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Context

Stand-alone lecture on Continuation techniques
Given in the context of a lecture course Introduction to the

theory of phase transitions

Introductory lecture tailored at Bachelor/Master students,
possibly also useful for beginning PhD
Sufficiently detailed to enable everyone to create their own
numerical continuation code
Accompanied by hands-on tutorials hosted at www.uni-
muenster.de/CeNoS/Lehre/Tutorials/continuation.html
– aka Münsteranian Torturials
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Aims part 1

Numerical analysis of bifurcation problems - motivation
Recap Newton’s method in one dimension (root finding)
Multi-dimensional Newton’s method
Simple parameter continuation

General scheme
Tangent predictor
Newton corrector

Example problem (Predator-prey model)
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Münsteranian Torturials: Continuation (1d)
hosted by Center of Nonlinear Science (CeNoS) of WWU Münster
http://www.uni-muenster.de/CeNoS/Lehre/Tutorials/auto.html
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Numerical analysis by direct time simulation

Normally known how to solve Initial Value Problems
(e.g. for n first order ODE)

dy1
dt

= f1(y1, y2, . . . , yn)

dy2
dt

= f2(y1, y2, . . . , yn)

...
dyn

dt
= fn(y1, y2, . . . , yn)

using single- and multi-step (time-stepping) methods, e.g.,
4th order Runge-Kutta
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Numerical analysis by direct time simulation

Convenient vector notation for system of n equations:

dby
dt

= bF(by)

with by = (y1, y2, . . . , yn)T and bF = (f1, f2, . . . , fn)
T

Time-stepping methods
+ give valuable insight into transient behaviour
+ predict system behaviour for given particular parameter

values and initial conditions (IC)
– are tedious, when one is interested in the entire solution

structure of the given nonlinear ODE and its change with
parameter(s)

– are unable to determine unstable solutions, i.e., can only
give an incomplete picture of bifurcations
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Path-continuation and bifurcation techniques

Effective way to study the bifurcation structure of ODE (and
PDE) and its change with control parameter(s)
Powerful set of techniques based on bifurcation theory that
allow one to

Follow steady and stationary states in parameter space
(parameter continuation)
Determine stability of such states
Identify bifurcation points, i.e. loci where new branches of
states emerge (might be time-periodic states, states of
different symmetry, etc.)
Follow ’new’ branches in parameter space.
Follow bifurcation points in (higher dimensional) parameter
space

! more complete characterisation of system behaviour,
and for a better understanding of transitions to more
complex behaviour
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Example - Langmuir-Blodgett transfer

Timestepping
! stable steady & time-periodic states, incl. hysteresis
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Data from M. Köpf, S. Gurevich, R. Friedrich, UT, New J. Phys. 14, 023016 (2012);

M. Köpf and UT, Nonlinearity 27, 2711 (2014)
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Example - Langmuir-Blodgett transfer

Continuation (lines) & Timestepping (symbols)
! full bifurcation structure
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General problem setting for parameter continuation

Assume we have a system of n unknowns yi depending on
one free parameter �

dby
dt

= bG(by,�)

For each �, steady states by (equilibria, fixed points) might
exist, defined by

dby
dt

= 0 i.e. bG(by,�) = 0

Denote one fixed point at some � = �0 by by0, i.e.,

bG(by0,�0) = 0
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General problem setting for parameter continuation
One can show that any regular solution (to be defined
later) (by0,�0) lies on (is part of) a unique one-dimensional
continuum of states (also called a solution branch)

y

y0

λ
0 λ

How do we get a ’neighbouring solution’ at �0 +��?Uwe Thiele, Münster – www.uwethiele.de Numerical Continuation 11



Recap: Newton’s method – 1 dimension

Definition of forward difference scheme for f 0:

f
0(y (i)) =

f (y (i+1))� f (y (i))

y (i+1) � y (i)
with f (y (i+1)) = 0

gives iterative method for finding solution of equation
f (y) = 0 using steps:

y
(i+1) = y

(i) � f (y (i))

f 0(y (i))

Also write as “linear inhomogeneous equation”
f 0(y (i))�y (i) = �f (y (i)) with �y (i) = y (i+1) � y (i)
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Recap: Newton’s method – n dimensions

Multi-dimensional equivalent can be used to find solutions
by of the system of equations (for particular �)

bG(by,�) = 0

using the iterative procedure

bGby(by(i),�)�by(i) = �bG(by(i),�) (?)

that gives a (hopefully) converging set of vectors
(by(0), by(1), by(2), by(3), . . . )
bGby(by(i),�) is the Jacobian matrix
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Recap: Jacobian

The Jacobian bGby(by(i);�) is the 1st derivative of vector bG
w.r.t. the vector by:

bGby =
@ bG
@by

=

0

BBBBBBB@

@G1
@y1

@G1
@y2

· · · @G1
@yn

@G2
@y1

. . . ...
... . . . ...

@Gn

@y1
· · · · · · @Gn

@yn

1

CCCCCCCA

calculated at (by(i),�)

Index notation: (bGby)lk = @Gl/@yk = Gl,k
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Simple parameter continuation - 1st step

Determine (by0,�0) that solves bG(by0,�0) = 0 (e.g., clever
choice of � where solution is known analytically)
Want to obtain the solution (by1,�1) at �1 = �0 +��

Strategy
(1) Use tangent of curve by(�) at point (by0,�0) to obtain

predictor by(0)
1 for by1 at �1.

(2) Use Newton’s method to iterate at fixed � = �1 (starting
with by(0)

1 ) and obtain by1 to arbitrary exactness.
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Simple parameter continuation - sketch

Δλ

λ
2

y

y0 y1

y2

y1
(0)

y2
(0)

λ
0 λ

Δλ

λ
1
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Simple parameter continuation - step j + 1

Take result of previous step (byj ,�j) that is a numerical
approximation that solves bG(byj ,�j) = 0.
We want to obtain the solution (byj+1,�j+1) at
�j+1 = �j +��

Strategy
(1) Use tangent of curve by(�) at point (byj ,�j) as predictor by(0)

j+1
for byj+1 at �j+1.

(2) Use Newton’s method to iterate at fixed �j+1 (starting with
by(0)

j+1) and obtain byj+1 to arbitrary exactness.

Then repeat to change � to continue along solution branch
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Parameter continuation - obtaining the tangent

How do we get the tangent direction @by/@�?

Differentiate bG(by(�),�) = 0 with respect to � (chain rule):

@ bG
@by

@by
@�

+
@ bG
@�

= 0

Solve inhomogeneous linear algebraic system of equations

bGby
@by
@�

= � bG� (??)

for tangent vector @by/@�.
Notation:

bGby =
@ bG
@by

and bG� =
@ bG
@�
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Tangent predictor step

1. Start with byj at �j .

2. Get tangent direction @by
@� |j at (byj ,�j) solving (??), i.e.

bGby(byj ,�j)
@by
@�

����
j

= � bG�(byj ,�j)

(and normalising |@by/@�| = 1 - here not done)

3. Obtain initial ’guess’ by(0)
j+1 at �j+1 = �j +�� by

by(0)
j+1 = byj +��

@by
@�

����
j
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Newton correction at fixed �j+1

1. Take initial guess by(0)
j+1 at �j+1.

2. Obtain next iteration by solving inhomogeneous linear
algebraic system of equations

bGby(by
(i)
j+1,�j+1)�by(i)

j+1 = �bG(by(i)
j+1,�j+1)

for �by(i)
j+1 = by(i+1)

j+1 � by(i)
j+1.

3. Obtain by(i+1)
j+1 = by(i)

j+1 +�by(i)
j+1.

Repeat Newton step (1.-3.) until wanted accuracy is reached
(i.e. ||�by(i)

j+1|| smaller than some given threshhold value).
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Example: Predator prey model

In studies of the time-evolution of populations of interacting
species one often uses ODEs describing the mean density
or overall number of animals
A typical two-species model is

dy1
dt

= g1(y1, y2,�)

dy2
dt

= g2(y1, y2,�)

with

g1(y1, y2,�) = 3y1(1 � y1)�y1y2��(1 � exp(�5y1))

g2(y1, y2,�) = �y2+3y1y2

where y1 and y2 are normalized prey and predator
numbers, respectively.
Meaning of terms: eating/getting eaten; getting fished;
(saturated) birth/death rates
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Example: Predator prey model

Fixed points / equilibria given by

dy1
dt

=
dy2
dt

= 0

i.e.,

0 = 3y1(1 � y1)� y1y2 � �(1 � exp(�5y1))

0 = �y2 + 3y1y2

For � = �0 = 0 we have three fixed points by = (y1, y2)

(0, 0) (1, 0)
✓

1
3
, 2

◆

(0, 0) is a ’trivial’ fixed point valid for any �

Let us focus on the 2nd one: (1, 0) and continue it for
� > 0.
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Example: Predator prey model

We need the Jacobian

bGby =
@ bG
@by

=

0

@
3 � 6y1 � y2 � 5� exp(�5y1) �y1

3y2 3y1 � 1

1

A

and the derivative of bG with respect to the continuation
parameter

bG� =
@ bG
@�

=

✓
exp(�5y1)� 1

0

◆

At by0 = (1, 0) and �0 = 0 we have

bGby =

✓
�3 �1
0 2

◆
bG� =

✓
exp(�5)� 1

0

◆
=

✓
�0.993

0

◆

Uwe Thiele, Münster – www.uwethiele.de Numerical Continuation 23



Example: Predator prey model

The tangent vector is obtained by solving (??)

✓
�3 �1
0 2

◆
@by
@�

����
0
=

✓
�0.993

0

◆

We get

@by
@�

����
0
=

✓
�0.331

0

◆
and by(0)

1 = cy0+��
@by
@�

����
0
=

✓
0.967

0

◆

where we specified �� = 0.1.
by(0)

1 is our starting guess for the Newton iteration at �1.
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Example: Predator prey model

General Newton step at �1 specifies (?), i.e.

bGby(by
(i)
1 ,�1)�by(i)

1 = �bG(by(i)
1 ,�1) (? ? ?)

for �by(i)
1 = by(i+1)

1 � by(i)
1 .

Step 1 from by(0)
1 to by(1)

1 corresponds to solving (? ? ?) for
i = 0, i.e.

✓
�2.805 �0.967

0.0 1.901

◆
�by(0)

1 = �
✓
�0.003

0.0

◆

to obtain by(1)
1 = �

✓
0.966
0.0

◆
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Example: Predator prey model

Step 2 from by(1)
1 to by(2)

1 corresponds to solving (? ? ?) with
i = 1, i.e.

✓
�2.799 �0.966

0.0 1.897

◆
�by(1)

1 =

✓
0.0
0.0

◆

to obtain by(2)
1 =

✓
0.966
0.0

◆

As by(2)
1 = by(1)

1 to 3sd we have found

by1 =

✓
0.966
0.0

◆

Now, one would play this again: increase � to
�2 = �1 +��, do the tangent prediction and Newton
iterations, etc.
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Parameter continuation - plot of results
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Parameter continuation - issues with simple method

Method uses predictor based on tangent @by/@� where � is
the control parameter of the problem
Newton’s method used to correct solution at fixed �

This works nicely when locally there is one-to-one
correspondence of solutions by and parameter �
Method breaks down at saddle-node bifurcations as there
exist two solutions by for � < �sn and none for � > �sn

With other words: one can not go around folds (that occur
frequently, see our example)
How can we fix that?
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Aims part 2

Pseudo-arclength continuation
General scheme
Tangent predictor
Newton corrector

Example problem (Predator-prey model)
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Pseudo-arclength continuation

We need parameter that is unique along a branch even if
the branch undergoes saddle-node bifurcations
Good option: Arclength s along the branch
Then we treat � as an additional element of the solution
vector by, i.e., we introduce bx = (by,�) and determine both
components in dependence of the new control parameter s

However, s is not known beforehand
Use local approximation (pythagoras)

|�by|2 + (��)2 = (�s)2

to obtain additional equation p(by,�, s) = 0 that
supplements bG(by,�) = 0
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Transform arclength condition

Start with
|�by|2 + (��)2 = (�s)2

Use

|�by|2 = (byj+1 � byj)
(byj+1 � byj)

�s
�s ⇡ (byj+1 � byj)

@by
@s

�s

and equally

(��)2 ⇡ (�j+1 � �j)
@�

@s
�s

Therefore, the additional equation is

p(by,�, s) = (byj+1 � byj)
@by
@s

+ (�j+1 � �j)
@�

@s
��s = 0
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Pseudo-arclength continuation – Notation

Compact notation allows us to use the formalism
introduced for simple continuation scheme
Treat �(s) as additional dependent variable beside by(s)
Join them into vector bx = (by,�)
Introduce extended system of equations

bE(bx, s) =
✓ bG(by,�)

p(by,�, s)

◆
= b0

with Jacobian

bEbx =

0

BB@
bGby

bG�

pby p�

1

CCA =

0

BBB@
bGby

bG�

@by
@s

@�
@s

1

CCCA
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Pseudo-arclength continuation - any step

For j = 0 take starting value bx0 = (by0,�0), otherwise take
result of previous step bxj = (byj ,�j) that solves bE(bxj , sj) = 0.
(sj may be shifted to zero each step, but may also be
monitored)
Want the solution (bxj+1, sj+1) at sj+1 = sj +�s

Strategy
(1) Use tangent of curve bx(s) at point (bxj , sj) as predictor bx(0)

j+1
for bxj+1 at sj+1 = sj +�s.

(2) Use Newton’s method to iterate (starting with bx(0)
j+1) and

obtain bxj+1 at fixed sj+1 to arbitrary exactness.

Then repeat to change s to continue along solution branch
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Pseudo-arclength continuation - obtaining the tangent

How do we get the tangent direction @bx/@s?
Differentiate bE(bx(s), s) = 0 with respect to s (chain rule):

@bE
@bx

@bx
@s

+
@bE
@s

= 0 (??)

Solve inhomogeneous algebraic system of equations (??)
for tangent vector @bx/@s.
Notation:

bEbx =
@bE
@bx

and bEs =
@bE
@s

Problem: (??) is nonlinear in @bx/@s as it is contained in bEbx
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Pseudo-arclength continuation - obtaining the tangent

Solve (??) iteratively, i.e.,solve for k = 1, 2, . . .
0

BBB@

bGby
bG�

@by
@s

(k) @�
@s

(k)

1

CCCA

0

BBB@
@by
@s

(k+1)

@�
@s

(k+1)

1

CCCA
+

0

BBB@
@bG
@s

@p

@s

1

CCCA
= b0

Above we use @bG
@s

= b0 and @p

@s
= �1.

For starting values @bx
@s

(0)
of iteration use arbitrary choice in

first continuation step (j = 0), and the values from previous
continuation step otherwise
As the final equation of the system above is merely a
normalisation condition, one should iterate only once and
normalise1

1Otherwise result might oscillate between two vectors in tangent direction
with absolute values ⇠ and 1/⇠ for arbitrary ⇠.
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Pseudo-arclength continuation - tangent predictor step

1. Start with bxj at sj .

2. We obtained tangent direction @bx
@s
|j at (bxj , sj)

3. Obtain initial ’guess’ bx(0)
j+1 at sj+1 = sj +�s by

bx(0)
j+1 = bxj +�s

@bx
@s

����
j

,�����
@bx
@s

����
j

�����

using the normalised tangent direction
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Pseudo-arclength continuation - Newton correction

1. Take initial guess bx(0)
j+1 at sj+1.

2. Obtain next iteration by solving inhomogeneous linear
algebraic system of equations (?) at fixed sj+1, i.e.

bEbx(bx
(i)
j+1, sj+1)�bx(i)

j+1 = �bE(bx(i)
j+1, sj+1)

for �bx(i)
j+1 = bx(i+1)

j+1 � bx(i)
j+1.

3. Obtain bx(i+1)
j+1 = bx(i)

j+1 +�bx(i)
j+1.

Repeat Newton step (1.-3.) until wanted accuracy is reached
(i.e. ||�bx(i)

j+1|| smaller than some given threshhold value).
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Example: Predator prey model

Remember, a typical two-species model is

dby
dt

= bG(by,�)

with

bG(by,�) =
✓

3y1(1 � y1)� y1y2 � �(1 � exp(�5y1))
�y2 + 3y1y2

◆
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Example: Predator prey model

Fixed points / equilibria given by

bG(by,�) = b0

Introduce arclength s as control parameter and get
augmented system

bE(bx, s) =

0

BB@
bG(bx)

p(bx, s)

1

CCA = b0

with bx = (by,�)
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Example: Predator prey model

We need the Jacobian

bEbx =

0

BBBB@

3 � 6y1 � y2 � 5� exp(�5y1) �y1 exp(�5y1)� 1

3y2 3y1 � 1 0

@y1
@s

@y2
@s

@�
@s

1

CCCCA

and the derivative of bE with respect to the continuation
parameter s

bEs =
@bE
@s

=

0

@
0
0
�1

1

A

At by0 = (1, 0) and �0 = 0 we have

bGby =

✓
�3 �1
0 2

◆
bG� =

✓
exp(�5)� 1

0

◆
=

✓
�0.993

0

◆
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Example: Predator prey model

The tangent vector bxs is obtained by solving (??) iteratively:
0

@
�3 �1 �0.993
0 2 0

1/
p

3 1/
p

3 1/
p

3

1

A @bx
@s

����
0
=

0

@
0
0
1

1

A

where the last row in bEbx is a random initial choice (result
converges after 1 iteration)
After normalisation, we get

@bx
@s

����
0
=

0

@
�0.314

0.0
0.949

1

A and bx(0)
1 = cx0+�s

@by
@�

����
0
=

0

@
0.969

0
0.095

1

A

where we specified �s = 0.1.
bx(0)

1 is our starting guess for the Newton iteration at s1.
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Example: Predator prey model

General Newton step at s1 is

bEbx(bx
(i)
1 , s1)�bx(i)

1 = �bE(bx(i)
1 , s1) (? ? ?)

for �bx(i)
1 = bx(i+1)

1 � bx(i)
1

Step 1 from bx(0)
1 to bx(1)

1 corresponds to solving (? ? ?) for
i = 0, i.e.
0

@
�2.815 �0.969 �0.992

0.0 1.906 0.0
�0.314 0.0 0.949

1

A�bx(0)
1 = �

0

@
�0.0032

0.0
0.0

1

A

to obtain bx(1)
1 =

0

@
0.968
0.0

0.095

1

A
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Example: Predator prey model
Step 2 from bx(1)

1 to bx(2)
1 corresponds to solving (? ? ?) with

i = 1, i.e.
0

@
�2.809 �0.968 �0.992

0.0 1.903 0.0
�0.314 0.0 0.949

1

A�bx(1)
1 = �

0

@
�0.0
0.0
0.0

1

A

to obtain bx(2)
1 =

0

@
0.968

0.0
0.095

1

A

As bx(2)
1 = bx(1)

1 to 3sd we have found

bx1 =

0

@
0.968
0.0

0.095

1

A

Now one would play this again: increase s to s2 = s1 +�s,
do the tangent prediction and correction by Newton
iterations, etc.
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Parameter continuation - plot of results

0 0.2 0.4 0.6 0.8 1

λ

-0.2

0

0.2

0.4

0.6

0.8

1

y
1

∆s=0.1
4 Newton steps
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Parameter continuation - alternatives

Predictor step
use secant instead of tangent - needs information about bxj

and bxj�1 (need tangent predictor for 1st step)
Corrector step [various choices of p(bx, s)]

Natural continuation: fix any component of bxj+1 (special
case simple continuation: fix �j+1) - best choice component
with largest |@sx | as this is the fastest changing one
Pseudo-arclength: Newton steps orthogonal to tangent
direction
Moore-Penrose continuation: p(bx, s) changes during
Newton iterations
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Outlook:
Detection and continuation of bifurcations

General strategy:
Device a test function ⌧(bx, µ) that crosses zero at
bifurcation in question (e.g., based on Jacobian). µ is an
additional control parameter beside primary control
parameter �
When following bx at fixed µ, monitor ⌧(bx, µ); when
zero-crossing is detected, obtain exact �bif through Newton
on augmented bEaug = ( bE | ⌧)T = 0
Continue loci of bifurcation by continuing (in s) solutions to
bEaug(bxaug) = b0 with bxaug = ( by | � µ)T
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Software for continuation techniques

General strategy:
auto07p: very versatile, ’any’ ODE problem
(github.com/auto-07p), coupling with FFTW available
Tutorials available on CeNoS website
(www.uni-muenster.de/CeNoS/Lehre/Tutorials/continuation.html)

pde2path: continuation for systems of PDEs
(www.staff.uni-oldenburg.de/hannes.uecker/pde2path)
oomph-lib: released version can do time simulation &
continuation for PDE (oomph-lib.maths.man.ac.uk)
Others: matcont, DDE-BIFTOOL, PyDSTool, loca, . . .

Uwe Thiele, Münster – www.uwethiele.de Numerical Continuation 47



Further themes

Coarse bifurcation theory: use continuation tool as
wrapper on ’any’ time simulator, be it
continuous/discrete/black box (Kevrekidis, Avitabile, Lloyd)
Continuation of stable/unstable manifolds in phase space
(Doedel)
Continuation of homoclinic/heteroclinic solutions to ODE
(homcont part of auto07p)
Tricks to (i) follow global bifurcations, (ii) obtain and follow
self-similar solutions, (iii) obtain real eigenvalues as
branching points, . . .
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