<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Mexico temperature notebook</title>
<meta name="generator" content="Org mode">


<link rel="stylesheet" type="text/css" href="https://arfer.net/daylight.css">
</head>
<body>
<div id="content">
<header>
<h1 class="title">Mexico temperature notebook</h1><p class="subtitle">Kodi B. Arfer<br>Created 10 Sep 2018 • Last modified 26 Jan 2021</p>
</header>

<nav id="table-of-contents">
<h2>Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a class="internal" href="#sec--how-things-were">How things were</a></li>
<li><a class="internal" href="#sec--time-shenanigans">Time shenanigans</a></li>
<li><a class="internal" href="#sec--metereological-missingness">Metereological missingness</a></li>
<li><a class="internal" href="#sec--satellitetemperature-missingness">Satellite-temperature missingness</a></li>
<li><a class="internal" href="#sec--station-metadata">Station metadata</a></li>
<li><a class="internal" href="#sec--crossvalidation-results">Cross-validation results</a>
<ul>
<li><a class="internal" href="#sec--with-vs-without-training">With vs. without training Wunderground</a></li>
</ul>
</li>
<li><a class="internal" href="#sec--learning-curve">Learning curve</a></li>
<li><a class="internal" href="#sec--new-predictions">New predictions</a></li>
<li><a class="internal" href="#bibliography">References</a></li>
</ul>
</div>
</nav><div class="outline-2">
<h2 id="sec--how-things-were">How things were</h2>
<div class="outline-text-2">
<p>
Stages:
</p>

<ol class="org-ol">
<li>Mixed effects for grid cells with both satellite and ground data</li>
<li>Predict temperature in cells with satellite data but no ground data, using the mixed model(s) fit at stage 1</li>
<li>Predict temperature in cells with no satellite data using a spatial smoother</li>
</ol>

<p>
<a class='internal bibref' href='#bibref--rosenfelddsnj_2017'>Rosenfeld et al. (2017)</a> describes the method as applied to Israel.
</p>
</div>
</div>

<div class="outline-2">
<h2 id="sec--time-shenanigans">Time shenanigans</h2>
<div class="outline-text-2">
<p>
<a class='internal bibref' href='#bibref--hubmbw_2014'>Hu, Brunsell, Monaghan, Barlage, and Wilhelmi (2014)</a>: "The overpass times provided by MODIS LST product are in local solar time, which is defined as the MODIS observation time in coordinated universal time (UTC) plus longitude in degrees divided by 15 (<a class='internal bibref' href='#bibref--williamsonhgkk_2013'>Williamson, Hik, Gamon, Kavanaugh, &amp; Koh, 2013</a>)."
</p>

<p>
MODIS documentation: "Note that the Day_view_time and Night_view_time are in local solar time, which is the UTC time plus grid’s longitude in degrees / 15 degrees (in hours , +24 if local solar time &lt; 0 or - 24 if local solar time &gt;= 24). The data day in the name of all the daily MOD11A1 files is in UTC so the data day in local solar time at each grid may be different from the data day in UTC by one day."
</p>
</div>
</div>

<div class="outline-2">
<h2 id="sec--metereological-missingness">Metereological missingness</h2>
<div class="outline-text-2">
<p>
Are there any days on which one of the ground-station meterological variables is missing from every station?
</p>

<div class="org-src-container">
<pre class="src src-R">sapply(
    subset(select = -date, ground[,
        by = date,
        .SDcols = c(temp.ground.vars, nontemp.ground.vars),
        lapply(.SD, <span style="color: #cd0000; font-weight: bold;">function</span>(v) all(is.na(v)))]),
    any)
</pre>
</div>

<table>


<colgroup>
<col  class="left">

<col  class="left">
</colgroup>
<thead>
<tr>
<th scope="col" class="left">&#xa0;</th>
<th scope="col" class="left">x</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">ground.temp.lo</td>
<td class="left">FALSE</td>
</tr>

<tr>
<td class="left">ground.temp.mean</td>
<td class="left">FALSE</td>
</tr>

<tr>
<td class="left">ground.temp.hi</td>
<td class="left">FALSE</td>
</tr>

<tr>
<td class="left">wind.speed.mean</td>
<td class="left">FALSE</td>
</tr>
</tbody>
</table>

<p>
Fortunately, no.
</p>
</div>
</div>

<div class="outline-2">
<h2 id="sec--satellitetemperature-missingness">Satellite-temperature missingness</h2>
<div class="outline-text-2">
<div class="org-src-container">
<pre class="src src-R">r = rbindlist(lapply(available.years, <span style="color: #cd0000; font-weight: bold;">function</span>(y)
   {d = model.dataset(y, mrow.set = <span style="background-color: #ffefd5;">"pred.area"</span>)
    cbind(year = y, d[,
        .SDcols = c(<span style="background-color: #ffefd5;">"satellite.temp.day.imputed"</span>, <span style="background-color: #ffefd5;">"satellite.temp.night.imputed"</span>),
        lapply(.SD, mean)])}))
setnames(r, c(<span style="background-color: #ffefd5;">"year"</span>, <span style="background-color: #ffefd5;">"day"</span>, <span style="background-color: #ffefd5;">"night"</span>))
</pre>
</div>

<div class="org-src-container">
<pre class="src src-R">rd(d = 2, as.data.frame(r))
</pre>
</div>

<table id="tab--sat-temp-missingness">


<colgroup>
<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="right">year</th>
<th scope="col" class="right">day</th>
<th scope="col" class="right">night</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="right">2003</td>
<td class="right">0.30</td>
<td class="right">0.35</td>
</tr>

<tr>
<td class="right">2</td>
<td class="right">2004</td>
<td class="right">0.52</td>
<td class="right">0.50</td>
</tr>

<tr>
<td class="right">3</td>
<td class="right">2005</td>
<td class="right">0.30</td>
<td class="right">0.30</td>
</tr>

<tr>
<td class="right">4</td>
<td class="right">2006</td>
<td class="right">0.31</td>
<td class="right">0.36</td>
</tr>

<tr>
<td class="right">5</td>
<td class="right">2007</td>
<td class="right">0.28</td>
<td class="right">0.33</td>
</tr>

<tr>
<td class="right">6</td>
<td class="right">2008</td>
<td class="right">0.29</td>
<td class="right">0.30</td>
</tr>

<tr>
<td class="right">7</td>
<td class="right">2009</td>
<td class="right">0.26</td>
<td class="right">0.30</td>
</tr>

<tr>
<td class="right">8</td>
<td class="right">2010</td>
<td class="right">0.32</td>
<td class="right">0.33</td>
</tr>

<tr>
<td class="right">9</td>
<td class="right">2011</td>
<td class="right">0.23</td>
<td class="right">0.27</td>
</tr>

<tr>
<td class="right">10</td>
<td class="right">2012</td>
<td class="right">0.31</td>
<td class="right">0.35</td>
</tr>

<tr>
<td class="right">11</td>
<td class="right">2013</td>
<td class="right">0.32</td>
<td class="right">0.37</td>
</tr>

<tr>
<td class="right">12</td>
<td class="right">2014</td>
<td class="right">0.32</td>
<td class="right">0.35</td>
</tr>

<tr>
<td class="right">13</td>
<td class="right">2015</td>
<td class="right">0.34</td>
<td class="right">0.37</td>
</tr>

<tr>
<td class="right">14</td>
<td class="right">2016</td>
<td class="right">0.34</td>
<td class="right">0.36</td>
</tr>

<tr>
<td class="right">15</td>
<td class="right">2017</td>
<td class="right">0.27</td>
<td class="right">0.28</td>
</tr>

<tr>
<td class="right">16</td>
<td class="right">2018</td>
<td class="right">0.29</td>
<td class="right">0.34</td>
</tr>

<tr>
<td class="right">17</td>
<td class="right">2019</td>
<td class="right">0.25</td>
<td class="right">0.29</td>
</tr>
</tbody>
</table>
</div>
</div>

<div class="outline-2">
<h2 id="sec--station-metadata">Station metadata</h2>
<div class="outline-text-2">
<div class="org-src-container">
<pre class="src src-R">as.data.frame(station.metadata())
</pre>
</div>

<table>


<colgroup>
<col  class="right">

<col  class="left">

<col  class="left">

<col  class="left">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="left">

<col  class="left">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="left">network</th>
<th scope="col" class="left">station</th>
<th scope="col" class="left">region</th>
<th scope="col" class="right">lon</th>
<th scope="col" class="right">lat</th>
<th scope="col" class="right">elev.m</th>
<th scope="col" class="right">date.min</th>
<th scope="col" class="right">date.max</th>
<th scope="col" class="right">n.obs</th>
<th scope="col" class="left">land.cover</th>
<th scope="col" class="left">climate.type</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="left">emas</td>
<td class="left">ALTZOMONI</td>
<td class="left">Valle de México</td>
<td class="right">-98.655</td>
<td class="right">19.119</td>
<td class="right">3,959</td>
<td class="right">2012-11-01</td>
<td class="right">2019-12-30</td>
<td class="right">2,335</td>
<td class="left">High mountain meadow</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">2</td>
<td class="left">emas</td>
<td class="left">APAN</td>
<td class="left">&#xa0;</td>
<td class="right">-98.466</td>
<td class="right">19.728</td>
<td class="right">2,475</td>
<td class="right">2015-05-13</td>
<td class="right">2019-12-30</td>
<td class="right">1,513</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">3</td>
<td class="left">emas</td>
<td class="left">ATLACOMULCO</td>
<td class="left">&#xa0;</td>
<td class="right">-99.877</td>
<td class="right">19.799</td>
<td class="right">2,568</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">5,722</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">4</td>
<td class="left">emas</td>
<td class="left">CERRO CATEDRAL</td>
<td class="left">Toluca</td>
<td class="right">-99.519</td>
<td class="right">19.542</td>
<td class="right">3,385</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">5,533</td>
<td class="left">Oyamel-fir forest</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">5</td>
<td class="left">emas</td>
<td class="left">ECOGUARDAS</td>
<td class="left">Valle de México</td>
<td class="right">-99.204</td>
<td class="right">19.271</td>
<td class="right">2,578</td>
<td class="right">2008-02-14</td>
<td class="right">2019-12-30</td>
<td class="right">2,991</td>
<td class="left">Secondary (bushy type) vegetation of pine-oak forest</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">6</td>
<td class="left">emas</td>
<td class="left">EL CHICO</td>
<td class="left">&#xa0;</td>
<td class="right">-98.716</td>
<td class="right">20.186</td>
<td class="right">3,007</td>
<td class="right">2012-11-02</td>
<td class="right">2019-12-30</td>
<td class="right">2,448</td>
<td class="left">Oyamel-fir forest</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">7</td>
<td class="left">emas</td>
<td class="left">ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS II, IPN.</td>
<td class="left">Valle de México</td>
<td class="right">-99.145</td>
<td class="right">19.499</td>
<td class="right">2,241</td>
<td class="right">2010-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">2,930</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">8</td>
<td class="left">emas</td>
<td class="left">ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS, IPN.</td>
<td class="left">Valle de México</td>
<td class="right">-99.171</td>
<td class="right">19.454</td>
<td class="right">2,247</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">4,955</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">9</td>
<td class="left">emas</td>
<td class="left">HUAMANTLA</td>
<td class="left">&#xa0;</td>
<td class="right">-97.966</td>
<td class="right">19.386</td>
<td class="right">2,455</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">5,776</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">10</td>
<td class="left">emas</td>
<td class="left">HUAUCHINANGO</td>
<td class="left">&#xa0;</td>
<td class="right">-98.066</td>
<td class="right">20.178</td>
<td class="right">1,565</td>
<td class="right">2008-05-02</td>
<td class="right">2017-12-08</td>
<td class="right">2,352</td>
<td class="left">Human settlements</td>
<td class="left">Temperate humid</td>
</tr>

<tr>
<td class="right">11</td>
<td class="left">emas</td>
<td class="left">HUICHAPAN</td>
<td class="left">&#xa0;</td>
<td class="right">-99.664</td>
<td class="right">20.389</td>
<td class="right">2,087</td>
<td class="right">2006-09-01</td>
<td class="right">2019-07-11</td>
<td class="right">4,048</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">12</td>
<td class="left">emas</td>
<td class="left">HUIMILPAN</td>
<td class="left">&#xa0;</td>
<td class="right">-100.283</td>
<td class="right">20.390</td>
<td class="right">2,279</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">5,457</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">13</td>
<td class="left">emas</td>
<td class="left">IGUALA</td>
<td class="left">&#xa0;</td>
<td class="right">-99.524</td>
<td class="right">18.360</td>
<td class="right">766</td>
<td class="right">2004-11-01</td>
<td class="right">2019-09-23</td>
<td class="right">3,836</td>
<td class="left">Human settlements</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">14</td>
<td class="left">emas</td>
<td class="left">INSTITUTO MEXICANO DE TECNOLOGÍA DEL AGUA</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.157</td>
<td class="right">18.882</td>
<td class="right">1,360</td>
<td class="right">2010-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">3,288</td>
<td class="left">Human settlements</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">15</td>
<td class="left">emas</td>
<td class="left">IZUCAR DE MATAMOROS</td>
<td class="left">&#xa0;</td>
<td class="right">-98.452</td>
<td class="right">18.617</td>
<td class="right">1,310</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">4,974</td>
<td class="left">Semi-permanent irrigation agriculture</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">16</td>
<td class="left">emas</td>
<td class="left">LA MALINCHE I</td>
<td class="left">&#xa0;</td>
<td class="right">-98.044</td>
<td class="right">19.298</td>
<td class="right">2,922</td>
<td class="right">2012-11-01</td>
<td class="right">2019-12-30</td>
<td class="right">2,003</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">17</td>
<td class="left">emas</td>
<td class="left">LA MALINCHE II</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.032</td>
<td class="right">19.141</td>
<td class="right">2,728</td>
<td class="right">2012-11-03</td>
<td class="right">2019-12-30</td>
<td class="right">2,300</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">18</td>
<td class="left">emas</td>
<td class="left">LAGUNAS DE ZEMPOALA</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.313</td>
<td class="right">19.053</td>
<td class="right">2,846</td>
<td class="right">2012-11-01</td>
<td class="right">2019-12-30</td>
<td class="right">2,099</td>
<td class="left">Pine forest</td>
<td class="left">Cold</td>
</tr>

<tr>
<td class="right">19</td>
<td class="left">emas</td>
<td class="left">MARIPOSA MONARCA I</td>
<td class="left">&#xa0;</td>
<td class="right">-100.278</td>
<td class="right">19.671</td>
<td class="right">3,263</td>
<td class="right">2012-11-03</td>
<td class="right">2019-12-25</td>
<td class="right">2,385</td>
<td class="left">Oyamel-fir forest</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">20</td>
<td class="left">emas</td>
<td class="left">MARIPOSA MONARCA II</td>
<td class="left">&#xa0;</td>
<td class="right">-100.290</td>
<td class="right">19.539</td>
<td class="right">3,001</td>
<td class="right">2012-11-14</td>
<td class="right">2019-12-30</td>
<td class="right">2,256</td>
<td class="left">Oyamel-fir forest</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">21</td>
<td class="left">emas</td>
<td class="left">NEVADO DE TOLUCA</td>
<td class="left">Toluca</td>
<td class="right">-99.771</td>
<td class="right">19.126</td>
<td class="right">4,084</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">5,855</td>
<td class="left">High mountain meadow</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">22</td>
<td class="left">emas</td>
<td class="left">PARQUE IZTA-POPO</td>
<td class="left">Valle de México</td>
<td class="right">-98.640</td>
<td class="right">19.096</td>
<td class="right">3,667</td>
<td class="right">2008-02-14</td>
<td class="right">2019-12-30</td>
<td class="right">3,854</td>
<td class="left">High mountain meadow</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">23</td>
<td class="left">emas</td>
<td class="left">PRESA MADÍN</td>
<td class="left">Valle de México</td>
<td class="right">-99.268</td>
<td class="right">19.524</td>
<td class="right">2,374</td>
<td class="right">2003-01-01</td>
<td class="right">2019-11-29</td>
<td class="right">5,713</td>
<td class="left">Human-induced grassland</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">24</td>
<td class="left">emas</td>
<td class="left">SIERRA DE HUAUTLA</td>
<td class="left">&#xa0;</td>
<td class="right">-98.936</td>
<td class="right">18.541</td>
<td class="right">1,311</td>
<td class="right">2012-11-10</td>
<td class="right">2019-12-30</td>
<td class="right">2,145</td>
<td class="left">Secondary (bushy type) vegetation of dry broadleaf forest</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">25</td>
<td class="left">emas</td>
<td class="left">TEHUACAN</td>
<td class="left">&#xa0;</td>
<td class="right">-97.617</td>
<td class="right">18.314</td>
<td class="right">1,737</td>
<td class="right">2012-11-03</td>
<td class="right">2019-12-30</td>
<td class="right">2,405</td>
<td class="left">Crassicaule shrublands</td>
<td class="left">Semi-dry semi-warm</td>
</tr>

<tr>
<td class="right">26</td>
<td class="left">emas</td>
<td class="left">TEPOZTLAN</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.079</td>
<td class="right">18.951</td>
<td class="right">1,385</td>
<td class="right">2004-10-22</td>
<td class="right">2019-02-07</td>
<td class="right">4,840</td>
<td class="left">Secondary (bushy type) vegetation of dry broadleaf forest</td>
<td class="left">Semi-warm subhumid</td>
</tr>

<tr>
<td class="right">27</td>
<td class="left">emas</td>
<td class="left">TEZONTLE</td>
<td class="left">Valle de México</td>
<td class="right">-99.100</td>
<td class="right">19.385</td>
<td class="right">2,236</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">5,874</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">28</td>
<td class="left">emas</td>
<td class="left">TRES MARIAS</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.249</td>
<td class="right">19.051</td>
<td class="right">2,832</td>
<td class="right">2011-01-02</td>
<td class="right">2019-12-30</td>
<td class="right">2,142</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">29</td>
<td class="left">emas</td>
<td class="left">UNIVERSIDAD TECNOLÓGICA DE TECAMACHALCO</td>
<td class="left">&#xa0;</td>
<td class="right">-97.722</td>
<td class="right">18.866</td>
<td class="right">2,027</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-30</td>
<td class="right">5,351</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">30</td>
<td class="left">emas</td>
<td class="left">VALLE DE BRAVO</td>
<td class="left">&#xa0;</td>
<td class="right">-100.085</td>
<td class="right">19.376</td>
<td class="right">2,514</td>
<td class="right">2012-11-07</td>
<td class="right">2019-12-30</td>
<td class="right">1,859</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">31</td>
<td class="left">esimes</td>
<td class="left">CEMCAS</td>
<td class="left">Valle de México</td>
<td class="right">-98.974</td>
<td class="right">19.480</td>
<td class="right">2,236</td>
<td class="right">2014-05-01</td>
<td class="right">2017-05-22</td>
<td class="right">330</td>
<td class="left">Halophilic grassland</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">32</td>
<td class="left">esimes</td>
<td class="left">CUERNAVACA</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.215</td>
<td class="right">18.943</td>
<td class="right">1,634</td>
<td class="right">2009-09-11</td>
<td class="right">2019-12-30</td>
<td class="right">2,724</td>
<td class="left">Human settlements</td>
<td class="left">Semi-warm subhumid</td>
</tr>

<tr>
<td class="right">33</td>
<td class="left">esimes</td>
<td class="left">PACHUCA</td>
<td class="left">Pachuca</td>
<td class="right">-98.750</td>
<td class="right">20.088</td>
<td class="right">2,365</td>
<td class="right">2013-01-01</td>
<td class="right">2019-10-30</td>
<td class="right">1,840</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">34</td>
<td class="left">esimes</td>
<td class="left">PUEBLA</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.163</td>
<td class="right">19.055</td>
<td class="right">2,190</td>
<td class="right">2013-01-04</td>
<td class="right">2019-12-30</td>
<td class="right">2,133</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">35</td>
<td class="left">esimes</td>
<td class="left">QUERETARO</td>
<td class="left">&#xa0;</td>
<td class="right">-100.369</td>
<td class="right">20.563</td>
<td class="right">1,902</td>
<td class="right">2013-01-10</td>
<td class="right">2018-06-26</td>
<td class="right">1,543</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">36</td>
<td class="left">esimes</td>
<td class="left">TACUBAYA</td>
<td class="left">Valle de México</td>
<td class="right">-99.197</td>
<td class="right">19.404</td>
<td class="right">2,301</td>
<td class="right">2006-01-01</td>
<td class="right">2017-12-22</td>
<td class="right">3,449</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">37</td>
<td class="left">esimes</td>
<td class="left">TLAXCALA</td>
<td class="left">Tlaxcala-Apizaco</td>
<td class="right">-98.247</td>
<td class="right">19.325</td>
<td class="right">2,232</td>
<td class="right">2009-10-09</td>
<td class="right">2019-12-30</td>
<td class="right">3,002</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">38</td>
<td class="left">esimes</td>
<td class="left">TOLUCA</td>
<td class="left">Toluca</td>
<td class="right">-99.714</td>
<td class="right">19.291</td>
<td class="right">2,726</td>
<td class="right">2013-01-08</td>
<td class="right">2019-12-30</td>
<td class="right">2,103</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">39</td>
<td class="left">esimes</td>
<td class="left">TULANCINGO</td>
<td class="left">Tulancingo</td>
<td class="right">-98.357</td>
<td class="right">20.084</td>
<td class="right">2,202</td>
<td class="right">2006-01-01</td>
<td class="right">2015-03-20</td>
<td class="right">3,163</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">40</td>
<td class="left">esimes</td>
<td class="left">ZACATEPEC</td>
<td class="left">&#xa0;</td>
<td class="right">-99.207</td>
<td class="right">18.644</td>
<td class="right">921</td>
<td class="right">2013-03-16</td>
<td class="right">2019-12-20</td>
<td class="right">1,713</td>
<td class="left">Human settlements</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">41</td>
<td class="left">simat</td>
<td class="left">ACO</td>
<td class="left">Valle de México</td>
<td class="right">-98.912</td>
<td class="right">19.636</td>
<td class="right">2,259</td>
<td class="right">2011-07-01</td>
<td class="right">2019-12-31</td>
<td class="right">2,859</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">42</td>
<td class="left">simat</td>
<td class="left">AJM</td>
<td class="left">Valle de México</td>
<td class="right">-99.208</td>
<td class="right">19.272</td>
<td class="right">2,597</td>
<td class="right">2015-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,762</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">43</td>
<td class="left">simat</td>
<td class="left">AJU</td>
<td class="left">Valle de México</td>
<td class="right">-99.163</td>
<td class="right">19.154</td>
<td class="right">2,940</td>
<td class="right">2015-04-08</td>
<td class="right">2019-12-31</td>
<td class="right">1,078</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Subhumid semi-cold</td>
</tr>

<tr>
<td class="right">44</td>
<td class="left">simat</td>
<td class="left">BJU</td>
<td class="left">Valle de México</td>
<td class="right">-99.160</td>
<td class="right">19.370</td>
<td class="right">2,249</td>
<td class="right">2015-08-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,579</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">45</td>
<td class="left">simat</td>
<td class="left">CES</td>
<td class="left">Valle de México</td>
<td class="right">-99.075</td>
<td class="right">19.335</td>
<td class="right">2,247</td>
<td class="right">2003-01-01</td>
<td class="right">2010-12-31</td>
<td class="right">2,663</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">46</td>
<td class="left">simat</td>
<td class="left">CHO</td>
<td class="left">Valle de México</td>
<td class="right">-98.886</td>
<td class="right">19.267</td>
<td class="right">2,242</td>
<td class="right">2011-07-01</td>
<td class="right">2019-12-31</td>
<td class="right">2,974</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">47</td>
<td class="left">simat</td>
<td class="left">CUA</td>
<td class="left">Valle de México</td>
<td class="right">-99.292</td>
<td class="right">19.365</td>
<td class="right">2,690</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,431</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">48</td>
<td class="left">simat</td>
<td class="left">CUT</td>
<td class="left">Valle de México</td>
<td class="right">-99.199</td>
<td class="right">19.722</td>
<td class="right">2,260</td>
<td class="right">2012-02-21</td>
<td class="right">2019-12-31</td>
<td class="right">2,347</td>
<td class="left">Annual and semi-permanent irrigation agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">49</td>
<td class="left">simat</td>
<td class="left">FAC</td>
<td class="left">Valle de México</td>
<td class="right">-99.244</td>
<td class="right">19.482</td>
<td class="right">2,288</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,950</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">50</td>
<td class="left">simat</td>
<td class="left">FAR</td>
<td class="left">Valle de México</td>
<td class="right">-99.046</td>
<td class="right">19.474</td>
<td class="right">2,235</td>
<td class="right">2019-03-01</td>
<td class="right">2019-12-31</td>
<td class="right">205</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">51</td>
<td class="left">simat</td>
<td class="left">GAM</td>
<td class="left">Valle de México</td>
<td class="right">-99.095</td>
<td class="right">19.483</td>
<td class="right">2,239</td>
<td class="right">2015-12-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,443</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">52</td>
<td class="left">simat</td>
<td class="left">HAN</td>
<td class="left">Valle de México</td>
<td class="right">-99.084</td>
<td class="right">19.421</td>
<td class="right">2,234</td>
<td class="right">2003-01-01</td>
<td class="right">2006-05-31</td>
<td class="right">1,200</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">53</td>
<td class="left">simat</td>
<td class="left">HGM</td>
<td class="left">Valle de México</td>
<td class="right">-99.152</td>
<td class="right">19.412</td>
<td class="right">2,241</td>
<td class="right">2012-01-28</td>
<td class="right">2019-12-31</td>
<td class="right">2,093</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">54</td>
<td class="left">simat</td>
<td class="left">IMP</td>
<td class="left">Valle de México</td>
<td class="right">-99.147</td>
<td class="right">19.488</td>
<td class="right">2,241</td>
<td class="right">2008-01-03</td>
<td class="right">2011-03-13</td>
<td class="right">639</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">55</td>
<td class="left">simat</td>
<td class="left">LAA</td>
<td class="left">Valle de México</td>
<td class="right">-99.147</td>
<td class="right">19.484</td>
<td class="right">2,241</td>
<td class="right">2016-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,406</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">56</td>
<td class="left">simat</td>
<td class="left">MER</td>
<td class="left">Valle de México</td>
<td class="right">-99.120</td>
<td class="right">19.425</td>
<td class="right">2,238</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">6,054</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">57</td>
<td class="left">simat</td>
<td class="left">MGH</td>
<td class="left">Valle de México</td>
<td class="right">-99.203</td>
<td class="right">19.404</td>
<td class="right">2,327</td>
<td class="right">2015-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,815</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">58</td>
<td class="left">simat</td>
<td class="left">MON</td>
<td class="left">Valle de México</td>
<td class="right">-98.903</td>
<td class="right">19.460</td>
<td class="right">2,246</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">4,759</td>
<td class="left">Semi-permanent irrigation agriculture</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">59</td>
<td class="left">simat</td>
<td class="left">MPA</td>
<td class="left">Valle de México</td>
<td class="right">-98.990</td>
<td class="right">19.177</td>
<td class="right">2,582</td>
<td class="right">2016-01-20</td>
<td class="right">2019-12-31</td>
<td class="right">1,317</td>
<td class="left">Annual and permanent rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">60</td>
<td class="left">simat</td>
<td class="left">NEZ</td>
<td class="left">Valle de México</td>
<td class="right">-99.028</td>
<td class="right">19.394</td>
<td class="right">2,234</td>
<td class="right">2011-07-01</td>
<td class="right">2019-12-31</td>
<td class="right">2,495</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">61</td>
<td class="left">simat</td>
<td class="left">PED</td>
<td class="left">Valle de México</td>
<td class="right">-99.204</td>
<td class="right">19.325</td>
<td class="right">2,346</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,542</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">62</td>
<td class="left">simat</td>
<td class="left">PLA</td>
<td class="left">Valle de México</td>
<td class="right">-99.200</td>
<td class="right">19.366</td>
<td class="right">2,320</td>
<td class="right">2003-01-01</td>
<td class="right">2010-12-31</td>
<td class="right">2,833</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">63</td>
<td class="left">simat</td>
<td class="left">SAC</td>
<td class="left">Valle de México</td>
<td class="right">-99.009</td>
<td class="right">19.346</td>
<td class="right">2,286</td>
<td class="right">2019-03-01</td>
<td class="right">2019-12-31</td>
<td class="right">304</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">64</td>
<td class="left">simat</td>
<td class="left">SAG</td>
<td class="left">Valle de México</td>
<td class="right">-99.030</td>
<td class="right">19.533</td>
<td class="right">2,236</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,431</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">65</td>
<td class="left">simat</td>
<td class="left">SFE</td>
<td class="left">Valle de México</td>
<td class="right">-99.263</td>
<td class="right">19.357</td>
<td class="right">2,589</td>
<td class="right">2012-02-13</td>
<td class="right">2019-12-31</td>
<td class="right">2,747</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">66</td>
<td class="left">simat</td>
<td class="left">SUR</td>
<td class="left">Valle de México</td>
<td class="right">-99.150</td>
<td class="right">19.314</td>
<td class="right">2,266</td>
<td class="right">2008-08-01</td>
<td class="right">2015-06-24</td>
<td class="right">2,475</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">67</td>
<td class="left">simat</td>
<td class="left">TAC</td>
<td class="left">Valle de México</td>
<td class="right">-99.202</td>
<td class="right">19.454</td>
<td class="right">2,261</td>
<td class="right">2003-01-01</td>
<td class="right">2010-12-31</td>
<td class="right">2,344</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">68</td>
<td class="left">simat</td>
<td class="left">TAH</td>
<td class="left">Valle de México</td>
<td class="right">-99.011</td>
<td class="right">19.246</td>
<td class="right">2,287</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,215</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">69</td>
<td class="left">simat</td>
<td class="left">TLA</td>
<td class="left">Valle de México</td>
<td class="right">-99.205</td>
<td class="right">19.529</td>
<td class="right">2,285</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,551</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">70</td>
<td class="left">simat</td>
<td class="left">TPN</td>
<td class="left">Valle de México</td>
<td class="right">-99.184</td>
<td class="right">19.257</td>
<td class="right">2,506</td>
<td class="right">2003-02-01</td>
<td class="right">2015-02-22</td>
<td class="right">2,970</td>
<td class="left">Oak forest</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">71</td>
<td class="left">simat</td>
<td class="left">UAX</td>
<td class="left">Valle de México</td>
<td class="right">-99.104</td>
<td class="right">19.304</td>
<td class="right">2,238</td>
<td class="right">2015-04-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,680</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">72</td>
<td class="left">simat</td>
<td class="left">UIZ</td>
<td class="left">Valle de México</td>
<td class="right">-99.074</td>
<td class="right">19.361</td>
<td class="right">2,239</td>
<td class="right">2015-04-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,565</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">73</td>
<td class="left">simat</td>
<td class="left">VIF</td>
<td class="left">Valle de México</td>
<td class="right">-99.097</td>
<td class="right">19.658</td>
<td class="right">2,245</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,620</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">74</td>
<td class="left">simat</td>
<td class="left">XAL</td>
<td class="left">Valle de México</td>
<td class="right">-99.082</td>
<td class="right">19.526</td>
<td class="right">2,245</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,487</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">75</td>
<td class="left">smno</td>
<td class="left">13022</td>
<td class="left">Pachuca</td>
<td class="right">-98.748</td>
<td class="right">20.128</td>
<td class="right">2,437</td>
<td class="right">2006-09-12</td>
<td class="right">2016-12-31</td>
<td class="right">635</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">76</td>
<td class="left">smno</td>
<td class="left">13041</td>
<td class="left">Tulancingo</td>
<td class="right">-98.357</td>
<td class="right">20.084</td>
<td class="right">2,203</td>
<td class="right">2003-02-03</td>
<td class="right">2010-02-28</td>
<td class="right">749</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">77</td>
<td class="left">smno</td>
<td class="left">15126</td>
<td class="left">Toluca</td>
<td class="right">-99.714</td>
<td class="right">19.291</td>
<td class="right">2,726</td>
<td class="right">2003-01-01</td>
<td class="right">2009-07-31</td>
<td class="right">2,114</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">78</td>
<td class="left">smno</td>
<td class="left">17067</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.233</td>
<td class="right">18.892</td>
<td class="right">1,391</td>
<td class="right">2003-01-01</td>
<td class="right">2010-06-30</td>
<td class="right">1,884</td>
<td class="left">Human settlements</td>
<td class="left">Semi-warm subhumid</td>
</tr>

<tr>
<td class="right">79</td>
<td class="left">smno</td>
<td class="left">21065</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.167</td>
<td class="right">19.050</td>
<td class="right">2,178</td>
<td class="right">2003-01-01</td>
<td class="right">2010-01-31</td>
<td class="right">2,455</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">80</td>
<td class="left">smno</td>
<td class="left">21120</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.201</td>
<td class="right">18.996</td>
<td class="right">2,138</td>
<td class="right">2003-01-01</td>
<td class="right">2004-08-31</td>
<td class="right">555</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">81</td>
<td class="left">smno</td>
<td class="left">22013</td>
<td class="left">&#xa0;</td>
<td class="right">-100.400</td>
<td class="right">20.583</td>
<td class="right">1,820</td>
<td class="right">2003-01-01</td>
<td class="right">2010-03-31</td>
<td class="right">1,968</td>
<td class="left">Human settlements</td>
<td class="left">Semi-dry semi-warm</td>
</tr>

<tr>
<td class="right">82</td>
<td class="left">smno</td>
<td class="left">29031</td>
<td class="left">Tlaxcala-Apizaco</td>
<td class="right">-98.244</td>
<td class="right">19.312</td>
<td class="right">2,280</td>
<td class="right">2003-01-01</td>
<td class="right">2010-07-31</td>
<td class="right">1,722</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">83</td>
<td class="left">smno</td>
<td class="left">9048</td>
<td class="left">Valle de México</td>
<td class="right">-99.196</td>
<td class="right">19.404</td>
<td class="right">2,300</td>
<td class="right">2003-01-01</td>
<td class="right">2018-12-31</td>
<td class="right">5,258</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">84</td>
<td class="left">unam</td>
<td class="left">CCA</td>
<td class="left">Valle de México</td>
<td class="right">-99.176</td>
<td class="right">19.326</td>
<td class="right">2,279</td>
<td class="right">2008-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">3,714</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">85</td>
<td class="left">unam</td>
<td class="left">CCHA</td>
<td class="left">Valle de México</td>
<td class="right">-99.204</td>
<td class="right">19.500</td>
<td class="right">2,256</td>
<td class="right">2003-01-28</td>
<td class="right">2019-12-31</td>
<td class="right">5,668</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">86</td>
<td class="left">unam</td>
<td class="left">CCHN</td>
<td class="left">Valle de México</td>
<td class="right">-99.246</td>
<td class="right">19.474</td>
<td class="right">2,337</td>
<td class="right">2004-07-10</td>
<td class="right">2019-12-31</td>
<td class="right">5,480</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">87</td>
<td class="left">unam</td>
<td class="left">CCHO</td>
<td class="left">Valle de México</td>
<td class="right">-99.060</td>
<td class="right">19.384</td>
<td class="right">2,238</td>
<td class="right">2003-01-01</td>
<td class="right">2019-11-10</td>
<td class="right">5,384</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">88</td>
<td class="left">unam</td>
<td class="left">CCHS</td>
<td class="left">Valle de México</td>
<td class="right">-99.199</td>
<td class="right">19.312</td>
<td class="right">2,350</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">5,620</td>
<td class="left">Sarcocaul shrubland</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">89</td>
<td class="left">unam</td>
<td class="left">CCHV</td>
<td class="left">Valle de México</td>
<td class="right">-99.141</td>
<td class="right">19.484</td>
<td class="right">2,241</td>
<td class="right">2004-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">4,817</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">90</td>
<td class="left">unam</td>
<td class="left">ENP1</td>
<td class="left">Valle de México</td>
<td class="right">-99.122</td>
<td class="right">19.271</td>
<td class="right">2,242</td>
<td class="right">2003-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">6,070</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">91</td>
<td class="left">unam</td>
<td class="left">ENP2</td>
<td class="left">Valle de México</td>
<td class="right">-99.100</td>
<td class="right">19.384</td>
<td class="right">2,236</td>
<td class="right">2005-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">3,592</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">92</td>
<td class="left">unam</td>
<td class="left">ENP3</td>
<td class="left">Valle de México</td>
<td class="right">-99.095</td>
<td class="right">19.482</td>
<td class="right">2,239</td>
<td class="right">2003-01-03</td>
<td class="right">2019-12-31</td>
<td class="right">5,866</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">93</td>
<td class="left">unam</td>
<td class="left">ENP5</td>
<td class="left">Valle de México</td>
<td class="right">-99.133</td>
<td class="right">19.307</td>
<td class="right">2,244</td>
<td class="right">2009-01-01</td>
<td class="right">2019-04-30</td>
<td class="right">2,853</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">94</td>
<td class="left">unam</td>
<td class="left">ENP6</td>
<td class="left">Valle de México</td>
<td class="right">-99.156</td>
<td class="right">19.351</td>
<td class="right">2,252</td>
<td class="right">2010-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">2,963</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">95</td>
<td class="left">unam</td>
<td class="left">ENP7</td>
<td class="left">Valle de México</td>
<td class="right">-99.127</td>
<td class="right">19.420</td>
<td class="right">2,236</td>
<td class="right">2003-01-01</td>
<td class="right">2019-09-04</td>
<td class="right">5,797</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">96</td>
<td class="left">unam</td>
<td class="left">ENP8</td>
<td class="left">Valle de México</td>
<td class="right">-99.195</td>
<td class="right">19.366</td>
<td class="right">2,303</td>
<td class="right">2003-01-01</td>
<td class="right">2019-09-30</td>
<td class="right">5,929</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">97</td>
<td class="left">wunderground</td>
<td class="left">012</td>
<td class="left">&#xa0;</td>
<td class="right">-98.336</td>
<td class="right">19.706</td>
<td class="right">2,642</td>
<td class="right">2018-08-27</td>
<td class="right">2019-11-28</td>
<td class="right">341</td>
<td class="left">Annual and permanent rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">98</td>
<td class="left">wunderground</td>
<td class="left">013</td>
<td class="left">&#xa0;</td>
<td class="right">-99.049</td>
<td class="right">20.226</td>
<td class="right">2,000</td>
<td class="right">2018-11-08</td>
<td class="right">2019-08-12</td>
<td class="right">256</td>
<td class="left">Annual and semi-permanent irrigation agriculture</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">99</td>
<td class="left">wunderground</td>
<td class="left">060</td>
<td class="left">Valle de México</td>
<td class="right">-99.253</td>
<td class="right">19.398</td>
<td class="right">2,492</td>
<td class="right">2015-04-20</td>
<td class="right">2019-12-31</td>
<td class="right">1,573</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">100</td>
<td class="left">wunderground</td>
<td class="left">081</td>
<td class="left">Valle de México</td>
<td class="right">-99.237</td>
<td class="right">19.534</td>
<td class="right">2,279</td>
<td class="right">2018-08-16</td>
<td class="right">2019-12-31</td>
<td class="right">492</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">101</td>
<td class="left">wunderground</td>
<td class="left">087</td>
<td class="left">Valle de México</td>
<td class="right">-99.098</td>
<td class="right">19.613</td>
<td class="right">2,362</td>
<td class="right">2018-08-01</td>
<td class="right">2019-12-24</td>
<td class="right">90</td>
<td class="left">Human-induced grassland</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">102</td>
<td class="left">wunderground</td>
<td class="left">089</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.266</td>
<td class="right">19.140</td>
<td class="right">2,190</td>
<td class="right">2019-02-17</td>
<td class="right">2019-12-31</td>
<td class="right">294</td>
<td class="left">Annual irrigation agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">103</td>
<td class="left">wunderground</td>
<td class="left">121</td>
<td class="left">Cuautla</td>
<td class="right">-98.945</td>
<td class="right">18.916</td>
<td class="right">1,449</td>
<td class="right">2018-04-12</td>
<td class="right">2019-09-07</td>
<td class="right">294</td>
<td class="left">Human settlements</td>
<td class="left">Semi-warm subhumid</td>
</tr>

<tr>
<td class="right">104</td>
<td class="left">wunderground</td>
<td class="left">173</td>
<td class="left">&#xa0;</td>
<td class="right">-97.852</td>
<td class="right">18.471</td>
<td class="right">1,862</td>
<td class="right">2017-10-11</td>
<td class="right">2019-12-31</td>
<td class="right">735</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">105</td>
<td class="left">wunderground</td>
<td class="left">201</td>
<td class="left">Toluca</td>
<td class="right">-99.502</td>
<td class="right">19.292</td>
<td class="right">2,574</td>
<td class="right">2018-01-01</td>
<td class="right">2019-11-04</td>
<td class="right">478</td>
<td class="left">Annual humidity based agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">106</td>
<td class="left">wunderground</td>
<td class="left">224</td>
<td class="left">Valle de México</td>
<td class="right">-99.155</td>
<td class="right">19.170</td>
<td class="right">2,861</td>
<td class="right">2019-02-19</td>
<td class="right">2019-12-31</td>
<td class="right">185</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">107</td>
<td class="left">wunderground</td>
<td class="left">226</td>
<td class="left">Valle de México</td>
<td class="right">-99.229</td>
<td class="right">19.324</td>
<td class="right">2,430</td>
<td class="right">2018-11-14</td>
<td class="right">2019-12-31</td>
<td class="right">257</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">108</td>
<td class="left">wunderground</td>
<td class="left">227</td>
<td class="left">Valle de México</td>
<td class="right">-99.123</td>
<td class="right">19.325</td>
<td class="right">2,241</td>
<td class="right">2019-04-21</td>
<td class="right">2019-12-31</td>
<td class="right">226</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">109</td>
<td class="left">wunderground</td>
<td class="left">228</td>
<td class="left">Valle de México</td>
<td class="right">-99.134</td>
<td class="right">19.336</td>
<td class="right">2,242</td>
<td class="right">2018-11-12</td>
<td class="right">2019-12-31</td>
<td class="right">366</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">110</td>
<td class="left">wunderground</td>
<td class="left">229</td>
<td class="left">Valle de México</td>
<td class="right">-99.186</td>
<td class="right">19.289</td>
<td class="right">2,341</td>
<td class="right">2018-01-10</td>
<td class="right">2019-12-01</td>
<td class="right">626</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">111</td>
<td class="left">wunderground</td>
<td class="left">230</td>
<td class="left">Valle de México</td>
<td class="right">-99.133</td>
<td class="right">19.512</td>
<td class="right">2,243</td>
<td class="right">2018-01-13</td>
<td class="right">2019-12-31</td>
<td class="right">703</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">112</td>
<td class="left">wunderground</td>
<td class="left">231</td>
<td class="left">Valle de México</td>
<td class="right">-99.205</td>
<td class="right">19.359</td>
<td class="right">2,343</td>
<td class="right">2018-11-04</td>
<td class="right">2019-12-31</td>
<td class="right">412</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">113</td>
<td class="left">wunderground</td>
<td class="left">232</td>
<td class="left">Valle de México</td>
<td class="right">-99.279</td>
<td class="right">19.334</td>
<td class="right">2,694</td>
<td class="right">2018-05-30</td>
<td class="right">2019-12-31</td>
<td class="right">576</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">114</td>
<td class="left">wunderground</td>
<td class="left">233</td>
<td class="left">Valle de México</td>
<td class="right">-99.197</td>
<td class="right">19.344</td>
<td class="right">2,316</td>
<td class="right">2017-07-26</td>
<td class="right">2019-12-31</td>
<td class="right">739</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">115</td>
<td class="left">wunderground</td>
<td class="left">234</td>
<td class="left">Valle de México</td>
<td class="right">-99.198</td>
<td class="right">19.336</td>
<td class="right">2,312</td>
<td class="right">2018-12-11</td>
<td class="right">2019-12-24</td>
<td class="right">314</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">116</td>
<td class="left">wunderground</td>
<td class="left">236</td>
<td class="left">Valle de México</td>
<td class="right">-99.211</td>
<td class="right">19.420</td>
<td class="right">2,308</td>
<td class="right">2016-10-08</td>
<td class="right">2019-09-17</td>
<td class="right">1,052</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">117</td>
<td class="left">wunderground</td>
<td class="left">253</td>
<td class="left">Valle de México</td>
<td class="right">-99.263</td>
<td class="right">19.422</td>
<td class="right">2,422</td>
<td class="right">2019-01-19</td>
<td class="right">2019-12-31</td>
<td class="right">282</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">118</td>
<td class="left">wunderground</td>
<td class="left">279</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.247</td>
<td class="right">19.068</td>
<td class="right">2,125</td>
<td class="right">2017-04-14</td>
<td class="right">2019-12-31</td>
<td class="right">944</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">119</td>
<td class="left">wunderground</td>
<td class="left">280</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.166</td>
<td class="right">19.080</td>
<td class="right">2,229</td>
<td class="right">2018-05-02</td>
<td class="right">2019-12-31</td>
<td class="right">555</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">120</td>
<td class="left">wunderground</td>
<td class="left">281</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.245</td>
<td class="right">18.993</td>
<td class="right">2,118</td>
<td class="right">2018-05-22</td>
<td class="right">2019-12-31</td>
<td class="right">428</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">121</td>
<td class="left">wunderground</td>
<td class="left">282</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.264</td>
<td class="right">19.065</td>
<td class="right">2,137</td>
<td class="right">2018-06-07</td>
<td class="right">2019-12-31</td>
<td class="right">565</td>
<td class="left">Annual and semi-permanent irrigation agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">122</td>
<td class="left">wunderground</td>
<td class="left">283</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.219</td>
<td class="right">19.085</td>
<td class="right">2,158</td>
<td class="right">2018-06-07</td>
<td class="right">2019-12-31</td>
<td class="right">560</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">123</td>
<td class="left">wunderground</td>
<td class="left">284</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.241</td>
<td class="right">19.044</td>
<td class="right">2,119</td>
<td class="right">2019-04-09</td>
<td class="right">2019-11-14</td>
<td class="right">177</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">124</td>
<td class="left">wunderground</td>
<td class="left">332</td>
<td class="left">&#xa0;</td>
<td class="right">-99.724</td>
<td class="right">20.571</td>
<td class="right">1,791</td>
<td class="right">2018-08-12</td>
<td class="right">2019-12-31</td>
<td class="right">387</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Semi-dry semi-warm</td>
</tr>

<tr>
<td class="right">125</td>
<td class="left">wunderground</td>
<td class="left">333</td>
<td class="left">&#xa0;</td>
<td class="right">-97.919</td>
<td class="right">18.939</td>
<td class="right">2,200</td>
<td class="right">2018-10-28</td>
<td class="right">2019-12-31</td>
<td class="right">290</td>
<td class="left">Annual and semi-permanent irrigation agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">126</td>
<td class="left">wunderground</td>
<td class="left">349</td>
<td class="left">&#xa0;</td>
<td class="right">-100.126</td>
<td class="right">19.152</td>
<td class="right">1,999</td>
<td class="right">2019-01-04</td>
<td class="right">2019-12-18</td>
<td class="right">277</td>
<td class="left">Pine forest</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">127</td>
<td class="left">wunderground</td>
<td class="left">444</td>
<td class="left">Valle de México</td>
<td class="right">-99.187</td>
<td class="right">19.247</td>
<td class="right">2,631</td>
<td class="right">2010-02-19</td>
<td class="right">2019-12-31</td>
<td class="right">3,444</td>
<td class="left">Oak forest</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">128</td>
<td class="left">wunderground</td>
<td class="left">446</td>
<td class="left">Valle de México</td>
<td class="right">-99.200</td>
<td class="right">19.429</td>
<td class="right">2,276</td>
<td class="right">2015-02-16</td>
<td class="right">2019-12-31</td>
<td class="right">1,722</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">129</td>
<td class="left">wunderground</td>
<td class="left">447</td>
<td class="left">Valle de México</td>
<td class="right">-99.206</td>
<td class="right">19.329</td>
<td class="right">2,343</td>
<td class="right">2016-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,298</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">130</td>
<td class="left">wunderground</td>
<td class="left">450</td>
<td class="left">Valle de México</td>
<td class="right">-98.741</td>
<td class="right">19.127</td>
<td class="right">2,542</td>
<td class="right">2016-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">913</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">131</td>
<td class="left">wunderground</td>
<td class="left">451</td>
<td class="left">&#xa0;</td>
<td class="right">-100.127</td>
<td class="right">19.184</td>
<td class="right">1,804</td>
<td class="right">2014-09-08</td>
<td class="right">2019-12-31</td>
<td class="right">1,291</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">132</td>
<td class="left">wunderground</td>
<td class="left">452</td>
<td class="left">&#xa0;</td>
<td class="right">-100.127</td>
<td class="right">19.184</td>
<td class="right">1,802</td>
<td class="right">2015-02-27</td>
<td class="right">2019-06-06</td>
<td class="right">1,277</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">133</td>
<td class="left">wunderground</td>
<td class="left">453</td>
<td class="left">Valle de México</td>
<td class="right">-98.847</td>
<td class="right">19.531</td>
<td class="right">2,272</td>
<td class="right">2012-02-24</td>
<td class="right">2019-12-31</td>
<td class="right">2,679</td>
<td class="left">Annual and semi-permanent irrigation agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">134</td>
<td class="left">wunderground</td>
<td class="left">461</td>
<td class="left">&#xa0;</td>
<td class="right">-99.332</td>
<td class="right">18.308</td>
<td class="right">956</td>
<td class="right">2014-09-14</td>
<td class="right">2019-12-20</td>
<td class="right">1,810</td>
<td class="left">Human settlements</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">135</td>
<td class="left">wunderground</td>
<td class="left">462</td>
<td class="left">&#xa0;</td>
<td class="right">-99.538</td>
<td class="right">18.345</td>
<td class="right">744</td>
<td class="right">2008-09-14</td>
<td class="right">2019-12-20</td>
<td class="right">1,752</td>
<td class="left">Human settlements</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">136</td>
<td class="left">wunderground</td>
<td class="left">475</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.243</td>
<td class="right">18.978</td>
<td class="right">1,844</td>
<td class="right">2016-01-01</td>
<td class="right">2019-12-31</td>
<td class="right">1,384</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">137</td>
<td class="left">wunderground</td>
<td class="left">476</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.229</td>
<td class="right">18.952</td>
<td class="right">1,660</td>
<td class="right">2016-06-20</td>
<td class="right">2019-12-31</td>
<td class="right">936</td>
<td class="left">Human settlements</td>
<td class="left">Semi-warm subhumid</td>
</tr>

<tr>
<td class="right">138</td>
<td class="left">wunderground</td>
<td class="left">477</td>
<td class="left">Cuernavaca</td>
<td class="right">-99.234</td>
<td class="right">18.839</td>
<td class="right">1,243</td>
<td class="right">2008-04-05</td>
<td class="right">2019-12-31</td>
<td class="right">1,987</td>
<td class="left">Human settlements</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">139</td>
<td class="left">wunderground</td>
<td class="left">478</td>
<td class="left">&#xa0;</td>
<td class="right">-99.168</td>
<td class="right">18.625</td>
<td class="right">906</td>
<td class="right">2015-07-21</td>
<td class="right">2019-06-26</td>
<td class="right">698</td>
<td class="left">Human settlements</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">140</td>
<td class="left">wunderground</td>
<td class="left">494</td>
<td class="left">&#xa0;</td>
<td class="right">-97.594</td>
<td class="right">19.496</td>
<td class="right">2,352</td>
<td class="right">2015-03-30</td>
<td class="right">2019-12-31</td>
<td class="right">1,646</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">141</td>
<td class="left">wunderground</td>
<td class="left">495</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.221</td>
<td class="right">18.978</td>
<td class="right">2,104</td>
<td class="right">2013-09-05</td>
<td class="right">2019-12-31</td>
<td class="right">1,266</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">142</td>
<td class="left">wunderground</td>
<td class="left">496</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.194</td>
<td class="right">19.013</td>
<td class="right">2,139</td>
<td class="right">2013-04-30</td>
<td class="right">2019-12-31</td>
<td class="right">2,107</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">143</td>
<td class="left">wunderground</td>
<td class="left">497</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.140</td>
<td class="right">19.076</td>
<td class="right">2,255</td>
<td class="right">2013-09-04</td>
<td class="right">2019-12-31</td>
<td class="right">1,486</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">144</td>
<td class="left">wunderground</td>
<td class="left">498</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.184</td>
<td class="right">19.003</td>
<td class="right">2,137</td>
<td class="right">2017-10-05</td>
<td class="right">2019-11-17</td>
<td class="right">668</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">145</td>
<td class="left">wunderground</td>
<td class="left">499</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.196</td>
<td class="right">19.044</td>
<td class="right">2,152</td>
<td class="right">2008-12-04</td>
<td class="right">2019-12-05</td>
<td class="right">3,709</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">146</td>
<td class="left">wunderground</td>
<td class="left">500</td>
<td class="left">&#xa0;</td>
<td class="right">-97.416</td>
<td class="right">18.490</td>
<td class="right">1,674</td>
<td class="right">2012-05-17</td>
<td class="right">2019-12-31</td>
<td class="right">2,502</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Semi-dry semi-warm</td>
</tr>

<tr>
<td class="right">147</td>
<td class="left">wunderground</td>
<td class="left">505</td>
<td class="left">&#xa0;</td>
<td class="right">-100.356</td>
<td class="right">20.479</td>
<td class="right">2,005</td>
<td class="right">2006-08-17</td>
<td class="right">2019-12-31</td>
<td class="right">3,981</td>
<td class="left">Annual irrigation agriculture</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">148</td>
<td class="left">wunderground</td>
<td class="left">506</td>
<td class="left">&#xa0;</td>
<td class="right">-100.270</td>
<td class="right">20.370</td>
<td class="right">2,287</td>
<td class="right">2006-07-21</td>
<td class="right">2019-12-31</td>
<td class="right">4,001</td>
<td class="left">Human-induced grassland</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">149</td>
<td class="left">wunderground</td>
<td class="left">507</td>
<td class="left">&#xa0;</td>
<td class="right">-100.144</td>
<td class="right">20.503</td>
<td class="right">1,920</td>
<td class="right">2006-06-29</td>
<td class="right">2019-12-31</td>
<td class="right">4,483</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">150</td>
<td class="left">wunderground</td>
<td class="left">509</td>
<td class="left">&#xa0;</td>
<td class="right">-100.350</td>
<td class="right">20.578</td>
<td class="right">1,999</td>
<td class="right">2006-07-14</td>
<td class="right">2019-12-31</td>
<td class="right">4,004</td>
<td class="left">Secondary (tree type) vegetation of dry broadleaf forest</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">151</td>
<td class="left">wunderground</td>
<td class="left">510</td>
<td class="left">&#xa0;</td>
<td class="right">-100.212</td>
<td class="right">20.534</td>
<td class="right">1,925</td>
<td class="right">2006-10-04</td>
<td class="right">2019-12-31</td>
<td class="right">3,774</td>
<td class="left">Annual and semi-permanent irrigation agriculture</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">152</td>
<td class="left">wunderground</td>
<td class="left">515</td>
<td class="left">&#xa0;</td>
<td class="right">-99.988</td>
<td class="right">20.384</td>
<td class="right">1,945</td>
<td class="right">2007-04-19</td>
<td class="right">2019-12-31</td>
<td class="right">3,505</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">153</td>
<td class="left">wunderground</td>
<td class="left">516</td>
<td class="left">&#xa0;</td>
<td class="right">-100.002</td>
<td class="right">20.370</td>
<td class="right">1,940</td>
<td class="right">2007-04-19</td>
<td class="right">2019-12-26</td>
<td class="right">3,733</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">154</td>
<td class="left">wunderground</td>
<td class="left">562</td>
<td class="left">Toluca</td>
<td class="right">-99.551</td>
<td class="right">19.227</td>
<td class="right">2,583</td>
<td class="right">2014-07-30</td>
<td class="right">2019-12-26</td>
<td class="right">522</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">155</td>
<td class="left">wunderground</td>
<td class="left">563</td>
<td class="left">&#xa0;</td>
<td class="right">-97.920</td>
<td class="right">19.341</td>
<td class="right">2,465</td>
<td class="right">2012-11-22</td>
<td class="right">2019-12-31</td>
<td class="right">2,330</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">156</td>
<td class="left">wunderground</td>
<td class="left">805</td>
<td class="left">&#xa0;</td>
<td class="right">-97.688</td>
<td class="right">19.464</td>
<td class="right">2,393</td>
<td class="right">2019-06-06</td>
<td class="right">2019-12-26</td>
<td class="right">126</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">157</td>
<td class="left">wunderground</td>
<td class="left">817</td>
<td class="left">&#xa0;</td>
<td class="right">-100.242</td>
<td class="right">20.565</td>
<td class="right">1,915</td>
<td class="right">2019-05-18</td>
<td class="right">2019-12-31</td>
<td class="right">197</td>
<td class="left">Annual and semi-permanent irrigation agriculture</td>
<td class="left">Temperate semi-dry</td>
</tr>

<tr>
<td class="right">158</td>
<td class="left">wunderground</td>
<td class="left">832</td>
<td class="left">&#xa0;</td>
<td class="right">-99.260</td>
<td class="right">18.592</td>
<td class="right">970</td>
<td class="right">2019-06-04</td>
<td class="right">2019-12-31</td>
<td class="right">191</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">159</td>
<td class="left">wunderground</td>
<td class="left">844</td>
<td class="left">Valle de México</td>
<td class="right">-99.201</td>
<td class="right">19.323</td>
<td class="right">2,342</td>
<td class="right">2017-09-25</td>
<td class="right">2019-12-31</td>
<td class="right">711</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">160</td>
<td class="left">wunderground</td>
<td class="left">862</td>
<td class="left">Valle de México</td>
<td class="right">-99.268</td>
<td class="right">19.476</td>
<td class="right">2,419</td>
<td class="right">2017-03-12</td>
<td class="right">2019-12-15</td>
<td class="right">645</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">161</td>
<td class="left">wunderground</td>
<td class="left">864</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.220</td>
<td class="right">19.128</td>
<td class="right">2,188</td>
<td class="right">2019-01-30</td>
<td class="right">2019-07-14</td>
<td class="right">80</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">162</td>
<td class="left">wunderground</td>
<td class="left">876</td>
<td class="left">Valle de México</td>
<td class="right">-99.334</td>
<td class="right">19.405</td>
<td class="right">2,661</td>
<td class="right">2019-05-22</td>
<td class="right">2019-10-25</td>
<td class="right">141</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">163</td>
<td class="left">wunderground</td>
<td class="left">886</td>
<td class="left">&#xa0;</td>
<td class="right">-98.265</td>
<td class="right">18.275</td>
<td class="right">1,133</td>
<td class="right">2019-05-10</td>
<td class="right">2019-12-31</td>
<td class="right">211</td>
<td class="left">Annual rainfed agriculture</td>
<td class="left">Warm subhumid</td>
</tr>

<tr>
<td class="right">164</td>
<td class="left">wunderground</td>
<td class="left">906</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">-98.232</td>
<td class="right">19.022</td>
<td class="right">2,105</td>
<td class="right">2017-07-05</td>
<td class="right">2019-12-02</td>
<td class="right">589</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">165</td>
<td class="left">wunderground</td>
<td class="left">910</td>
<td class="left">&#xa0;</td>
<td class="right">-100.142</td>
<td class="right">20.188</td>
<td class="right">2,623</td>
<td class="right">2006-06-20</td>
<td class="right">2019-12-31</td>
<td class="right">3,929</td>
<td class="left">Human settlements</td>
<td class="left">Temperate subhumid</td>
</tr>

<tr>
<td class="right">166</td>
<td class="left">wunderground</td>
<td class="left">914</td>
<td class="left">&#xa0;</td>
<td class="right">-99.885</td>
<td class="right">20.520</td>
<td class="right">1,878</td>
<td class="right">2006-06-29</td>
<td class="right">2019-12-31</td>
<td class="right">4,456</td>
<td class="left">Human settlements</td>
<td class="left">Temperate semi-dry</td>
</tr>
</tbody>
</table>

<div class="org-src-container">
<pre class="src src-R">db = dbConnect(SQLite(), stpath(<span style="background-color: #ffefd5;">"wunderground-daily-mexico.sqlite"</span>))
dbGetQuery(db, sprintf(
    <span style="background-color: #ffefd5;">"select station_id, surface_type, neighborhood, station_type, software</span>
<span style="background-color: #ffefd5;">        from Stations</span>
<span style="background-color: #ffefd5;">        where stn in (%s)"</span>,
    paste(collapse = <span style="background-color: #ffefd5;">", "</span>, get.ground()$stations[
        network == <span style="background-color: #ffefd5;">"wunderground"</span>,
        stringr::str_extract(name, <span style="background-color: #ffefd5;">"\\d+"</span>)])))
</pre>
</div>

<table>


<colgroup>
<col  class="right">

<col  class="left">

<col  class="left">

<col  class="left">

<col  class="left">

<col  class="left">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="left">station_id</th>
<th scope="col" class="left">surface_type</th>
<th scope="col" class="left">neighborhood</th>
<th scope="col" class="left">station_type</th>
<th scope="col" class="left">software</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="left">IALMOLOY3</td>
<td class="left">composite-shingles</td>
<td class="left">Santiago Tetlapayac</td>
<td class="left">Davis Vantage Pro2 (Wireless)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">2</td>
<td class="left">IARAMB3</td>
<td class="left">cement</td>
<td class="left">Francisco I. Madero</td>
<td class="left">AcuRite 5-in-1 Weather Station with Wi-Fi</td>
<td class="left">&#xa0;</td>
</tr>

<tr>
<td class="right">3</td>
<td class="left">ICIUDADD99</td>
<td class="left">shrubbery</td>
<td class="left">Bosques de las Lomas</td>
<td class="left">AcuRite Pro Weather Center</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">4</td>
<td class="left">ICIUDADL14</td>
<td class="left">gravel</td>
<td class="left">Vila Deco, bellavista</td>
<td class="left">Ambient Weather WS-2902</td>
<td class="left">AMBWeatherV4.0.2</td>
</tr>

<tr>
<td class="right">5</td>
<td class="left">ICOACALC3</td>
<td class="left">composite-shingles</td>
<td class="left">Maria Auxiliadora</td>
<td class="left">Ambient Weather WS-1400-IP (Wireless)</td>
<td class="left">Weather logger V3.0.5</td>
</tr>

<tr>
<td class="right">6</td>
<td class="left">ICORONAN2</td>
<td class="left">cement</td>
<td class="left">Kuumkumi VWM</td>
<td class="left">Ambient Weather WS-2902</td>
<td class="left">AMBWeatherV4.0.2</td>
</tr>

<tr>
<td class="right">7</td>
<td class="left">IFRACCIO2</td>
<td class="left">grass</td>
<td class="left">Lomas de Cocoyoc</td>
<td class="left">AcuRite Pro Weather Center</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">8</td>
<td class="left">IIXCAQUI2</td>
<td class="left">composite-shingles</td>
<td class="left">Globalmet - Hortioriente</td>
<td class="left">Davis Vantage Pro2 (Wireless)</td>
<td class="left">weewx-3.5.0</td>
</tr>

<tr>
<td class="right">9</td>
<td class="left">ILERMA2</td>
<td class="left">composite-shingles</td>
<td class="left">UAM LERMA</td>
<td class="left">Davis Vantage Pro2 Plus (Cabled)</td>
<td class="left">weewx-3.8.0</td>
</tr>

<tr>
<td class="right">10</td>
<td class="left">IMEXICOC50</td>
<td class="left">rooftop (wood shingles)</td>
<td class="left">Bosque Residencial los Cedros - Empire of Dirt</td>
<td class="left">AcuRite 5-in-1 Weather Station with AcuRite Access</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">11</td>
<td class="left">IMEXICOC47</td>
<td class="left">composite-shingles</td>
<td class="left">San Jeronimo Lidice</td>
<td class="left">Ambient Weather WS-1001-WiFi (Wireless)</td>
<td class="left">WS-1001 V2.2.9</td>
</tr>

<tr>
<td class="right">12</td>
<td class="left">IMEXIC1</td>
<td class="left">rooftop (composite-shingles)</td>
<td class="left">Coyoacán</td>
<td class="left">AcuRite Pro Weather Center</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">13</td>
<td class="left">IMEXICOC46</td>
<td class="left">composite-shingles</td>
<td class="left">TLALOC MIRAMONTES</td>
<td class="left">Ambient Weather WS-2090 (Wireless)</td>
<td class="left">EasyWeather V8.8.0</td>
</tr>

<tr>
<td class="right">14</td>
<td class="left">IMEXICOC34</td>
<td class="left">spanish-tiles</td>
<td class="left">TLALPAN</td>
<td class="left">Davis Vantage Vue (Wireless)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">15</td>
<td class="left">IMEXICOC35</td>
<td class="left">cement</td>
<td class="left">Ticoman</td>
<td class="left">Netatmo Weather Station</td>
<td class="left"><a class="url" href="http://meteoware.com">http://meteoware.com</a></td>
</tr>

<tr>
<td class="right">16</td>
<td class="left">IMEXICOC44</td>
<td class="left">spanish-tiles</td>
<td class="left">Las Aguilas</td>
<td class="left">Ambient Weather WS-2000</td>
<td class="left">AMBWeatherV4.0.2</td>
</tr>

<tr>
<td class="right">17</td>
<td class="left">IMEXICOC40</td>
<td class="left">spanish-tiles</td>
<td class="left">Hacienda Muitles</td>
<td class="left">Ambient Weather WS-2902</td>
<td class="left">AMBWeatherV3.0.3</td>
</tr>

<tr>
<td class="right">18</td>
<td class="left">IMEXICOC29</td>
<td class="left">composite-shingles</td>
<td class="left">Miguel Hidalgo</td>
<td class="left">Netatmo Weather Station</td>
<td class="left">WeatherApp</td>
</tr>

<tr>
<td class="right">19</td>
<td class="left">IMEXICOC48</td>
<td class="left">other</td>
<td class="left">Tizapan San Angel</td>
<td class="left">AcuRite Atlas Weather Station with AcuRite Access</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">20</td>
<td class="left">IMIGUELH4</td>
<td class="left">composite-shingles</td>
<td class="left">Lomas Virreyes</td>
<td class="left">Davis Vantage Pro2 (Wireless)</td>
<td class="left">meteobridge</td>
</tr>

<tr>
<td class="right">21</td>
<td class="left">INAUCALP34</td>
<td class="left">composite-shingles</td>
<td class="left">Balcones de la Herradura</td>
<td class="left">Ambient Weather WS-2902</td>
<td class="left">AMBWeatherV4.0.3</td>
</tr>

<tr>
<td class="right">22</td>
<td class="left">IPUEBLAC5</td>
<td class="left">spanish-tiles</td>
<td class="left">PROTECCION CIVIL MUNICIPAL PUE02</td>
<td class="left">Ambient Weather WS-900-IP (Wireless)</td>
<td class="left">Weather logger V3.1.2</td>
</tr>

<tr>
<td class="right">23</td>
<td class="left">IPUEBLAC11</td>
<td class="left">composite-shingles</td>
<td class="left">Desarenador</td>
<td class="left">Davis Vantage Pro2 Plus (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">24</td>
<td class="left">IPUEBLAC13</td>
<td class="left">composite-shingles</td>
<td class="left">Almacen Castillotla</td>
<td class="left">Davis Vantage Pro2 Plus (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">25</td>
<td class="left">IPUEBLAC14</td>
<td class="left">composite-shingles</td>
<td class="left">Planta Quetzalcoatl</td>
<td class="left">Davis Vantage Pro2 Plus (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">26</td>
<td class="left">IPUEBLAC15</td>
<td class="left">composite-shingles</td>
<td class="left">Planta Sulfurosa</td>
<td class="left">Davis Vantage Pro2 Plus (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">27</td>
<td class="left">IPUEBL5</td>
<td class="left">other</td>
<td class="left">Puebla City</td>
<td class="left">other</td>
<td class="left">WH2600GEN_V2.2.5</td>
</tr>

<tr>
<td class="right">28</td>
<td class="left">ITECOZAU2</td>
<td class="left">composite-shingles</td>
<td class="left">Yextho, Tecozautla</td>
<td class="left">AcuRite Pro Weather Center</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">29</td>
<td class="left">ITEPEACA2</td>
<td class="left">grass</td>
<td class="left">Hacienda Santa Ana</td>
<td class="left">Ambient Weather WS-2090 (Wireless)</td>
<td class="left">AMBWeatherV3.0.3</td>
</tr>

<tr>
<td class="right">30</td>
<td class="left">IVALLEDE36</td>
<td class="left">composite-shingles</td>
<td class="left">Avandaro</td>
<td class="left">Ambient Weather WS-2902</td>
<td class="left">&#xa0;</td>
</tr>

<tr>
<td class="right">31</td>
<td class="left">IDFMEXIC11</td>
<td class="left">composite-shingles</td>
<td class="left">Tlalpuente</td>
<td class="left">Davis</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">32</td>
<td class="left">IDISTRIT45</td>
<td class="left">composite-shingles</td>
<td class="left">POLANCO</td>
<td class="left">Davis Vantage Pro2 (Cabled)</td>
<td class="left">Weather logger V3.1.0</td>
</tr>

<tr>
<td class="right">33</td>
<td class="left">IDISTRIT69</td>
<td class="left">cement</td>
<td class="left">Volcan</td>
<td class="left">Netatmo Weather Station</td>
<td class="left">WeatherApp</td>
</tr>

<tr>
<td class="right">34</td>
<td class="left">IESTADOD44</td>
<td class="left">grass</td>
<td class="left">Coapexco</td>
<td class="left">Ambient Weather WS-1400-IP (Wireless)</td>
<td class="left">WH2602 V4.5.8</td>
</tr>

<tr>
<td class="right">35</td>
<td class="left">IESTADOD4</td>
<td class="left">trees</td>
<td class="left">Sta. Maria Ahuacatlan</td>
<td class="left">Davis Vantage Pro2 (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">36</td>
<td class="left">IESTADOD6</td>
<td class="left">spanish-tiles</td>
<td class="left">Sta. Maria Ahuacatlan</td>
<td class="left">Netatmo Weather Station</td>
<td class="left"><a class="url" href="http://meteoware.com">http://meteoware.com</a></td>
</tr>

<tr>
<td class="right">37</td>
<td class="left">IESTADOD2</td>
<td class="left">grass</td>
<td class="left">El Batan, CIMMYT</td>
<td class="left">Davis Vantage Pro2 Plus</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">38</td>
<td class="left">IGUERRER8</td>
<td class="left">spanish-tiles</td>
<td class="left">Huitzuco de los Figueroa</td>
<td class="left">Davis Vantage Vue (Wireless)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">39</td>
<td class="left">IJALISCO24</td>
<td class="left">&#xa0;</td>
<td class="left">Iguala</td>
<td class="left">Davis Vantage Pro 2</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">40</td>
<td class="left">IMORELOS8</td>
<td class="left">composite-shingles</td>
<td class="left">Colonia Universidad, Cuernavaca</td>
<td class="left">AcuRite Pro Weather Center</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">41</td>
<td class="left">IMORELOS9</td>
<td class="left">composite-shingles</td>
<td class="left">Cuernavaca SEP</td>
<td class="left">Davis Vantage Vue (Wireless)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">42</td>
<td class="left">IJALISCO19</td>
<td class="left">cement</td>
<td class="left">Temixco Morelos</td>
<td class="left">Davis Vantage Pro2 Plus (Wireless)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">43</td>
<td class="left">IMORELOS7</td>
<td class="left">cement</td>
<td class="left">Observatorio astronomico Urania</td>
<td class="left">Ambient Weather WS-1001-WiFi (Wireless)</td>
<td class="left">WS-1001 V2.2.2</td>
</tr>

<tr>
<td class="right">44</td>
<td class="left">IPUEBLAP18</td>
<td class="left">trees</td>
<td class="left">LAS INFINITAS</td>
<td class="left">Ambient Weather WS-1001-WiFi (Wireless)</td>
<td class="left">WS-1001 V2.1.9</td>
</tr>

<tr>
<td class="right">45</td>
<td class="left">IPUEBLAP12</td>
<td class="left">composite-shingles</td>
<td class="left">Los Heroes</td>
<td class="left">Davis Vantage Pro2 (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">46</td>
<td class="left">IPUEBLAP8</td>
<td class="left">composite-shingles</td>
<td class="left">San Manuel</td>
<td class="left">Davis Vantage Pro Plus</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">47</td>
<td class="left">IPUEBLAP9</td>
<td class="left">composite-shingles</td>
<td class="left">Cerro del Marquez</td>
<td class="left">Davis Vantage Pro2 (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">48</td>
<td class="left">IPUEBLAP4</td>
<td class="left">&#xa0;</td>
<td class="left">RAMM13 - Lomas del Marmol</td>
<td class="left">Davis Vantage Pro</td>
<td class="left">weewx-3.9.1</td>
</tr>

<tr>
<td class="right">49</td>
<td class="left">IPUEPUEB2</td>
<td class="left">&#xa0;</td>
<td class="left">RAMM12 - Centro Historico</td>
<td class="left">Davis Vantage Pro</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">50</td>
<td class="left">IPUEBLAT6</td>
<td class="left">composite-shingles</td>
<td class="left">Aeropuerto de Tehuacan</td>
<td class="left">Vantage Pro2</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">51</td>
<td class="left">IHUIMILP1</td>
<td class="left">&#xa0;</td>
<td class="left">CEA EL MILAGRO</td>
<td class="left">VANTAGE PRO 2 PLUS</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">52</td>
<td class="left">IQUERETA19</td>
<td class="left">composite-shingles</td>
<td class="left">CEA-HUIMILPAN</td>
<td class="left">VANTAGE PRO 2 PLUS</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">53</td>
<td class="left">IQUERETA10</td>
<td class="left">&#xa0;</td>
<td class="left">CEA-PEDRO ESCOBEDO</td>
<td class="left">VANTAGE PRO 2 PLUS</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">54</td>
<td class="left">IQUERETA17</td>
<td class="left">composite-shingles</td>
<td class="left">CEA-QCC</td>
<td class="left">VANTAGE PRO 2 PLUS</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">55</td>
<td class="left">IQUERETA23</td>
<td class="left">&#xa0;</td>
<td class="left">CEA-TECMTY</td>
<td class="left">VANTAGE PRO PLUS</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">56</td>
<td class="left">IQUERETA13</td>
<td class="left">&#xa0;</td>
<td class="left">CEA-JAPAM</td>
<td class="left">VANTAGE PRO 2 PLUS</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">57</td>
<td class="left">IQUERETA29</td>
<td class="left">composite-shingles</td>
<td class="left">CEA-UNIVERSIDAD TECNOLOGICA</td>
<td class="left">Davis Vantage Pro2 Plus (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">58</td>
<td class="left">ISTATEOF3</td>
<td class="left">grass</td>
<td class="left">CIMMYT, Toluca Station, San Sebastian</td>
<td class="left">Davis Vantage Pro2 Plus (Wireless)</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">59</td>
<td class="left">ITLAXCAL3</td>
<td class="left">&#xa0;</td>
<td class="left">Cd Industrial II</td>
<td class="left">Davis Pro</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">60</td>
<td class="left">ICIUDA6</td>
<td class="left">cement</td>
<td class="left">Ciudad De Libres</td>
<td class="left">AcuRite 5-in-1 Weather Station with AcuRite Access</td>
<td class="left">&#xa0;</td>
</tr>

<tr>
<td class="right">61</td>
<td class="left">IGENER13</td>
<td class="left">cement</td>
<td class="left">General Lázaro Cárdenas</td>
<td class="left">AcuRite 5-in-1 Weather Station with AcuRite Access</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">62</td>
<td class="left">IJOJUT4</td>
<td class="left">rooftop (spanish tiles)</td>
<td class="left">Jojutla</td>
<td class="left">Ambient Weather WS-2902</td>
<td class="left">AMBWeatherV4.2.8</td>
</tr>

<tr>
<td class="right">63</td>
<td class="left">IMEXICOC30</td>
<td class="left">cement</td>
<td class="left">Fuentes del Pedregal</td>
<td class="left">Davis Vantage Pro2 Plus (Wireless)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">64</td>
<td class="left">INAUCALP28</td>
<td class="left">cement</td>
<td class="left">Vista del Valle II</td>
<td class="left">Ambient Weather WS-900-IP (Wireless)</td>
<td class="left">EasyWeather V8.8.0</td>
</tr>

<tr>
<td class="right">65</td>
<td class="left">IPUEBLAC19</td>
<td class="left">composite-shingles</td>
<td class="left">Ecofenix</td>
<td class="left">AcuRite 5-in-1 Weather Station with Wi-Fi</td>
<td class="left">&#xa0;</td>
</tr>

<tr>
<td class="right">66</td>
<td class="left">ISANCR8</td>
<td class="left">rooftop (composite-shingles)</td>
<td class="left">San Cristóbal Texcalucan</td>
<td class="left">AcuRite 5-in-1 Weather Station with AcuRite Access</td>
<td class="left">myAcuRite</td>
</tr>

<tr>
<td class="right">67</td>
<td class="left">ITEHUI2</td>
<td class="left">&#xa0;</td>
<td class="left">Tehuitzingo Municipality</td>
<td class="left">Davis Vantage Pro2 (Wireless)</td>
<td class="left">weewx-3.5.0</td>
</tr>

<tr>
<td class="right">68</td>
<td class="left">IPUEBLAP11</td>
<td class="left">composite-shingles</td>
<td class="left">San Francisco</td>
<td class="left">Davis Vantage Pro2 (Cabled)</td>
<td class="left">weatherlink.com 1.10</td>
</tr>

<tr>
<td class="right">69</td>
<td class="left">IAMEALCO2</td>
<td class="left">&#xa0;</td>
<td class="left">CEA -AMEALCO</td>
<td class="left">VANTAGE PRO 2 PLUS</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>

<tr>
<td class="right">70</td>
<td class="left">IQUERETA11</td>
<td class="left">&#xa0;</td>
<td class="left">CEA-TEQUISQUIAPAN</td>
<td class="left">Vantage Pro 2 Plus</td>
<td class="left">Wunderground v.1.15 PWSDec 27 2007</td>
</tr>
</tbody>
</table>
</div>
</div>

<div class="outline-2">
<h2 id="sec--crossvalidation-results">Cross-validation results</h2>
<div class="outline-text-2">
<div class="org-src-container">
<pre class="src src-R">sr = summarize.cv.results(multi.run.cv(available.years))
</pre>
</div>

<p>
Here are RMSE and <var>R</var><sup>2</sup> by year and DV, as well as the proportion of daily Moran's <var>I</var> statistics of the signed error that are significant at <var>α</var> = .05. <code>N</code> and <code>stn</code> denote the number of observations and stations in the megalopolis, for which predictions were made; stations in the larger region, which were only used for training, aren't counted. <code>sd.s</code> and <code>rmse.s</code> are spatially weighted RMSEs, in which each day and each sixteenth of a lon–lat cell are given total weight 1.
</p>

<div class="org-src-container">
<pre class="src src-R"><span style="color: #006400; font-weight: bold;">library</span>(data.table)
as.data.frame(rd(d = 2, sr$overall))
</pre>
</div>

<table id="tab--cv-overall">


<colgroup>
<col  class="right">

<col  class="right">

<col  class="left">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="right">year</th>
<th scope="col" class="left">dv</th>
<th scope="col" class="right">N</th>
<th scope="col" class="right">stn</th>
<th scope="col" class="right">sd</th>
<th scope="col" class="right">rmse</th>
<th scope="col" class="right">R2</th>
<th scope="col" class="right">sd.s</th>
<th scope="col" class="right">rmse.s</th>
<th scope="col" class="right">R2.spatial</th>
<th scope="col" class="right">R2.temporal</th>
<th scope="col" class="right">Moran ps &lt; .05</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="right">2003</td>
<td class="left">hi</td>
<td class="right">9622</td>
<td class="right">32</td>
<td class="right">4.64</td>
<td class="right">1.35</td>
<td class="right">0.92</td>
<td class="right">6.04</td>
<td class="right">1.82</td>
<td class="right">0.96</td>
<td class="right">0.88</td>
<td class="right">0.14</td>
</tr>

<tr>
<td class="right">2</td>
<td class="right">2003</td>
<td class="left">lo</td>
<td class="right">9622</td>
<td class="right">32</td>
<td class="right">4.08</td>
<td class="right">1.46</td>
<td class="right">0.87</td>
<td class="right">4.85</td>
<td class="right">1.93</td>
<td class="right">0.90</td>
<td class="right">0.85</td>
<td class="right">0.34</td>
</tr>

<tr>
<td class="right">3</td>
<td class="right">2003</td>
<td class="left">mean</td>
<td class="right">9622</td>
<td class="right">32</td>
<td class="right">3.94</td>
<td class="right">0.92</td>
<td class="right">0.95</td>
<td class="right">5.02</td>
<td class="right">1.21</td>
<td class="right">0.97</td>
<td class="right">0.92</td>
<td class="right">0.32</td>
</tr>

<tr>
<td class="right">4</td>
<td class="right">2004</td>
<td class="left">hi</td>
<td class="right">10453</td>
<td class="right">35</td>
<td class="right">4.58</td>
<td class="right">1.35</td>
<td class="right">0.91</td>
<td class="right">6.33</td>
<td class="right">1.76</td>
<td class="right">0.94</td>
<td class="right">0.86</td>
<td class="right">0.11</td>
</tr>

<tr>
<td class="right">5</td>
<td class="right">2004</td>
<td class="left">lo</td>
<td class="right">10453</td>
<td class="right">35</td>
<td class="right">3.92</td>
<td class="right">1.53</td>
<td class="right">0.85</td>
<td class="right">4.94</td>
<td class="right">2.03</td>
<td class="right">0.82</td>
<td class="right">0.84</td>
<td class="right">0.25</td>
</tr>

<tr>
<td class="right">6</td>
<td class="right">2004</td>
<td class="left">mean</td>
<td class="right">10453</td>
<td class="right">35</td>
<td class="right">3.80</td>
<td class="right">1.04</td>
<td class="right">0.92</td>
<td class="right">5.20</td>
<td class="right">1.37</td>
<td class="right">0.93</td>
<td class="right">0.89</td>
<td class="right">0.23</td>
</tr>

<tr>
<td class="right">7</td>
<td class="right">2005</td>
<td class="left">hi</td>
<td class="right">11489</td>
<td class="right">36</td>
<td class="right">4.96</td>
<td class="right">1.48</td>
<td class="right">0.91</td>
<td class="right">6.67</td>
<td class="right">1.87</td>
<td class="right">0.94</td>
<td class="right">0.87</td>
<td class="right">0.04</td>
</tr>

<tr>
<td class="right">8</td>
<td class="right">2005</td>
<td class="left">lo</td>
<td class="right">11489</td>
<td class="right">36</td>
<td class="right">4.02</td>
<td class="right">1.61</td>
<td class="right">0.84</td>
<td class="right">5.10</td>
<td class="right">2.16</td>
<td class="right">0.87</td>
<td class="right">0.82</td>
<td class="right">0.16</td>
</tr>

<tr>
<td class="right">9</td>
<td class="right">2005</td>
<td class="left">mean</td>
<td class="right">11489</td>
<td class="right">36</td>
<td class="right">4.16</td>
<td class="right">1.09</td>
<td class="right">0.93</td>
<td class="right">5.55</td>
<td class="right">1.40</td>
<td class="right">0.95</td>
<td class="right">0.91</td>
<td class="right">0.07</td>
</tr>

<tr>
<td class="right">10</td>
<td class="right">2006</td>
<td class="left">hi</td>
<td class="right">10882</td>
<td class="right">36</td>
<td class="right">4.76</td>
<td class="right">1.47</td>
<td class="right">0.90</td>
<td class="right">6.29</td>
<td class="right">1.84</td>
<td class="right">0.94</td>
<td class="right">0.84</td>
<td class="right">0.04</td>
</tr>

<tr>
<td class="right">11</td>
<td class="right">2006</td>
<td class="left">lo</td>
<td class="right">10882</td>
<td class="right">36</td>
<td class="right">4.04</td>
<td class="right">1.52</td>
<td class="right">0.86</td>
<td class="right">4.94</td>
<td class="right">1.96</td>
<td class="right">0.87</td>
<td class="right">0.84</td>
<td class="right">0.05</td>
</tr>

<tr>
<td class="right">12</td>
<td class="right">2006</td>
<td class="left">mean</td>
<td class="right">10882</td>
<td class="right">36</td>
<td class="right">3.94</td>
<td class="right">1.11</td>
<td class="right">0.92</td>
<td class="right">5.17</td>
<td class="right">1.40</td>
<td class="right">0.95</td>
<td class="right">0.87</td>
<td class="right">0.04</td>
</tr>

<tr>
<td class="right">13</td>
<td class="right">2007</td>
<td class="left">hi</td>
<td class="right">9854</td>
<td class="right">39</td>
<td class="right">4.82</td>
<td class="right">1.47</td>
<td class="right">0.91</td>
<td class="right">6.39</td>
<td class="right">1.88</td>
<td class="right">0.93</td>
<td class="right">0.84</td>
<td class="right">0.07</td>
</tr>

<tr>
<td class="right">14</td>
<td class="right">2007</td>
<td class="left">lo</td>
<td class="right">9854</td>
<td class="right">39</td>
<td class="right">3.90</td>
<td class="right">1.50</td>
<td class="right">0.85</td>
<td class="right">4.85</td>
<td class="right">1.86</td>
<td class="right">0.88</td>
<td class="right">0.79</td>
<td class="right">0.11</td>
</tr>

<tr>
<td class="right">15</td>
<td class="right">2007</td>
<td class="left">mean</td>
<td class="right">9854</td>
<td class="right">39</td>
<td class="right">3.95</td>
<td class="right">1.04</td>
<td class="right">0.93</td>
<td class="right">5.21</td>
<td class="right">1.29</td>
<td class="right">0.94</td>
<td class="right">0.87</td>
<td class="right">0.18</td>
</tr>

<tr>
<td class="right">16</td>
<td class="right">2008</td>
<td class="left">hi</td>
<td class="right">11430</td>
<td class="right">41</td>
<td class="right">4.85</td>
<td class="right">1.59</td>
<td class="right">0.89</td>
<td class="right">6.78</td>
<td class="right">1.96</td>
<td class="right">0.88</td>
<td class="right">0.85</td>
<td class="right">0.31</td>
</tr>

<tr>
<td class="right">17</td>
<td class="right">2008</td>
<td class="left">lo</td>
<td class="right">11430</td>
<td class="right">41</td>
<td class="right">4.12</td>
<td class="right">1.55</td>
<td class="right">0.86</td>
<td class="right">5.13</td>
<td class="right">2.00</td>
<td class="right">0.94</td>
<td class="right">0.82</td>
<td class="right">0.36</td>
</tr>

<tr>
<td class="right">18</td>
<td class="right">2008</td>
<td class="left">mean</td>
<td class="right">11430</td>
<td class="right">41</td>
<td class="right">4.05</td>
<td class="right">1.11</td>
<td class="right">0.92</td>
<td class="right">5.52</td>
<td class="right">1.44</td>
<td class="right">0.96</td>
<td class="right">0.89</td>
<td class="right">0.43</td>
</tr>

<tr>
<td class="right">19</td>
<td class="right">2009</td>
<td class="left">hi</td>
<td class="right">13114</td>
<td class="right">48</td>
<td class="right">4.99</td>
<td class="right">1.69</td>
<td class="right">0.88</td>
<td class="right">7.20</td>
<td class="right">2.12</td>
<td class="right">0.85</td>
<td class="right">0.87</td>
<td class="right">0.28</td>
</tr>

<tr>
<td class="right">20</td>
<td class="right">2009</td>
<td class="left">lo</td>
<td class="right">13114</td>
<td class="right">48</td>
<td class="right">4.02</td>
<td class="right">1.58</td>
<td class="right">0.85</td>
<td class="right">5.33</td>
<td class="right">2.05</td>
<td class="right">0.88</td>
<td class="right">0.80</td>
<td class="right">0.50</td>
</tr>

<tr>
<td class="right">21</td>
<td class="right">2009</td>
<td class="left">mean</td>
<td class="right">13114</td>
<td class="right">48</td>
<td class="right">4.13</td>
<td class="right">1.21</td>
<td class="right">0.91</td>
<td class="right">5.89</td>
<td class="right">1.48</td>
<td class="right">0.93</td>
<td class="right">0.90</td>
<td class="right">0.54</td>
</tr>

<tr>
<td class="right">22</td>
<td class="right">2010</td>
<td class="left">hi</td>
<td class="right">13980</td>
<td class="right">51</td>
<td class="right">5.36</td>
<td class="right">1.67</td>
<td class="right">0.90</td>
<td class="right">7.73</td>
<td class="right">2.30</td>
<td class="right">0.93</td>
<td class="right">0.88</td>
<td class="right">0.16</td>
</tr>

<tr>
<td class="right">23</td>
<td class="right">2010</td>
<td class="left">lo</td>
<td class="right">13980</td>
<td class="right">51</td>
<td class="right">4.53</td>
<td class="right">1.63</td>
<td class="right">0.87</td>
<td class="right">5.67</td>
<td class="right">2.11</td>
<td class="right">0.90</td>
<td class="right">0.86</td>
<td class="right">0.40</td>
</tr>

<tr>
<td class="right">24</td>
<td class="right">2010</td>
<td class="left">mean</td>
<td class="right">13980</td>
<td class="right">51</td>
<td class="right">4.50</td>
<td class="right">1.26</td>
<td class="right">0.92</td>
<td class="right">6.35</td>
<td class="right">1.71</td>
<td class="right">0.95</td>
<td class="right">0.91</td>
<td class="right">0.28</td>
</tr>

<tr>
<td class="right">25</td>
<td class="right">2011</td>
<td class="left">hi</td>
<td class="right">14036</td>
<td class="right">46</td>
<td class="right">5.03</td>
<td class="right">1.59</td>
<td class="right">0.90</td>
<td class="right">7.16</td>
<td class="right">2.05</td>
<td class="right">0.92</td>
<td class="right">0.87</td>
<td class="right">0.05</td>
</tr>

<tr>
<td class="right">26</td>
<td class="right">2011</td>
<td class="left">lo</td>
<td class="right">14036</td>
<td class="right">46</td>
<td class="right">4.25</td>
<td class="right">1.60</td>
<td class="right">0.86</td>
<td class="right">5.28</td>
<td class="right">1.97</td>
<td class="right">0.90</td>
<td class="right">0.83</td>
<td class="right">0.21</td>
</tr>

<tr>
<td class="right">27</td>
<td class="right">2011</td>
<td class="left">mean</td>
<td class="right">14036</td>
<td class="right">46</td>
<td class="right">4.25</td>
<td class="right">1.16</td>
<td class="right">0.93</td>
<td class="right">5.84</td>
<td class="right">1.46</td>
<td class="right">0.95</td>
<td class="right">0.89</td>
<td class="right">0.22</td>
</tr>

<tr>
<td class="right">28</td>
<td class="right">2012</td>
<td class="left">hi</td>
<td class="right">15161</td>
<td class="right">53</td>
<td class="right">4.71</td>
<td class="right">1.46</td>
<td class="right">0.90</td>
<td class="right">6.57</td>
<td class="right">1.83</td>
<td class="right">0.91</td>
<td class="right">0.87</td>
<td class="right">0.19</td>
</tr>

<tr>
<td class="right">29</td>
<td class="right">2012</td>
<td class="left">lo</td>
<td class="right">15161</td>
<td class="right">53</td>
<td class="right">3.90</td>
<td class="right">1.59</td>
<td class="right">0.83</td>
<td class="right">4.91</td>
<td class="right">1.96</td>
<td class="right">0.91</td>
<td class="right">0.77</td>
<td class="right">0.45</td>
</tr>

<tr>
<td class="right">30</td>
<td class="right">2012</td>
<td class="left">mean</td>
<td class="right">15161</td>
<td class="right">53</td>
<td class="right">3.93</td>
<td class="right">1.06</td>
<td class="right">0.93</td>
<td class="right">5.38</td>
<td class="right">1.35</td>
<td class="right">0.96</td>
<td class="right">0.87</td>
<td class="right">0.50</td>
</tr>

<tr>
<td class="right">31</td>
<td class="right">2013</td>
<td class="left">hi</td>
<td class="right">17317</td>
<td class="right">59</td>
<td class="right">4.97</td>
<td class="right">1.69</td>
<td class="right">0.88</td>
<td class="right">6.35</td>
<td class="right">2.12</td>
<td class="right">0.89</td>
<td class="right">0.85</td>
<td class="right">0.22</td>
</tr>

<tr>
<td class="right">32</td>
<td class="right">2013</td>
<td class="left">lo</td>
<td class="right">17317</td>
<td class="right">59</td>
<td class="right">4.16</td>
<td class="right">1.71</td>
<td class="right">0.83</td>
<td class="right">4.89</td>
<td class="right">1.98</td>
<td class="right">0.90</td>
<td class="right">0.75</td>
<td class="right">0.58</td>
</tr>

<tr>
<td class="right">33</td>
<td class="right">2013</td>
<td class="left">mean</td>
<td class="right">17317</td>
<td class="right">59</td>
<td class="right">4.21</td>
<td class="right">1.14</td>
<td class="right">0.93</td>
<td class="right">5.23</td>
<td class="right">1.32</td>
<td class="right">0.96</td>
<td class="right">0.86</td>
<td class="right">0.61</td>
</tr>

<tr>
<td class="right">34</td>
<td class="right">2014</td>
<td class="left">hi</td>
<td class="right">18685</td>
<td class="right">62</td>
<td class="right">4.66</td>
<td class="right">1.65</td>
<td class="right">0.87</td>
<td class="right">6.13</td>
<td class="right">2.03</td>
<td class="right">0.89</td>
<td class="right">0.83</td>
<td class="right">0.28</td>
</tr>

<tr>
<td class="right">35</td>
<td class="right">2014</td>
<td class="left">lo</td>
<td class="right">18685</td>
<td class="right">62</td>
<td class="right">4.21</td>
<td class="right">1.63</td>
<td class="right">0.85</td>
<td class="right">5.14</td>
<td class="right">1.97</td>
<td class="right">0.90</td>
<td class="right">0.79</td>
<td class="right">0.48</td>
</tr>

<tr>
<td class="right">36</td>
<td class="right">2014</td>
<td class="left">mean</td>
<td class="right">18685</td>
<td class="right">62</td>
<td class="right">4.02</td>
<td class="right">1.10</td>
<td class="right">0.92</td>
<td class="right">5.21</td>
<td class="right">1.29</td>
<td class="right">0.96</td>
<td class="right">0.86</td>
<td class="right">0.58</td>
</tr>

<tr>
<td class="right">37</td>
<td class="right">2015</td>
<td class="left">hi</td>
<td class="right">20712</td>
<td class="right">69</td>
<td class="right">4.60</td>
<td class="right">1.60</td>
<td class="right">0.88</td>
<td class="right">6.28</td>
<td class="right">2.01</td>
<td class="right">0.89</td>
<td class="right">0.82</td>
<td class="right">0.25</td>
</tr>

<tr>
<td class="right">38</td>
<td class="right">2015</td>
<td class="left">lo</td>
<td class="right">20712</td>
<td class="right">69</td>
<td class="right">3.96</td>
<td class="right">1.63</td>
<td class="right">0.83</td>
<td class="right">5.16</td>
<td class="right">1.84</td>
<td class="right">0.87</td>
<td class="right">0.75</td>
<td class="right">0.47</td>
</tr>

<tr>
<td class="right">39</td>
<td class="right">2015</td>
<td class="left">mean</td>
<td class="right">20712</td>
<td class="right">69</td>
<td class="right">3.92</td>
<td class="right">1.09</td>
<td class="right">0.92</td>
<td class="right">5.38</td>
<td class="right">1.23</td>
<td class="right">0.95</td>
<td class="right">0.84</td>
<td class="right">0.62</td>
</tr>

<tr>
<td class="right">40</td>
<td class="right">2016</td>
<td class="left">hi</td>
<td class="right">23716</td>
<td class="right">74</td>
<td class="right">4.82</td>
<td class="right">1.64</td>
<td class="right">0.88</td>
<td class="right">6.15</td>
<td class="right">2.05</td>
<td class="right">0.89</td>
<td class="right">0.87</td>
<td class="right">0.28</td>
</tr>

<tr>
<td class="right">41</td>
<td class="right">2016</td>
<td class="left">lo</td>
<td class="right">23716</td>
<td class="right">74</td>
<td class="right">4.25</td>
<td class="right">1.87</td>
<td class="right">0.81</td>
<td class="right">5.26</td>
<td class="right">2.05</td>
<td class="right">0.85</td>
<td class="right">0.78</td>
<td class="right">0.62</td>
</tr>

<tr>
<td class="right">42</td>
<td class="right">2016</td>
<td class="left">mean</td>
<td class="right">23716</td>
<td class="right">74</td>
<td class="right">4.18</td>
<td class="right">1.24</td>
<td class="right">0.91</td>
<td class="right">5.37</td>
<td class="right">1.33</td>
<td class="right">0.94</td>
<td class="right">0.88</td>
<td class="right">0.56</td>
</tr>

<tr>
<td class="right">43</td>
<td class="right">2017</td>
<td class="left">hi</td>
<td class="right">23915</td>
<td class="right">80</td>
<td class="right">4.47</td>
<td class="right">1.66</td>
<td class="right">0.86</td>
<td class="right">6.00</td>
<td class="right">2.04</td>
<td class="right">0.87</td>
<td class="right">0.82</td>
<td class="right">0.31</td>
</tr>

<tr>
<td class="right">44</td>
<td class="right">2017</td>
<td class="left">lo</td>
<td class="right">23915</td>
<td class="right">80</td>
<td class="right">4.54</td>
<td class="right">1.92</td>
<td class="right">0.82</td>
<td class="right">5.60</td>
<td class="right">2.26</td>
<td class="right">0.84</td>
<td class="right">0.82</td>
<td class="right">0.58</td>
</tr>

<tr>
<td class="right">45</td>
<td class="right">2017</td>
<td class="left">mean</td>
<td class="right">23915</td>
<td class="right">80</td>
<td class="right">4.15</td>
<td class="right">1.30</td>
<td class="right">0.90</td>
<td class="right">5.45</td>
<td class="right">1.47</td>
<td class="right">0.91</td>
<td class="right">0.87</td>
<td class="right">0.51</td>
</tr>

<tr>
<td class="right">46</td>
<td class="right">2018</td>
<td class="left">hi</td>
<td class="right">23558</td>
<td class="right">91</td>
<td class="right">4.18</td>
<td class="right">1.58</td>
<td class="right">0.86</td>
<td class="right">5.66</td>
<td class="right">1.82</td>
<td class="right">0.85</td>
<td class="right">0.86</td>
<td class="right">0.39</td>
</tr>

<tr>
<td class="right">47</td>
<td class="right">2018</td>
<td class="left">lo</td>
<td class="right">23558</td>
<td class="right">91</td>
<td class="right">3.96</td>
<td class="right">1.77</td>
<td class="right">0.80</td>
<td class="right">5.01</td>
<td class="right">1.90</td>
<td class="right">0.85</td>
<td class="right">0.80</td>
<td class="right">0.62</td>
</tr>

<tr>
<td class="right">48</td>
<td class="right">2018</td>
<td class="left">mean</td>
<td class="right">23558</td>
<td class="right">91</td>
<td class="right">3.77</td>
<td class="right">1.26</td>
<td class="right">0.89</td>
<td class="right">5.09</td>
<td class="right">1.29</td>
<td class="right">0.90</td>
<td class="right">0.88</td>
<td class="right">0.56</td>
</tr>

<tr>
<td class="right">49</td>
<td class="right">2019</td>
<td class="left">hi</td>
<td class="right">29093</td>
<td class="right">99</td>
<td class="right">4.17</td>
<td class="right">1.86</td>
<td class="right">0.80</td>
<td class="right">5.96</td>
<td class="right">2.18</td>
<td class="right">0.78</td>
<td class="right">0.81</td>
<td class="right">0.42</td>
</tr>

<tr>
<td class="right">50</td>
<td class="right">2019</td>
<td class="left">lo</td>
<td class="right">29093</td>
<td class="right">99</td>
<td class="right">3.88</td>
<td class="right">1.83</td>
<td class="right">0.78</td>
<td class="right">5.15</td>
<td class="right">2.02</td>
<td class="right">0.81</td>
<td class="right">0.76</td>
<td class="right">0.70</td>
</tr>

<tr>
<td class="right">51</td>
<td class="right">2019</td>
<td class="left">mean</td>
<td class="right">29093</td>
<td class="right">99</td>
<td class="right">3.68</td>
<td class="right">1.22</td>
<td class="right">0.89</td>
<td class="right">5.27</td>
<td class="right">1.31</td>
<td class="right">0.92</td>
<td class="right">0.85</td>
<td class="right">0.72</td>
</tr>
</tbody>
</table>

<p>
Here are the RMSEs (and Moran's I <var>p</var>-values for the per-station mean signed error) by meteorological season:
</p>

<div class="org-src-container">
<pre class="src src-R">as.data.frame(rd(d = 2, sr$by.season))
</pre>
</div>

<table id="tab--cv-by-season">


<colgroup>
<col  class="right">

<col  class="right">

<col  class="left">

<col  class="left">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="right">year</th>
<th scope="col" class="left">dv</th>
<th scope="col" class="left">season</th>
<th scope="col" class="right">N</th>
<th scope="col" class="right">stn</th>
<th scope="col" class="right">sd</th>
<th scope="col" class="right">rmse</th>
<th scope="col" class="right">sd - rmse</th>
<th scope="col" class="right">Moran p</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="right">2003</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">3215</td>
<td class="right">32</td>
<td class="right">4.29</td>
<td class="right">1.34</td>
<td class="right">2.96</td>
<td class="right">0.35</td>
</tr>

<tr>
<td class="right">2</td>
<td class="right">2003</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">4788</td>
<td class="right">32</td>
<td class="right">4.53</td>
<td class="right">1.37</td>
<td class="right">3.15</td>
<td class="right">0.58</td>
</tr>

<tr>
<td class="right">3</td>
<td class="right">2003</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">1619</td>
<td class="right">32</td>
<td class="right">4.21</td>
<td class="right">1.32</td>
<td class="right">2.90</td>
<td class="right">0.34</td>
</tr>

<tr>
<td class="right">4</td>
<td class="right">2003</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">3215</td>
<td class="right">32</td>
<td class="right">3.49</td>
<td class="right">1.69</td>
<td class="right">1.80</td>
<td class="right">0.68</td>
</tr>

<tr>
<td class="right">5</td>
<td class="right">2003</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">4788</td>
<td class="right">32</td>
<td class="right">3.07</td>
<td class="right">1.21</td>
<td class="right">1.87</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">6</td>
<td class="right">2003</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">1619</td>
<td class="right">32</td>
<td class="right">3.50</td>
<td class="right">1.66</td>
<td class="right">1.84</td>
<td class="right">0.37</td>
</tr>

<tr>
<td class="right">7</td>
<td class="right">2003</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">3215</td>
<td class="right">32</td>
<td class="right">3.49</td>
<td class="right">0.96</td>
<td class="right">2.53</td>
<td class="right">0.33</td>
</tr>

<tr>
<td class="right">8</td>
<td class="right">2003</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">4788</td>
<td class="right">32</td>
<td class="right">3.57</td>
<td class="right">0.89</td>
<td class="right">2.67</td>
<td class="right">0.34</td>
</tr>

<tr>
<td class="right">9</td>
<td class="right">2003</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">1619</td>
<td class="right">32</td>
<td class="right">3.70</td>
<td class="right">0.91</td>
<td class="right">2.79</td>
<td class="right">0.28</td>
</tr>

<tr>
<td class="right">10</td>
<td class="right">2004</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">3518</td>
<td class="right">35</td>
<td class="right">4.74</td>
<td class="right">1.35</td>
<td class="right">3.39</td>
<td class="right">0.93</td>
</tr>

<tr>
<td class="right">11</td>
<td class="right">2004</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">5286</td>
<td class="right">34</td>
<td class="right">4.13</td>
<td class="right">1.38</td>
<td class="right">2.75</td>
<td class="right">0.78</td>
</tr>

<tr>
<td class="right">12</td>
<td class="right">2004</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">1649</td>
<td class="right">29</td>
<td class="right">4.86</td>
<td class="right">1.25</td>
<td class="right">3.61</td>
<td class="right">0.33</td>
</tr>

<tr>
<td class="right">13</td>
<td class="right">2004</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">3518</td>
<td class="right">35</td>
<td class="right">3.58</td>
<td class="right">1.78</td>
<td class="right">1.80</td>
<td class="right">0.50</td>
</tr>

<tr>
<td class="right">14</td>
<td class="right">2004</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">5286</td>
<td class="right">34</td>
<td class="right">2.83</td>
<td class="right">1.33</td>
<td class="right">1.50</td>
<td class="right">0.51</td>
</tr>

<tr>
<td class="right">15</td>
<td class="right">2004</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">1649</td>
<td class="right">29</td>
<td class="right">3.53</td>
<td class="right">1.54</td>
<td class="right">1.99</td>
<td class="right">0.12</td>
</tr>

<tr>
<td class="right">16</td>
<td class="right">2004</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">3518</td>
<td class="right">35</td>
<td class="right">3.70</td>
<td class="right">1.12</td>
<td class="right">2.57</td>
<td class="right">0.24</td>
</tr>

<tr>
<td class="right">17</td>
<td class="right">2004</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">5286</td>
<td class="right">34</td>
<td class="right">3.23</td>
<td class="right">1.01</td>
<td class="right">2.22</td>
<td class="right">0.78</td>
</tr>

<tr>
<td class="right">18</td>
<td class="right">2004</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">1649</td>
<td class="right">29</td>
<td class="right">4.03</td>
<td class="right">0.95</td>
<td class="right">3.08</td>
<td class="right">0.22</td>
</tr>

<tr>
<td class="right">19</td>
<td class="right">2005</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">3773</td>
<td class="right">36</td>
<td class="right">4.42</td>
<td class="right">1.46</td>
<td class="right">2.96</td>
<td class="right">0.65</td>
</tr>

<tr>
<td class="right">20</td>
<td class="right">2005</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">5673</td>
<td class="right">36</td>
<td class="right">4.83</td>
<td class="right">1.50</td>
<td class="right">3.33</td>
<td class="right">0.82</td>
</tr>

<tr>
<td class="right">21</td>
<td class="right">2005</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">2043</td>
<td class="right">35</td>
<td class="right">4.85</td>
<td class="right">1.47</td>
<td class="right">3.38</td>
<td class="right">0.85</td>
</tr>

<tr>
<td class="right">22</td>
<td class="right">2005</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">3773</td>
<td class="right">36</td>
<td class="right">3.35</td>
<td class="right">1.70</td>
<td class="right">1.65</td>
<td class="right">0.74</td>
</tr>

<tr>
<td class="right">23</td>
<td class="right">2005</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">5673</td>
<td class="right">36</td>
<td class="right">3.34</td>
<td class="right">1.52</td>
<td class="right">1.82</td>
<td class="right">0.14</td>
</tr>

<tr>
<td class="right">24</td>
<td class="right">2005</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">2043</td>
<td class="right">35</td>
<td class="right">3.73</td>
<td class="right">1.72</td>
<td class="right">2.01</td>
<td class="right">0.66</td>
</tr>

<tr>
<td class="right">25</td>
<td class="right">2005</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">3773</td>
<td class="right">36</td>
<td class="right">3.55</td>
<td class="right">1.07</td>
<td class="right">2.48</td>
<td class="right">0.56</td>
</tr>

<tr>
<td class="right">26</td>
<td class="right">2005</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">5673</td>
<td class="right">36</td>
<td class="right">3.85</td>
<td class="right">1.14</td>
<td class="right">2.72</td>
<td class="right">0.55</td>
</tr>

<tr>
<td class="right">27</td>
<td class="right">2005</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">2043</td>
<td class="right">35</td>
<td class="right">4.00</td>
<td class="right">1.02</td>
<td class="right">2.98</td>
<td class="right">0.46</td>
</tr>

<tr>
<td class="right">28</td>
<td class="right">2006</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">3598</td>
<td class="right">36</td>
<td class="right">4.51</td>
<td class="right">1.53</td>
<td class="right">2.98</td>
<td class="right">0.39</td>
</tr>

<tr>
<td class="right">29</td>
<td class="right">2006</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">5207</td>
<td class="right">35</td>
<td class="right">4.50</td>
<td class="right">1.49</td>
<td class="right">3.01</td>
<td class="right">0.76</td>
</tr>

<tr>
<td class="right">30</td>
<td class="right">2006</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">2077</td>
<td class="right">35</td>
<td class="right">4.59</td>
<td class="right">1.33</td>
<td class="right">3.25</td>
<td class="right">0.69</td>
</tr>

<tr>
<td class="right">31</td>
<td class="right">2006</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">3598</td>
<td class="right">36</td>
<td class="right">3.67</td>
<td class="right">1.63</td>
<td class="right">2.03</td>
<td class="right">0.89</td>
</tr>

<tr>
<td class="right">32</td>
<td class="right">2006</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">5207</td>
<td class="right">35</td>
<td class="right">3.15</td>
<td class="right">1.35</td>
<td class="right">1.80</td>
<td class="right">0.40</td>
</tr>

<tr>
<td class="right">33</td>
<td class="right">2006</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">2077</td>
<td class="right">35</td>
<td class="right">3.59</td>
<td class="right">1.68</td>
<td class="right">1.91</td>
<td class="right">0.95</td>
</tr>

<tr>
<td class="right">34</td>
<td class="right">2006</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">3598</td>
<td class="right">36</td>
<td class="right">3.65</td>
<td class="right">1.11</td>
<td class="right">2.54</td>
<td class="right">0.81</td>
</tr>

<tr>
<td class="right">35</td>
<td class="right">2006</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">5207</td>
<td class="right">35</td>
<td class="right">3.54</td>
<td class="right">1.13</td>
<td class="right">2.40</td>
<td class="right">0.73</td>
</tr>

<tr>
<td class="right">36</td>
<td class="right">2006</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">2077</td>
<td class="right">35</td>
<td class="right">3.84</td>
<td class="right">1.03</td>
<td class="right">2.80</td>
<td class="right">0.75</td>
</tr>

<tr>
<td class="right">37</td>
<td class="right">2007</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">3566</td>
<td class="right">39</td>
<td class="right">4.52</td>
<td class="right">1.52</td>
<td class="right">3.00</td>
<td class="right">0.38</td>
</tr>

<tr>
<td class="right">38</td>
<td class="right">2007</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">4737</td>
<td class="right">37</td>
<td class="right">4.81</td>
<td class="right">1.49</td>
<td class="right">3.33</td>
<td class="right">0.15</td>
</tr>

<tr>
<td class="right">39</td>
<td class="right">2007</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">1551</td>
<td class="right">30</td>
<td class="right">4.96</td>
<td class="right">1.32</td>
<td class="right">3.63</td>
<td class="right">0.73</td>
</tr>

<tr>
<td class="right">40</td>
<td class="right">2007</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">3566</td>
<td class="right">39</td>
<td class="right">3.28</td>
<td class="right">1.64</td>
<td class="right">1.64</td>
<td class="right">0.63</td>
</tr>

<tr>
<td class="right">41</td>
<td class="right">2007</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">4737</td>
<td class="right">37</td>
<td class="right">3.46</td>
<td class="right">1.37</td>
<td class="right">2.09</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">42</td>
<td class="right">2007</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">1551</td>
<td class="right">30</td>
<td class="right">3.87</td>
<td class="right">1.54</td>
<td class="right">2.34</td>
<td class="right">0.22</td>
</tr>

<tr>
<td class="right">43</td>
<td class="right">2007</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">3566</td>
<td class="right">39</td>
<td class="right">3.53</td>
<td class="right">1.09</td>
<td class="right">2.44</td>
<td class="right">0.03</td>
</tr>

<tr>
<td class="right">44</td>
<td class="right">2007</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">4737</td>
<td class="right">37</td>
<td class="right">3.79</td>
<td class="right">1.01</td>
<td class="right">2.78</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">45</td>
<td class="right">2007</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">1551</td>
<td class="right">30</td>
<td class="right">4.23</td>
<td class="right">1.04</td>
<td class="right">3.20</td>
<td class="right">0.33</td>
</tr>

<tr>
<td class="right">46</td>
<td class="right">2008</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">3873</td>
<td class="right">41</td>
<td class="right">4.67</td>
<td class="right">1.56</td>
<td class="right">3.12</td>
<td class="right">0.33</td>
</tr>

<tr>
<td class="right">47</td>
<td class="right">2008</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">5699</td>
<td class="right">39</td>
<td class="right">4.88</td>
<td class="right">1.67</td>
<td class="right">3.22</td>
<td class="right">0.08</td>
</tr>

<tr>
<td class="right">48</td>
<td class="right">2008</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">1858</td>
<td class="right">39</td>
<td class="right">4.16</td>
<td class="right">1.39</td>
<td class="right">2.76</td>
<td class="right">0.87</td>
</tr>

<tr>
<td class="right">49</td>
<td class="right">2008</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">3873</td>
<td class="right">41</td>
<td class="right">3.31</td>
<td class="right">1.70</td>
<td class="right">1.60</td>
<td class="right">0.38</td>
</tr>

<tr>
<td class="right">50</td>
<td class="right">2008</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">5699</td>
<td class="right">39</td>
<td class="right">3.48</td>
<td class="right">1.44</td>
<td class="right">2.04</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">51</td>
<td class="right">2008</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">1858</td>
<td class="right">39</td>
<td class="right">3.41</td>
<td class="right">1.54</td>
<td class="right">1.87</td>
<td class="right">0.74</td>
</tr>

<tr>
<td class="right">52</td>
<td class="right">2008</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">3873</td>
<td class="right">41</td>
<td class="right">3.76</td>
<td class="right">1.14</td>
<td class="right">2.62</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">53</td>
<td class="right">2008</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">5699</td>
<td class="right">39</td>
<td class="right">3.81</td>
<td class="right">1.14</td>
<td class="right">2.67</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">54</td>
<td class="right">2008</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">1858</td>
<td class="right">39</td>
<td class="right">3.58</td>
<td class="right">0.97</td>
<td class="right">2.61</td>
<td class="right">0.04</td>
</tr>

<tr>
<td class="right">55</td>
<td class="right">2009</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">4114</td>
<td class="right">47</td>
<td class="right">4.90</td>
<td class="right">1.69</td>
<td class="right">3.22</td>
<td class="right">0.83</td>
</tr>

<tr>
<td class="right">56</td>
<td class="right">2009</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">6689</td>
<td class="right">46</td>
<td class="right">4.77</td>
<td class="right">1.73</td>
<td class="right">3.05</td>
<td class="right">0.49</td>
</tr>

<tr>
<td class="right">57</td>
<td class="right">2009</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">2311</td>
<td class="right">43</td>
<td class="right">4.40</td>
<td class="right">1.62</td>
<td class="right">2.79</td>
<td class="right">0.51</td>
</tr>

<tr>
<td class="right">58</td>
<td class="right">2009</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">4114</td>
<td class="right">47</td>
<td class="right">3.50</td>
<td class="right">1.73</td>
<td class="right">1.77</td>
<td class="right">0.05</td>
</tr>

<tr>
<td class="right">59</td>
<td class="right">2009</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">6689</td>
<td class="right">46</td>
<td class="right">3.24</td>
<td class="right">1.45</td>
<td class="right">1.79</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">60</td>
<td class="right">2009</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">2311</td>
<td class="right">43</td>
<td class="right">3.59</td>
<td class="right">1.62</td>
<td class="right">1.97</td>
<td class="right">0.69</td>
</tr>

<tr>
<td class="right">61</td>
<td class="right">2009</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">4114</td>
<td class="right">47</td>
<td class="right">3.74</td>
<td class="right">1.17</td>
<td class="right">2.58</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">62</td>
<td class="right">2009</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">6689</td>
<td class="right">46</td>
<td class="right">3.79</td>
<td class="right">1.25</td>
<td class="right">2.53</td>
<td class="right">0.03</td>
</tr>

<tr>
<td class="right">63</td>
<td class="right">2009</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">2311</td>
<td class="right">43</td>
<td class="right">3.81</td>
<td class="right">1.15</td>
<td class="right">2.66</td>
<td class="right">0.08</td>
</tr>

<tr>
<td class="right">64</td>
<td class="right">2010</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">4429</td>
<td class="right">50</td>
<td class="right">5.07</td>
<td class="right">1.55</td>
<td class="right">3.53</td>
<td class="right">0.81</td>
</tr>

<tr>
<td class="right">65</td>
<td class="right">2010</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">7219</td>
<td class="right">48</td>
<td class="right">5.03</td>
<td class="right">1.66</td>
<td class="right">3.38</td>
<td class="right">0.76</td>
</tr>

<tr>
<td class="right">66</td>
<td class="right">2010</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">2332</td>
<td class="right">45</td>
<td class="right">4.98</td>
<td class="right">1.91</td>
<td class="right">3.07</td>
<td class="right">0.60</td>
</tr>

<tr>
<td class="right">67</td>
<td class="right">2010</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">4429</td>
<td class="right">50</td>
<td class="right">3.74</td>
<td class="right">1.80</td>
<td class="right">1.93</td>
<td class="right">0.18</td>
</tr>

<tr>
<td class="right">68</td>
<td class="right">2010</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">7219</td>
<td class="right">48</td>
<td class="right">3.58</td>
<td class="right">1.51</td>
<td class="right">2.07</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">69</td>
<td class="right">2010</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">2332</td>
<td class="right">45</td>
<td class="right">3.71</td>
<td class="right">1.63</td>
<td class="right">2.08</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">70</td>
<td class="right">2010</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">4429</td>
<td class="right">50</td>
<td class="right">3.89</td>
<td class="right">1.21</td>
<td class="right">2.69</td>
<td class="right">0.02</td>
</tr>

<tr>
<td class="right">71</td>
<td class="right">2010</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">7219</td>
<td class="right">48</td>
<td class="right">3.96</td>
<td class="right">1.26</td>
<td class="right">2.70</td>
<td class="right">0.25</td>
</tr>

<tr>
<td class="right">72</td>
<td class="right">2010</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">2332</td>
<td class="right">45</td>
<td class="right">4.19</td>
<td class="right">1.35</td>
<td class="right">2.84</td>
<td class="right">0.07</td>
</tr>

<tr>
<td class="right">73</td>
<td class="right">2011</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">4557</td>
<td class="right">46</td>
<td class="right">4.61</td>
<td class="right">1.45</td>
<td class="right">3.16</td>
<td class="right">0.88</td>
</tr>

<tr>
<td class="right">74</td>
<td class="right">2011</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">7196</td>
<td class="right">45</td>
<td class="right">4.98</td>
<td class="right">1.68</td>
<td class="right">3.30</td>
<td class="right">0.67</td>
</tr>

<tr>
<td class="right">75</td>
<td class="right">2011</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">2283</td>
<td class="right">41</td>
<td class="right">5.01</td>
<td class="right">1.59</td>
<td class="right">3.42</td>
<td class="right">0.82</td>
</tr>

<tr>
<td class="right">76</td>
<td class="right">2011</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">4557</td>
<td class="right">46</td>
<td class="right">3.63</td>
<td class="right">1.69</td>
<td class="right">1.94</td>
<td class="right">0.87</td>
</tr>

<tr>
<td class="right">77</td>
<td class="right">2011</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">7196</td>
<td class="right">45</td>
<td class="right">3.80</td>
<td class="right">1.56</td>
<td class="right">2.25</td>
<td class="right">0.09</td>
</tr>

<tr>
<td class="right">78</td>
<td class="right">2011</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">2283</td>
<td class="right">41</td>
<td class="right">4.09</td>
<td class="right">1.59</td>
<td class="right">2.50</td>
<td class="right">0.67</td>
</tr>

<tr>
<td class="right">79</td>
<td class="right">2011</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">4557</td>
<td class="right">46</td>
<td class="right">3.80</td>
<td class="right">1.07</td>
<td class="right">2.73</td>
<td class="right">0.60</td>
</tr>

<tr>
<td class="right">80</td>
<td class="right">2011</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">7196</td>
<td class="right">45</td>
<td class="right">4.03</td>
<td class="right">1.23</td>
<td class="right">2.80</td>
<td class="right">0.10</td>
</tr>

<tr>
<td class="right">81</td>
<td class="right">2011</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">2283</td>
<td class="right">41</td>
<td class="right">4.39</td>
<td class="right">1.07</td>
<td class="right">3.32</td>
<td class="right">0.39</td>
</tr>

<tr>
<td class="right">82</td>
<td class="right">2012</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">4810</td>
<td class="right">52</td>
<td class="right">4.54</td>
<td class="right">1.50</td>
<td class="right">3.04</td>
<td class="right">0.48</td>
</tr>

<tr>
<td class="right">83</td>
<td class="right">2012</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">7685</td>
<td class="right">50</td>
<td class="right">4.51</td>
<td class="right">1.47</td>
<td class="right">3.04</td>
<td class="right">0.34</td>
</tr>

<tr>
<td class="right">84</td>
<td class="right">2012</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">2666</td>
<td class="right">49</td>
<td class="right">4.34</td>
<td class="right">1.36</td>
<td class="right">2.98</td>
<td class="right">0.62</td>
</tr>

<tr>
<td class="right">85</td>
<td class="right">2012</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">4810</td>
<td class="right">52</td>
<td class="right">3.53</td>
<td class="right">1.72</td>
<td class="right">1.81</td>
<td class="right">0.08</td>
</tr>

<tr>
<td class="right">86</td>
<td class="right">2012</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">7685</td>
<td class="right">50</td>
<td class="right">3.30</td>
<td class="right">1.48</td>
<td class="right">1.82</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">87</td>
<td class="right">2012</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">2666</td>
<td class="right">49</td>
<td class="right">3.55</td>
<td class="right">1.66</td>
<td class="right">1.89</td>
<td class="right">0.44</td>
</tr>

<tr>
<td class="right">88</td>
<td class="right">2012</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">4810</td>
<td class="right">52</td>
<td class="right">3.70</td>
<td class="right">1.13</td>
<td class="right">2.57</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">89</td>
<td class="right">2012</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">7685</td>
<td class="right">50</td>
<td class="right">3.57</td>
<td class="right">1.03</td>
<td class="right">2.54</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">90</td>
<td class="right">2012</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">2666</td>
<td class="right">49</td>
<td class="right">3.69</td>
<td class="right">0.99</td>
<td class="right">2.70</td>
<td class="right">0.15</td>
</tr>

<tr>
<td class="right">91</td>
<td class="right">2013</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">5853</td>
<td class="right">58</td>
<td class="right">4.66</td>
<td class="right">1.67</td>
<td class="right">2.99</td>
<td class="right">0.21</td>
</tr>

<tr>
<td class="right">92</td>
<td class="right">2013</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">8739</td>
<td class="right">59</td>
<td class="right">4.81</td>
<td class="right">1.68</td>
<td class="right">3.13</td>
<td class="right">0.35</td>
</tr>

<tr>
<td class="right">93</td>
<td class="right">2013</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">2725</td>
<td class="right">53</td>
<td class="right">5.57</td>
<td class="right">1.76</td>
<td class="right">3.81</td>
<td class="right">0.51</td>
</tr>

<tr>
<td class="right">94</td>
<td class="right">2013</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">5853</td>
<td class="right">58</td>
<td class="right">3.70</td>
<td class="right">1.89</td>
<td class="right">1.81</td>
<td class="right">0.15</td>
</tr>

<tr>
<td class="right">95</td>
<td class="right">2013</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">8739</td>
<td class="right">59</td>
<td class="right">3.58</td>
<td class="right">1.47</td>
<td class="right">2.12</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">96</td>
<td class="right">2013</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">2725</td>
<td class="right">53</td>
<td class="right">4.68</td>
<td class="right">1.97</td>
<td class="right">2.71</td>
<td class="right">0.22</td>
</tr>

<tr>
<td class="right">97</td>
<td class="right">2013</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">5853</td>
<td class="right">58</td>
<td class="right">3.85</td>
<td class="right">1.21</td>
<td class="right">2.64</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">98</td>
<td class="right">2013</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">8739</td>
<td class="right">59</td>
<td class="right">3.91</td>
<td class="right">1.06</td>
<td class="right">2.85</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">99</td>
<td class="right">2013</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">2725</td>
<td class="right">53</td>
<td class="right">4.94</td>
<td class="right">1.21</td>
<td class="right">3.72</td>
<td class="right">0.03</td>
</tr>

<tr>
<td class="right">100</td>
<td class="right">2014</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">6194</td>
<td class="right">62</td>
<td class="right">4.54</td>
<td class="right">1.57</td>
<td class="right">2.97</td>
<td class="right">0.41</td>
</tr>

<tr>
<td class="right">101</td>
<td class="right">2014</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">9305</td>
<td class="right">59</td>
<td class="right">4.33</td>
<td class="right">1.69</td>
<td class="right">2.64</td>
<td class="right">0.85</td>
</tr>

<tr>
<td class="right">102</td>
<td class="right">2014</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">3186</td>
<td class="right">59</td>
<td class="right">4.70</td>
<td class="right">1.72</td>
<td class="right">2.98</td>
<td class="right">0.33</td>
</tr>

<tr>
<td class="right">103</td>
<td class="right">2014</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">6194</td>
<td class="right">62</td>
<td class="right">3.99</td>
<td class="right">1.83</td>
<td class="right">2.17</td>
<td class="right">0.36</td>
</tr>

<tr>
<td class="right">104</td>
<td class="right">2014</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">9305</td>
<td class="right">59</td>
<td class="right">3.49</td>
<td class="right">1.41</td>
<td class="right">2.08</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">105</td>
<td class="right">2014</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">3186</td>
<td class="right">59</td>
<td class="right">4.02</td>
<td class="right">1.82</td>
<td class="right">2.20</td>
<td class="right">0.29</td>
</tr>

<tr>
<td class="right">106</td>
<td class="right">2014</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">6194</td>
<td class="right">62</td>
<td class="right">3.93</td>
<td class="right">1.17</td>
<td class="right">2.76</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">107</td>
<td class="right">2014</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">9305</td>
<td class="right">59</td>
<td class="right">3.55</td>
<td class="right">1.05</td>
<td class="right">2.49</td>
<td class="right">0.11</td>
</tr>

<tr>
<td class="right">108</td>
<td class="right">2014</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">3186</td>
<td class="right">59</td>
<td class="right">4.16</td>
<td class="right">1.11</td>
<td class="right">3.04</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">109</td>
<td class="right">2015</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">6527</td>
<td class="right">68</td>
<td class="right">4.40</td>
<td class="right">1.56</td>
<td class="right">2.84</td>
<td class="right">0.70</td>
</tr>

<tr>
<td class="right">110</td>
<td class="right">2015</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">10971</td>
<td class="right">66</td>
<td class="right">4.42</td>
<td class="right">1.63</td>
<td class="right">2.79</td>
<td class="right">0.45</td>
</tr>

<tr>
<td class="right">111</td>
<td class="right">2015</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">3214</td>
<td class="right">64</td>
<td class="right">5.14</td>
<td class="right">1.59</td>
<td class="right">3.55</td>
<td class="right">0.89</td>
</tr>

<tr>
<td class="right">112</td>
<td class="right">2015</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">6527</td>
<td class="right">68</td>
<td class="right">3.86</td>
<td class="right">1.83</td>
<td class="right">2.04</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">113</td>
<td class="right">2015</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">10971</td>
<td class="right">66</td>
<td class="right">3.36</td>
<td class="right">1.42</td>
<td class="right">1.94</td>
<td class="right">0.02</td>
</tr>

<tr>
<td class="right">114</td>
<td class="right">2015</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">3214</td>
<td class="right">64</td>
<td class="right">4.10</td>
<td class="right">1.84</td>
<td class="right">2.27</td>
<td class="right">0.13</td>
</tr>

<tr>
<td class="right">115</td>
<td class="right">2015</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">6527</td>
<td class="right">68</td>
<td class="right">3.80</td>
<td class="right">1.14</td>
<td class="right">2.66</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">116</td>
<td class="right">2015</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">10971</td>
<td class="right">66</td>
<td class="right">3.55</td>
<td class="right">1.03</td>
<td class="right">2.52</td>
<td class="right">0.03</td>
</tr>

<tr>
<td class="right">117</td>
<td class="right">2015</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">3214</td>
<td class="right">64</td>
<td class="right">4.46</td>
<td class="right">1.19</td>
<td class="right">3.27</td>
<td class="right">0.03</td>
</tr>

<tr>
<td class="right">118</td>
<td class="right">2016</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">7816</td>
<td class="right">74</td>
<td class="right">4.56</td>
<td class="right">1.61</td>
<td class="right">2.95</td>
<td class="right">0.82</td>
</tr>

<tr>
<td class="right">119</td>
<td class="right">2016</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">11895</td>
<td class="right">74</td>
<td class="right">4.37</td>
<td class="right">1.64</td>
<td class="right">2.73</td>
<td class="right">0.97</td>
</tr>

<tr>
<td class="right">120</td>
<td class="right">2016</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">4005</td>
<td class="right">71</td>
<td class="right">5.55</td>
<td class="right">1.70</td>
<td class="right">3.85</td>
<td class="right">0.49</td>
</tr>

<tr>
<td class="right">121</td>
<td class="right">2016</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">7816</td>
<td class="right">74</td>
<td class="right">3.97</td>
<td class="right">2.11</td>
<td class="right">1.86</td>
<td class="right">0.04</td>
</tr>

<tr>
<td class="right">122</td>
<td class="right">2016</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">11895</td>
<td class="right">74</td>
<td class="right">3.51</td>
<td class="right">1.57</td>
<td class="right">1.95</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">123</td>
<td class="right">2016</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">4005</td>
<td class="right">71</td>
<td class="right">4.28</td>
<td class="right">2.16</td>
<td class="right">2.12</td>
<td class="right">0.03</td>
</tr>

<tr>
<td class="right">124</td>
<td class="right">2016</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">7816</td>
<td class="right">74</td>
<td class="right">3.81</td>
<td class="right">1.29</td>
<td class="right">2.51</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">125</td>
<td class="right">2016</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">11895</td>
<td class="right">74</td>
<td class="right">3.72</td>
<td class="right">1.16</td>
<td class="right">2.55</td>
<td class="right">0.11</td>
</tr>

<tr>
<td class="right">126</td>
<td class="right">2016</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">4005</td>
<td class="right">71</td>
<td class="right">4.63</td>
<td class="right">1.35</td>
<td class="right">3.28</td>
<td class="right">0.02</td>
</tr>

<tr>
<td class="right">127</td>
<td class="right">2017</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">7907</td>
<td class="right">79</td>
<td class="right">4.08</td>
<td class="right">1.57</td>
<td class="right">2.51</td>
<td class="right">0.79</td>
</tr>

<tr>
<td class="right">128</td>
<td class="right">2017</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">11890</td>
<td class="right">79</td>
<td class="right">4.48</td>
<td class="right">1.72</td>
<td class="right">2.76</td>
<td class="right">0.98</td>
</tr>

<tr>
<td class="right">129</td>
<td class="right">2017</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">4118</td>
<td class="right">74</td>
<td class="right">4.70</td>
<td class="right">1.68</td>
<td class="right">3.02</td>
<td class="right">0.85</td>
</tr>

<tr>
<td class="right">130</td>
<td class="right">2017</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">7907</td>
<td class="right">79</td>
<td class="right">4.02</td>
<td class="right">2.20</td>
<td class="right">1.82</td>
<td class="right">0.95</td>
</tr>

<tr>
<td class="right">131</td>
<td class="right">2017</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">11890</td>
<td class="right">79</td>
<td class="right">3.54</td>
<td class="right">1.62</td>
<td class="right">1.93</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">132</td>
<td class="right">2017</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">4118</td>
<td class="right">74</td>
<td class="right">4.21</td>
<td class="right">2.12</td>
<td class="right">2.08</td>
<td class="right">0.34</td>
</tr>

<tr>
<td class="right">133</td>
<td class="right">2017</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">7907</td>
<td class="right">79</td>
<td class="right">3.79</td>
<td class="right">1.35</td>
<td class="right">2.44</td>
<td class="right">0.17</td>
</tr>

<tr>
<td class="right">134</td>
<td class="right">2017</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">11890</td>
<td class="right">79</td>
<td class="right">3.77</td>
<td class="right">1.25</td>
<td class="right">2.52</td>
<td class="right">0.30</td>
</tr>

<tr>
<td class="right">135</td>
<td class="right">2017</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">4118</td>
<td class="right">74</td>
<td class="right">4.35</td>
<td class="right">1.36</td>
<td class="right">2.99</td>
<td class="right">0.30</td>
</tr>

<tr>
<td class="right">136</td>
<td class="right">2018</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">7124</td>
<td class="right">88</td>
<td class="right">3.88</td>
<td class="right">1.59</td>
<td class="right">2.29</td>
<td class="right">0.23</td>
</tr>

<tr>
<td class="right">137</td>
<td class="right">2018</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">12402</td>
<td class="right">87</td>
<td class="right">3.85</td>
<td class="right">1.53</td>
<td class="right">2.32</td>
<td class="right">0.09</td>
</tr>

<tr>
<td class="right">138</td>
<td class="right">2018</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">4032</td>
<td class="right">77</td>
<td class="right">4.09</td>
<td class="right">1.72</td>
<td class="right">2.37</td>
<td class="right">0.89</td>
</tr>

<tr>
<td class="right">139</td>
<td class="right">2018</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">7124</td>
<td class="right">88</td>
<td class="right">3.87</td>
<td class="right">2.00</td>
<td class="right">1.87</td>
<td class="right">0.59</td>
</tr>

<tr>
<td class="right">140</td>
<td class="right">2018</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">12402</td>
<td class="right">87</td>
<td class="right">3.00</td>
<td class="right">1.61</td>
<td class="right">1.40</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">141</td>
<td class="right">2018</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">4032</td>
<td class="right">77</td>
<td class="right">3.65</td>
<td class="right">1.82</td>
<td class="right">1.82</td>
<td class="right">0.43</td>
</tr>

<tr>
<td class="right">142</td>
<td class="right">2018</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">7124</td>
<td class="right">88</td>
<td class="right">3.52</td>
<td class="right">1.29</td>
<td class="right">2.23</td>
<td class="right">0.01</td>
</tr>

<tr>
<td class="right">143</td>
<td class="right">2018</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">12402</td>
<td class="right">87</td>
<td class="right">3.23</td>
<td class="right">1.24</td>
<td class="right">1.99</td>
<td class="right">0.14</td>
</tr>

<tr>
<td class="right">144</td>
<td class="right">2018</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">4032</td>
<td class="right">77</td>
<td class="right">3.69</td>
<td class="right">1.26</td>
<td class="right">2.42</td>
<td class="right">0.30</td>
</tr>

<tr>
<td class="right">145</td>
<td class="right">2019</td>
<td class="left">hi</td>
<td class="left">ColdDry</td>
<td class="right">9278</td>
<td class="right">96</td>
<td class="right">3.88</td>
<td class="right">1.72</td>
<td class="right">2.17</td>
<td class="right">1.00</td>
</tr>

<tr>
<td class="right">146</td>
<td class="right">2019</td>
<td class="left">hi</td>
<td class="left">Rainy</td>
<td class="right">14924</td>
<td class="right">95</td>
<td class="right">4.07</td>
<td class="right">1.95</td>
<td class="right">2.12</td>
<td class="right">0.29</td>
</tr>

<tr>
<td class="right">147</td>
<td class="right">2019</td>
<td class="left">hi</td>
<td class="left">WarmDry</td>
<td class="right">4891</td>
<td class="right">92</td>
<td class="right">3.93</td>
<td class="right">1.87</td>
<td class="right">2.06</td>
<td class="right">0.41</td>
</tr>

<tr>
<td class="right">148</td>
<td class="right">2019</td>
<td class="left">lo</td>
<td class="left">ColdDry</td>
<td class="right">9278</td>
<td class="right">96</td>
<td class="right">3.64</td>
<td class="right">1.97</td>
<td class="right">1.66</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">149</td>
<td class="right">2019</td>
<td class="left">lo</td>
<td class="left">Rainy</td>
<td class="right">14924</td>
<td class="right">95</td>
<td class="right">3.15</td>
<td class="right">1.67</td>
<td class="right">1.48</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">150</td>
<td class="right">2019</td>
<td class="left">lo</td>
<td class="left">WarmDry</td>
<td class="right">4891</td>
<td class="right">92</td>
<td class="right">3.88</td>
<td class="right">1.99</td>
<td class="right">1.89</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">151</td>
<td class="right">2019</td>
<td class="left">mean</td>
<td class="left">ColdDry</td>
<td class="right">9278</td>
<td class="right">96</td>
<td class="right">3.46</td>
<td class="right">1.21</td>
<td class="right">2.25</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">152</td>
<td class="right">2019</td>
<td class="left">mean</td>
<td class="left">Rainy</td>
<td class="right">14924</td>
<td class="right">95</td>
<td class="right">3.34</td>
<td class="right">1.22</td>
<td class="right">2.13</td>
<td class="right">0.00</td>
</tr>

<tr>
<td class="right">153</td>
<td class="right">2019</td>
<td class="left">mean</td>
<td class="left">WarmDry</td>
<td class="right">4891</td>
<td class="right">92</td>
<td class="right">3.60</td>
<td class="right">1.22</td>
<td class="right">2.38</td>
<td class="right">0.00</td>
</tr>
</tbody>
</table>

<div class="org-src-container">
<pre class="src src-R">as.data.frame(rd(d = 2, sr$by.region))
</pre>
</div>

<table id="tab--cv-by-region">


<colgroup>
<col  class="right">

<col  class="left">

<col  class="left">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="left">dv</th>
<th scope="col" class="left">region</th>
<th scope="col" class="right">N</th>
<th scope="col" class="right">stn</th>
<th scope="col" class="right">sd</th>
<th scope="col" class="right">rmse</th>
<th scope="col" class="right">sd - rmse</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="left">hi</td>
<td class="left">Cuautla</td>
<td class="right">196</td>
<td class="right">1</td>
<td class="right">2.54</td>
<td class="right">1.22</td>
<td class="right">1.32</td>
</tr>

<tr>
<td class="right">2</td>
<td class="left">hi</td>
<td class="left">Cuernavaca</td>
<td class="right">1717</td>
<td class="right">7</td>
<td class="right">4.41</td>
<td class="right">1.93</td>
<td class="right">2.47</td>
</tr>

<tr>
<td class="right">3</td>
<td class="left">hi</td>
<td class="left">Pachuca</td>
<td class="right">132</td>
<td class="right">1</td>
<td class="right">4.29</td>
<td class="right">3.42</td>
<td class="right">0.87</td>
</tr>

<tr>
<td class="right">4</td>
<td class="left">hi</td>
<td class="left">Tlaxcala-Apizaco</td>
<td class="right">224</td>
<td class="right">1</td>
<td class="right">2.71</td>
<td class="right">1.73</td>
<td class="right">0.98</td>
</tr>

<tr>
<td class="right">5</td>
<td class="left">hi</td>
<td class="left">Toluca</td>
<td class="right">1015</td>
<td class="right">4</td>
<td class="right">6.50</td>
<td class="right">2.49</td>
<td class="right">4.01</td>
</tr>

<tr>
<td class="right">6</td>
<td class="left">hi</td>
<td class="left">Valle de México</td>
<td class="right">16859</td>
<td class="right">64</td>
<td class="right">3.60</td>
<td class="right">1.45</td>
<td class="right">2.14</td>
</tr>

<tr>
<td class="right">7</td>
<td class="left">hi</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">3415</td>
<td class="right">13</td>
<td class="right">2.99</td>
<td class="right">1.57</td>
<td class="right">1.42</td>
</tr>

<tr>
<td class="right">8</td>
<td class="left">lo</td>
<td class="left">Cuautla</td>
<td class="right">196</td>
<td class="right">1</td>
<td class="right">1.41</td>
<td class="right">1.51</td>
<td class="right">-0.09</td>
</tr>

<tr>
<td class="right">9</td>
<td class="left">lo</td>
<td class="left">Cuernavaca</td>
<td class="right">1717</td>
<td class="right">7</td>
<td class="right">4.21</td>
<td class="right">1.70</td>
<td class="right">2.51</td>
</tr>

<tr>
<td class="right">10</td>
<td class="left">lo</td>
<td class="left">Pachuca</td>
<td class="right">132</td>
<td class="right">1</td>
<td class="right">3.48</td>
<td class="right">2.14</td>
<td class="right">1.34</td>
</tr>

<tr>
<td class="right">11</td>
<td class="left">lo</td>
<td class="left">Tlaxcala-Apizaco</td>
<td class="right">224</td>
<td class="right">1</td>
<td class="right">2.94</td>
<td class="right">2.54</td>
<td class="right">0.40</td>
</tr>

<tr>
<td class="right">12</td>
<td class="left">lo</td>
<td class="left">Toluca</td>
<td class="right">1015</td>
<td class="right">4</td>
<td class="right">3.44</td>
<td class="right">2.34</td>
<td class="right">1.10</td>
</tr>

<tr>
<td class="right">13</td>
<td class="left">lo</td>
<td class="left">Valle de México</td>
<td class="right">16859</td>
<td class="right">64</td>
<td class="right">3.56</td>
<td class="right">1.76</td>
<td class="right">1.80</td>
</tr>

<tr>
<td class="right">14</td>
<td class="left">lo</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">3415</td>
<td class="right">13</td>
<td class="right">3.22</td>
<td class="right">1.61</td>
<td class="right">1.61</td>
</tr>

<tr>
<td class="right">15</td>
<td class="left">mean</td>
<td class="left">Cuautla</td>
<td class="right">196</td>
<td class="right">1</td>
<td class="right">1.59</td>
<td class="right">1.04</td>
<td class="right">0.55</td>
</tr>

<tr>
<td class="right">16</td>
<td class="left">mean</td>
<td class="left">Cuernavaca</td>
<td class="right">1717</td>
<td class="right">7</td>
<td class="right">4.31</td>
<td class="right">1.22</td>
<td class="right">3.09</td>
</tr>

<tr>
<td class="right">17</td>
<td class="left">mean</td>
<td class="left">Pachuca</td>
<td class="right">132</td>
<td class="right">1</td>
<td class="right">3.28</td>
<td class="right">1.10</td>
<td class="right">2.18</td>
</tr>

<tr>
<td class="right">18</td>
<td class="left">mean</td>
<td class="left">Tlaxcala-Apizaco</td>
<td class="right">224</td>
<td class="right">1</td>
<td class="right">2.16</td>
<td class="right">1.11</td>
<td class="right">1.06</td>
</tr>

<tr>
<td class="right">19</td>
<td class="left">mean</td>
<td class="left">Toluca</td>
<td class="right">1015</td>
<td class="right">4</td>
<td class="right">4.59</td>
<td class="right">1.59</td>
<td class="right">2.99</td>
</tr>

<tr>
<td class="right">20</td>
<td class="left">mean</td>
<td class="left">Valle de México</td>
<td class="right">16859</td>
<td class="right">64</td>
<td class="right">3.18</td>
<td class="right">1.27</td>
<td class="right">1.91</td>
</tr>

<tr>
<td class="right">21</td>
<td class="left">mean</td>
<td class="left">Puebla-Tlaxcala</td>
<td class="right">3415</td>
<td class="right">13</td>
<td class="right">2.75</td>
<td class="right">1.15</td>
<td class="right">1.61</td>
</tr>
</tbody>
</table>

<p>
These by-region results are only for 2018.
</p>

<div class="org-src-container">
<pre class="src src-R">as.data.frame(rd(d = 2, sr$by.network))
</pre>
</div>

<table id="tab--cv-by-network">


<colgroup>
<col  class="right">

<col  class="left">

<col  class="left">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="left">dv</th>
<th scope="col" class="left">network</th>
<th scope="col" class="right">N</th>
<th scope="col" class="right">stn</th>
<th scope="col" class="right">sd</th>
<th scope="col" class="right">rmse</th>
<th scope="col" class="right">sd - rmse</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="left">hi</td>
<td class="left">emas</td>
<td class="right">2740</td>
<td class="right">14</td>
<td class="right">7.50</td>
<td class="right">2.10</td>
<td class="right">5.40</td>
</tr>

<tr>
<td class="right">2</td>
<td class="left">hi</td>
<td class="left">esimes</td>
<td class="right">823</td>
<td class="right">4</td>
<td class="right">3.31</td>
<td class="right">2.15</td>
<td class="right">1.16</td>
</tr>

<tr>
<td class="right">3</td>
<td class="left">hi</td>
<td class="left">simat</td>
<td class="right">7787</td>
<td class="right">25</td>
<td class="right">3.22</td>
<td class="right">1.26</td>
<td class="right">1.96</td>
</tr>

<tr>
<td class="right">4</td>
<td class="left">hi</td>
<td class="left">smno</td>
<td class="right">285</td>
<td class="right">1</td>
<td class="right">2.85</td>
<td class="right">1.45</td>
<td class="right">1.39</td>
</tr>

<tr>
<td class="right">5</td>
<td class="left">hi</td>
<td class="left">unam</td>
<td class="right">3187</td>
<td class="right">12</td>
<td class="right">2.82</td>
<td class="right">0.94</td>
<td class="right">1.88</td>
</tr>

<tr>
<td class="right">6</td>
<td class="left">hi</td>
<td class="left">wunderground</td>
<td class="right">8736</td>
<td class="right">35</td>
<td class="right">3.54</td>
<td class="right">1.77</td>
<td class="right">1.76</td>
</tr>

<tr>
<td class="right">7</td>
<td class="left">lo</td>
<td class="left">emas</td>
<td class="right">2740</td>
<td class="right">14</td>
<td class="right">5.66</td>
<td class="right">1.92</td>
<td class="right">3.75</td>
</tr>

<tr>
<td class="right">8</td>
<td class="left">lo</td>
<td class="left">esimes</td>
<td class="right">823</td>
<td class="right">4</td>
<td class="right">3.72</td>
<td class="right">2.47</td>
<td class="right">1.25</td>
</tr>

<tr>
<td class="right">9</td>
<td class="left">lo</td>
<td class="left">simat</td>
<td class="right">7787</td>
<td class="right">25</td>
<td class="right">3.34</td>
<td class="right">1.75</td>
<td class="right">1.59</td>
</tr>

<tr>
<td class="right">10</td>
<td class="left">lo</td>
<td class="left">smno</td>
<td class="right">285</td>
<td class="right">1</td>
<td class="right">2.72</td>
<td class="right">1.07</td>
<td class="right">1.65</td>
</tr>

<tr>
<td class="right">11</td>
<td class="left">lo</td>
<td class="left">unam</td>
<td class="right">3187</td>
<td class="right">12</td>
<td class="right">2.76</td>
<td class="right">1.04</td>
<td class="right">1.72</td>
</tr>

<tr>
<td class="right">12</td>
<td class="left">lo</td>
<td class="left">wunderground</td>
<td class="right">8736</td>
<td class="right">35</td>
<td class="right">3.66</td>
<td class="right">1.89</td>
<td class="right">1.77</td>
</tr>

<tr>
<td class="right">13</td>
<td class="left">mean</td>
<td class="left">emas</td>
<td class="right">2740</td>
<td class="right">14</td>
<td class="right">6.53</td>
<td class="right">1.50</td>
<td class="right">5.02</td>
</tr>

<tr>
<td class="right">14</td>
<td class="left">mean</td>
<td class="left">esimes</td>
<td class="right">823</td>
<td class="right">4</td>
<td class="right">2.93</td>
<td class="right">1.10</td>
<td class="right">1.82</td>
</tr>

<tr>
<td class="right">15</td>
<td class="left">mean</td>
<td class="left">simat</td>
<td class="right">7787</td>
<td class="right">25</td>
<td class="right">2.77</td>
<td class="right">1.04</td>
<td class="right">1.73</td>
</tr>

<tr>
<td class="right">16</td>
<td class="left">mean</td>
<td class="left">smno</td>
<td class="right">285</td>
<td class="right">1</td>
<td class="right">2.41</td>
<td class="right">0.74</td>
<td class="right">1.67</td>
</tr>

<tr>
<td class="right">17</td>
<td class="left">mean</td>
<td class="left">unam</td>
<td class="right">3187</td>
<td class="right">12</td>
<td class="right">2.47</td>
<td class="right">0.72</td>
<td class="right">1.74</td>
</tr>

<tr>
<td class="right">18</td>
<td class="left">mean</td>
<td class="left">wunderground</td>
<td class="right">8736</td>
<td class="right">35</td>
<td class="right">3.20</td>
<td class="right">1.51</td>
<td class="right">1.68</td>
</tr>
</tbody>
</table>

<p>
These by-network results are only for 2018.
</p>

<div class="org-src-container">
<pre class="src src-R">time.series.plot()
</pre>
</div>


<figure id="fig--g/cv-time-series"><div class="figure-label"><a class="internal figure-label-text" href="#fig--g/cv-time-series">g/cv-time-series</a></div>
<img src="" alt="cv-time-series.png">

</figure>

<div class="org-src-container">
<pre class="src src-R">pred.error.plot()
</pre>
</div>


<figure id="fig--g/error-density"><div class="figure-label"><a class="internal figure-label-text" href="#fig--g/error-density">g/error-density</a></div>
<img src="" alt="error-density.png">

</figure>
</div>

<div class="outline-3">
<h3 id="sec--with-vs-without-training">With vs. without training Wunderground</h3>
<div class="outline-text-3">
<div class="org-src-container">
<pre class="src src-R">x = lapply(c(<span style="color: #00688b; font-weight: bold;">F</span>, <span style="color: #00688b; font-weight: bold;">T</span>), <span style="color: #cd0000; font-weight: bold;">function</span>(train.wunder)
    summarize.cv.results(multi.run.cv(year(earliest.date) : latest.year,
        train.wunder = train.wunder), test.wunder = <span style="color: #00688b; font-weight: bold;">F</span>)$overall)
x = cbind(x[[1]][, .(year, dv, N, rmseF = rmse.s)],
    rmseT = x[[2]]$rmse.s)
x[, diff := rmseF - rmseT]
</pre>
</div>

<div class="org-src-container">
<pre class="src src-R">rd(as.data.frame(x))
</pre>
</div>

<table id="tab--with-vs-without-wunderground">


<colgroup>
<col  class="right">

<col  class="right">

<col  class="left">

<col  class="right">

<col  class="right">

<col  class="right">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="right">year</th>
<th scope="col" class="left">dv</th>
<th scope="col" class="right">N</th>
<th scope="col" class="right">rmseF</th>
<th scope="col" class="right">rmseT</th>
<th scope="col" class="right">diff</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="right">2003</td>
<td class="left">hi</td>
<td class="right">9622</td>
<td class="right">1.816</td>
<td class="right">1.816</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">2</td>
<td class="right">2003</td>
<td class="left">lo</td>
<td class="right">9622</td>
<td class="right">1.932</td>
<td class="right">1.932</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">3</td>
<td class="right">2003</td>
<td class="left">mean</td>
<td class="right">9622</td>
<td class="right">1.205</td>
<td class="right">1.205</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">4</td>
<td class="right">2004</td>
<td class="left">hi</td>
<td class="right">10453</td>
<td class="right">1.765</td>
<td class="right">1.765</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">5</td>
<td class="right">2004</td>
<td class="left">lo</td>
<td class="right">10453</td>
<td class="right">2.027</td>
<td class="right">2.027</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">6</td>
<td class="right">2004</td>
<td class="left">mean</td>
<td class="right">10453</td>
<td class="right">1.368</td>
<td class="right">1.368</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">7</td>
<td class="right">2005</td>
<td class="left">hi</td>
<td class="right">11489</td>
<td class="right">1.875</td>
<td class="right">1.875</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">8</td>
<td class="right">2005</td>
<td class="left">lo</td>
<td class="right">11489</td>
<td class="right">2.158</td>
<td class="right">2.158</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">9</td>
<td class="right">2005</td>
<td class="left">mean</td>
<td class="right">11489</td>
<td class="right">1.403</td>
<td class="right">1.403</td>
<td class="right">0.000</td>
</tr>

<tr>
<td class="right">10</td>
<td class="right">2006</td>
<td class="left">hi</td>
<td class="right">10882</td>
<td class="right">1.839</td>
<td class="right">1.836</td>
<td class="right">0.003</td>
</tr>

<tr>
<td class="right">11</td>
<td class="right">2006</td>
<td class="left">lo</td>
<td class="right">10882</td>
<td class="right">1.968</td>
<td class="right">1.959</td>
<td class="right">0.009</td>
</tr>

<tr>
<td class="right">12</td>
<td class="right">2006</td>
<td class="left">mean</td>
<td class="right">10882</td>
<td class="right">1.400</td>
<td class="right">1.397</td>
<td class="right">0.003</td>
</tr>

<tr>
<td class="right">13</td>
<td class="right">2007</td>
<td class="left">hi</td>
<td class="right">9854</td>
<td class="right">1.874</td>
<td class="right">1.880</td>
<td class="right">-0.006</td>
</tr>

<tr>
<td class="right">14</td>
<td class="right">2007</td>
<td class="left">lo</td>
<td class="right">9854</td>
<td class="right">1.850</td>
<td class="right">1.858</td>
<td class="right">-0.007</td>
</tr>

<tr>
<td class="right">15</td>
<td class="right">2007</td>
<td class="left">mean</td>
<td class="right">9854</td>
<td class="right">1.295</td>
<td class="right">1.285</td>
<td class="right">0.010</td>
</tr>

<tr>
<td class="right">16</td>
<td class="right">2008</td>
<td class="left">hi</td>
<td class="right">11378</td>
<td class="right">1.799</td>
<td class="right">1.942</td>
<td class="right">-0.142</td>
</tr>

<tr>
<td class="right">17</td>
<td class="right">2008</td>
<td class="left">lo</td>
<td class="right">11378</td>
<td class="right">1.982</td>
<td class="right">1.996</td>
<td class="right">-0.013</td>
</tr>

<tr>
<td class="right">18</td>
<td class="right">2008</td>
<td class="left">mean</td>
<td class="right">11378</td>
<td class="right">1.387</td>
<td class="right">1.440</td>
<td class="right">-0.053</td>
</tr>

<tr>
<td class="right">19</td>
<td class="right">2009</td>
<td class="left">hi</td>
<td class="right">12743</td>
<td class="right">2.027</td>
<td class="right">2.098</td>
<td class="right">-0.071</td>
</tr>

<tr>
<td class="right">20</td>
<td class="right">2009</td>
<td class="left">lo</td>
<td class="right">12743</td>
<td class="right">2.068</td>
<td class="right">2.071</td>
<td class="right">-0.003</td>
</tr>

<tr>
<td class="right">21</td>
<td class="right">2009</td>
<td class="left">mean</td>
<td class="right">12743</td>
<td class="right">1.462</td>
<td class="right">1.480</td>
<td class="right">-0.018</td>
</tr>

<tr>
<td class="right">22</td>
<td class="right">2010</td>
<td class="left">hi</td>
<td class="right">13357</td>
<td class="right">1.788</td>
<td class="right">2.302</td>
<td class="right">-0.514</td>
</tr>

<tr>
<td class="right">23</td>
<td class="right">2010</td>
<td class="left">lo</td>
<td class="right">13357</td>
<td class="right">2.070</td>
<td class="right">2.157</td>
<td class="right">-0.087</td>
</tr>

<tr>
<td class="right">24</td>
<td class="right">2010</td>
<td class="left">mean</td>
<td class="right">13357</td>
<td class="right">1.411</td>
<td class="right">1.741</td>
<td class="right">-0.330</td>
</tr>

<tr>
<td class="right">25</td>
<td class="right">2011</td>
<td class="left">hi</td>
<td class="right">13376</td>
<td class="right">1.974</td>
<td class="right">2.030</td>
<td class="right">-0.056</td>
</tr>

<tr>
<td class="right">26</td>
<td class="right">2011</td>
<td class="left">lo</td>
<td class="right">13376</td>
<td class="right">2.001</td>
<td class="right">1.984</td>
<td class="right">0.017</td>
</tr>

<tr>
<td class="right">27</td>
<td class="right">2011</td>
<td class="left">mean</td>
<td class="right">13376</td>
<td class="right">1.473</td>
<td class="right">1.464</td>
<td class="right">0.009</td>
</tr>

<tr>
<td class="right">28</td>
<td class="right">2012</td>
<td class="left">hi</td>
<td class="right">14074</td>
<td class="right">1.813</td>
<td class="right">1.828</td>
<td class="right">-0.015</td>
</tr>

<tr>
<td class="right">29</td>
<td class="right">2012</td>
<td class="left">lo</td>
<td class="right">14074</td>
<td class="right">1.969</td>
<td class="right">1.937</td>
<td class="right">0.031</td>
</tr>

<tr>
<td class="right">30</td>
<td class="right">2012</td>
<td class="left">mean</td>
<td class="right">14074</td>
<td class="right">1.392</td>
<td class="right">1.376</td>
<td class="right">0.015</td>
</tr>

<tr>
<td class="right">31</td>
<td class="right">2013</td>
<td class="left">hi</td>
<td class="right">15622</td>
<td class="right">2.102</td>
<td class="right">2.145</td>
<td class="right">-0.044</td>
</tr>

<tr>
<td class="right">32</td>
<td class="right">2013</td>
<td class="left">lo</td>
<td class="right">15622</td>
<td class="right">1.979</td>
<td class="right">1.957</td>
<td class="right">0.022</td>
</tr>

<tr>
<td class="right">33</td>
<td class="right">2013</td>
<td class="left">mean</td>
<td class="right">15622</td>
<td class="right">1.342</td>
<td class="right">1.335</td>
<td class="right">0.006</td>
</tr>

<tr>
<td class="right">34</td>
<td class="right">2014</td>
<td class="left">hi</td>
<td class="right">16907</td>
<td class="right">2.049</td>
<td class="right">2.066</td>
<td class="right">-0.017</td>
</tr>

<tr>
<td class="right">35</td>
<td class="right">2014</td>
<td class="left">lo</td>
<td class="right">16907</td>
<td class="right">1.992</td>
<td class="right">1.965</td>
<td class="right">0.027</td>
</tr>

<tr>
<td class="right">36</td>
<td class="right">2014</td>
<td class="left">mean</td>
<td class="right">16907</td>
<td class="right">1.300</td>
<td class="right">1.291</td>
<td class="right">0.009</td>
</tr>

<tr>
<td class="right">37</td>
<td class="right">2015</td>
<td class="left">hi</td>
<td class="right">18598</td>
<td class="right">1.990</td>
<td class="right">2.002</td>
<td class="right">-0.012</td>
</tr>

<tr>
<td class="right">38</td>
<td class="right">2015</td>
<td class="left">lo</td>
<td class="right">18598</td>
<td class="right">1.845</td>
<td class="right">1.841</td>
<td class="right">0.004</td>
</tr>

<tr>
<td class="right">39</td>
<td class="right">2015</td>
<td class="left">mean</td>
<td class="right">18598</td>
<td class="right">1.192</td>
<td class="right">1.208</td>
<td class="right">-0.016</td>
</tr>

<tr>
<td class="right">40</td>
<td class="right">2016</td>
<td class="left">hi</td>
<td class="right">19899</td>
<td class="right">2.011</td>
<td class="right">2.028</td>
<td class="right">-0.017</td>
</tr>

<tr>
<td class="right">41</td>
<td class="right">2016</td>
<td class="left">lo</td>
<td class="right">19899</td>
<td class="right">2.090</td>
<td class="right">2.075</td>
<td class="right">0.015</td>
</tr>

<tr>
<td class="right">42</td>
<td class="right">2016</td>
<td class="left">mean</td>
<td class="right">19899</td>
<td class="right">1.260</td>
<td class="right">1.294</td>
<td class="right">-0.034</td>
</tr>

<tr>
<td class="right">43</td>
<td class="right">2017</td>
<td class="left">hi</td>
<td class="right">18459</td>
<td class="right">1.977</td>
<td class="right">2.012</td>
<td class="right">-0.035</td>
</tr>

<tr>
<td class="right">44</td>
<td class="right">2017</td>
<td class="left">lo</td>
<td class="right">18459</td>
<td class="right">2.284</td>
<td class="right">2.310</td>
<td class="right">-0.026</td>
</tr>

<tr>
<td class="right">45</td>
<td class="right">2017</td>
<td class="left">mean</td>
<td class="right">18459</td>
<td class="right">1.365</td>
<td class="right">1.425</td>
<td class="right">-0.060</td>
</tr>

<tr>
<td class="right">46</td>
<td class="right">2018</td>
<td class="left">hi</td>
<td class="right">14822</td>
<td class="right">1.731</td>
<td class="right">1.808</td>
<td class="right">-0.077</td>
</tr>

<tr>
<td class="right">47</td>
<td class="right">2018</td>
<td class="left">lo</td>
<td class="right">14822</td>
<td class="right">1.904</td>
<td class="right">1.946</td>
<td class="right">-0.041</td>
</tr>

<tr>
<td class="right">48</td>
<td class="right">2018</td>
<td class="left">mean</td>
<td class="right">14822</td>
<td class="right">1.100</td>
<td class="right">1.241</td>
<td class="right">-0.141</td>
</tr>

<tr>
<td class="right">49</td>
<td class="right">2019</td>
<td class="left">hi</td>
<td class="right">17058</td>
<td class="right">1.954</td>
<td class="right">2.128</td>
<td class="right">-0.174</td>
</tr>

<tr>
<td class="right">50</td>
<td class="right">2019</td>
<td class="left">lo</td>
<td class="right">17058</td>
<td class="right">2.040</td>
<td class="right">2.054</td>
<td class="right">-0.014</td>
</tr>

<tr>
<td class="right">51</td>
<td class="right">2019</td>
<td class="left">mean</td>
<td class="right">17058</td>
<td class="right">1.127</td>
<td class="right">1.285</td>
<td class="right">-0.158</td>
</tr>
</tbody>
</table>

<p>
<code>rmseF</code> is the spatial RMSE obtained from a CV that tests on non-Wunderground stations and trains on non-Wunderground stations. <code>rmseT</code> is similar except Wunderground stations are allowed in training. <code>diff</code> is <code>rmseF - rmseT</code>, so positive <code>diff</code> means an improvement in RMSE when Wunderground is included in training.
</p>

<div class="org-src-container">
<pre class="src src-R">round(d = 5, mean(x[year &gt; 2005, diff]))
</pre>
</div>

<table>


<colgroup>
<col  class="left">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="left">&#xa0;</th>
<th scope="col" class="right">value</th>
</tr>
</thead>
<tbody>
<tr>
<td class="left">&#xa0;</td>
<td class="right">-0.04761</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>

<div class="outline-2">
<h2 id="sec--learning-curve">Learning curve</h2>
<div class="outline-text-2">
<div class="org-src-container">
<pre class="src src-R">learning.curve.plot()
</pre>
</div>


<figure id="fig--g/learning-curve"><div class="figure-label"><a class="internal figure-label-text" href="#fig--g/learning-curve">g/learning-curve</a></div>
<img src="" alt="learning-curve.png">

</figure>
</div>
</div>

<div class="outline-2">
<h2 id="sec--new-predictions">New predictions</h2>
<div class="outline-text-2">
<div class="org-src-container">
<pre class="src src-R"><span style="color: #1874cd;"># </span><span style="color: #0000ff;">d = predict.temps("~/Jdrive/PM/Just_Lab/projects/PROGRESS_physical_activity/data/intermediate/allvar_aug8.rds")</span>
</pre>
</div>

<div class="org-src-container">
<pre class="src src-R">temp.quantiles.map(2018L)
</pre>
</div>


<figure id="fig--g/map-temp-quantiles"><div class="figure-label"><a class="internal figure-label-text" href="#fig--g/map-temp-quantiles">g/map-temp-quantiles</a></div>
<img src="" alt="map-temp-quantiles.png">

</figure>

<p>
Above are the .95 quantiles of the lows and highs, respectively, in 2018.
</p>

<div class="org-src-container">
<pre class="src src-R">pop.map(<span style="background-color: #ffefd5;">"POB65_MAS"</span>)
</pre>
</div>


<figure id="fig--g/map-population"><div class="figure-label"><a class="internal figure-label-text" href="#fig--g/map-population">g/map-population</a></div>
<img src="" alt="map-population.png">

</figure>

<p>
Above is the gridded population density in 2010 for the whole area (counting only people ages 65 and up).
</p>

<div class="org-src-container">
<pre class="src src-R">pop.map(<span style="background-color: #ffefd5;">"POB65_MAS"</span>, thresholds.tempC = c(5, 30))
</pre>
</div>


<figure id="fig--g/map-extreme-person-days"><div class="figure-label"><a class="internal figure-label-text" href="#fig--g/map-extreme-person-days">g/map-extreme-person-days</a></div>
<img src="" alt="map-extreme-person-days.png">

</figure>

<p>
Above is the person-days of exposure to extreme lows or highs, respectively, in 2010. The total exposure, summed across all pixels, is:
</p>

<table>


<colgroup>
<col  class="right">

<col  class="left">

<col  class="right">
</colgroup>
<thead>
<tr>
<th scope="col" class="right">&#xa0;</th>
<th scope="col" class="left">kind</th>
<th scope="col" class="right">total person-days</th>
</tr>
</thead>
<tbody>
<tr>
<td class="right">1</td>
<td class="left">≤ 5 °C</td>
<td class="right">51,842,088</td>
</tr>

<tr>
<td class="right">2</td>
<td class="left">≥ 30 °C</td>
<td class="right">18,242,720</td>
</tr>
</tbody>
</table>
</div>
</div>

<div class="outline-2">
<h2 id="bibliography">References</h2>
<div class="outline-text-2" id="text-bibliography">
<p id="bibref--hubmbw_2014">
Hu, L., Brunsell, N. A., Monaghan, A. J., Barlage, M., &amp; Wilhelmi, O. V. (2014). How can we use MODIS land surface temperature to validate long-term urban model simulations? <i>Journal of Geophysical Research, 119</i>(6), 3185–3201. <a class='doi' href='http://dx.doi.org/10.1002/2013JD021101'>doi:10.1002/2013JD021101</a> <span class="Z3988" title="rft.au=Hu%2C%20Leiqiu&amp;rft.au=Brunsell%2C%20Nathaniel%20A.&amp;rft.au=Monaghan%2C%20Andrew%20J.&amp;rft.au=Barlage%2C%20Michael&amp;rft.au=Wilhelmi%2C%20Olga%20V.&amp;ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi/fmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft_id=info%3Adoi/10.1002/2013JD021101&amp;rft.atitle=How%20can%20we%20use%20MODIS%20land%20surface%20temperature%20to%20validate%20long-term%20urban%20model%20simulations%3F&amp;rft.jtitle=Journal%20of%20Geophysical%20Research&amp;rft.date=2014&amp;rft.volume=119&amp;rft.issue=6"></span>
</p>

<p id="bibref--rosenfelddsnj_2017">
Rosenfeld, A., Dorman, M., Schwartz, J., Novack, V., Just, A. C., &amp; Kloog, I. (2017). Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel. <i>Environmental Research, 159</i>, 297–312. <a class='doi' href='http://dx.doi.org/10.1016/j.envres.2017.08.017'>doi:10.1016/j.envres.2017.08.017</a> <span class="Z3988" title="rft.au=Rosenfeld%2C%20Adar&amp;rft.au=Dorman%2C%20Michael&amp;rft.au=Schwartz%2C%20Joel&amp;rft.au=Novack%2C%20Victor&amp;rft.au=Just%2C%20Allan%20C.&amp;rft.au=Kloog%2C%20Itai&amp;ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi/fmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft_id=info%3Adoi/10.1016/j.envres.2017.08.017&amp;rft.atitle=Estimating%20daily%20minimum%2C%20maximum%2C%20and%20mean%20near%20surface%20air%20temperature%20using%20hybrid%20satellite%20models%20across%20Israel&amp;rft.jtitle=Environmental%20Research&amp;rft.date=2017&amp;rft.volume=159"></span>
</p>

<p id="bibref--williamsonhgkk_2013">
Williamson, S. N., Hik, D. S., Gamon, J. A., Kavanaugh, J. L., &amp; Koh, S. (2013). Evaluating cloud contamination in clear-sky MODIS Terra daytime land surface temperatures using ground-based meteorology station observations. <i>Journal of Climate, 26</i>(5), 1551–1560. <a class='doi' href='http://dx.doi.org/10.1175/JCLI-D-12-00250.1'>doi:10.1175/JCLI-D-12-00250.1</a> <span class="Z3988" title="rft.au=Williamson%2C%20Scott%20N.&amp;rft.au=Hik%2C%20David%20S.&amp;rft.au=Gamon%2C%20John%20A.&amp;rft.au=Kavanaugh%2C%20Jeffrey%20L.&amp;rft.au=Koh%2C%20Saewan&amp;ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi/fmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft_id=info%3Adoi/10.1175/JCLI-D-12-00250.1&amp;rft.atitle=Evaluating%20cloud%20contamination%20in%20clear-sky%20MODIS%20Terra%20daytime%20land%20surface%20temperatures%20using%20ground-based%20meteorology%20station%20observations&amp;rft.jtitle=Journal%20of%20Climate&amp;rft.date=2013&amp;rft.volume=26&amp;rft.issue=5"></span>
</p>
</div>
</div>
</div>
<footer id="license-footer"><p>This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>. Copyright 2018–2021 Kodi B. Arfer.</p></footer></body>
</html>