.993
5-(o2) &= ) (%)
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Example: Predator prey model

@ The tangent vector X is obtained by solving (xx) iteratively:

( 3 —0.993) % (o)
0o 2 0 - (o
1v3 1v3 1/v3 ) %l \4

where the last row in E; is a random initial choice (result

converges after 1 iteration)
0.969
= 0
0 0.095

After normalisation, we get
° 250) is our starting guess for the Newton iteration at s;.

A~

15) 4

0s

~0.314 o
= | o0 and X\¥ =xo+As 8%
0 0.949

where we specified As = 0.1.

Uwe Thiele, Minster — www.uwethiele.de Numerical Continuation 41

Example: Predator prey model

@ General Newton step at s is
Exx).s1) ax) = —E&).s1)  (xx%)
for AR = x0+1) _ g0

@ Step 1 from igo) to ig” corresponds to solving (* » ) for
i=0,ie.

—2.815 —0.969 —0.992 ~0.0032
00 1906 00 |axt¥=—[ o0

-0314 0.0 0.949 0.0

0.968
toobtain ~ x{" = [ 0.0

0.095
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Example: Predator prey model

@ Step 2 from ig” to igz) corresponds to solving (x x x) with
i=1,ie.

—2.809 —0.968 —0.992 —0.0
00 1903 00 |axV=—1 00

-0.314 0.0 0.949 0.0

0.968
toobtain  x¥ = [ 0.0

0.095
@ As iﬁz) = iﬁ” to 3sd we have found

0.968
X = | 00
0.095

@ Now one would play this again: increase sto so = sy + AsS,
do the tangent prediction and correction by Newton
iterations, etc.
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Parameter continuation - plot of results

Parameter continuation - alternatives

T ‘ T ‘ T ‘ T ‘ T
1 —
L @ Predictor step
08 ] e use secant instead of tangent - needs information about X;
As=0.1 and X;_; (need tangent predictor for 1st step)
06 4 Newton steps | @ Corrector step [various choices of p(X, s)]
— -~ .
D>~ o4l | e Natural continuation: fix any component of X;,1 (special
k case simple continuation: fix A1) - best choice component
with largest |9sx| as this is the fastest changing one
0.2 ] o Pseudo-arclength: Newton steps orthogonal to tangent
I direction
0 @ Moore-Penrose continuation: p(X, s) changes during
I ./ Newton iterations
02 L | L | L | L | L
0 0.2 0.4 0.6 0.8 1
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Outlook: Software for continuation techniques

Detection and continuation of bifurcations

General strategy:

@ Device a test function 7(X, ;1) that crosses zero at
bifurcation in question (e.g., based on Jacobian). u is an
additional control parameter beside primary control
parameter \

@ When following X at fixed z, monitor 7(X, z); when
zero-crossing is detected, obtain exact Awir through Newton
on augmented E,,e = ( E | 7)T =0

@ Gontinue loci of bifurcation by continuing (in s) solutions to
Eoug(Xaug) = 0 With Xaue = (Y | A 1)
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General strategy:

@ auto07p: very versatile, 'any’ ODE problem
(github.com/auto-07p), coupling with FFTW available
Tutorials available on CeNoS website
(www.uni-muenster.de/CeNoS/Lehre/Tutorials/continuation.html)

@ pde2path: continuation for systems of PDEs
(www.staff.uni-oldenburg.de/hannes.uecker/pde2path)

@ oomph-1ib: released version can do time simulation &
continuation for PDE (oomph-lib.maths.man.ac.uk)

@ Others: matcont, DDE-BIFTOOL, PyDSTool, loca,...
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Further themes

@ Coarse bifurcation theory: use continuation tool as
wrapper on ’any’ time simulator, be it
continuous/discrete/black box (Kevrekidis, Avitabile, Lloyd)

@ Continuation of stable/unstable manifolds in phase space
(Doedel)

@ Continuation of homoclinic/heteroclinic solutions to ODE
(homcont part of auto07p)

@ Tricks to (i) follow global bifurcations, (ii) obtain and follow
self-similar solutions, (iii) obtain real eigenvalues as
branching points, ...
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