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Abstract— Recently, applications of complex-valued neural
networks (CVNNs) to real-valued classification problems have
attracted significant attention. However, most existing CVNNs
are black-box models with poor explanation performance. This
study extends the real-valued group method of data handling
(RGMDH)-type neural network to the complex field and con-
structs a circular complex-valued group method of data handling
(C-CGMDH)-type neural network, which is a white-box model.
First, a complex least squares method is proposed for parameter
estimation. Second, a new complex-valued symmetric regularity
criterion is constructed with a logarithmic function to represent
explicitly the magnitude and phase of the actual and predicted
complex output to evaluate and select the middle candidate
models. Furthermore, the property of this new complex-valued
external criterion is proven to be similar to that of the real
external criterion. Before training this model, a circular trans-
formation is used to transform the real-valued input features
to the complex field. Twenty-five real-valued classification data
sets from the UCI Machine Learning Repository are used to
conduct the experiments. The results show that both RGMDH
and C-CGMDH models can select the most important features
from the complete feature space through a self-organizing
modeling process. Compared with RGMDH, the C-CGMDH
model converges faster and selects fewer features. Furthermore,
its classification performance is statistically significantly better
than the benchmark complex-valued and real-valued models.
Regarding time complexity, the C-CGMDH model is comparable
with other models in dealing with the data sets that have few
features. Finally, we demonstrate that the GMDH-type neural
network can be interpretable.
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I. INTRODUCTION

COMPLEX numbers are used to express real-world
phenomena (such as signal amplitude and phase) and to

analyze various mathematical and geometrical relationships.
To process directly complex values with artificial neural
networks (ANNs), complex-valued neural networks (CVNNs)
have been developed [1]–[3]. CVNNs’ states, connection
weights, and activation functions are complex-valued. Thus,
they not only deal with complex-valued signals but also have
the following excellent properties [4]–[6]: 1) the average
convergence speed is two or three times faster than the real-
valued neural networks (RVNNs); 2) the number of required
hidden parameters is approximately half that of the RVNNs;
3) the orthogonal decision boundaries of the CVNNs help them
to solve classification problems more efficiently than their
real-valued counterparts; and 4) the CVNNs have a better gen-
eralization ability than the RVNNs. In addition, the CVNNs,
as extensions of RVNNs, have some other advantages, such as
their strong nonlinear modeling and generalization capabilities.
Recently, CVNNs have attracted an increasing attention.
Therefore, it is very important to study the CVNNs further.

A. Literature Review

In the last two decades, CVNNs have been widely applied
for tasks such as fading channel prediction [7], skeletal wire-
frame pattern recognition [8], signal coherence [6], biomedical
pattern classification [9], image processing [10], optical label
recognition [11], and developmental motion learning [12].
As research continues, several CVNN models have been
proposed and studied. The models include the complex-
valued convolutional neural network [13], complex-valued
feedforward neural network [6], [14], complex least mean
square algorithm [15], [16], complex-valued recurrent neural
network [17], complex-valued projection neural network [18],
complex-valued Hopfield neural network [19]–[21], complex-
valued radial basis function neural network [22], [23],
complex-valued self-organizing map [24], and complex-valued
associative memories [25], [26].

Most of these studies directly dealt with complex-valued
data. Recently, researchers have also applied CVNNs to
real-valued classification problems, finding that a CVNN
can outperform RVNNs in this task [27]. Therefore,
the application of CVNNs to real-valued classification has
attracted increasing attention [27]–[42]. These studies often
map the inputs and outputs of a real-valued classification
problem to the complex field with a function; subsequently,
a CVNN model is constructed for classification. In general,
these functions can be classified into two types:
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The first type is a phase-encoded transformation [27]–[36].
First, real-valued input feature x R is encoded to be phase ϕ
of the unity magnitude complex number. Next, the complex-
valued input feature x is obtained by Euler’s formula: eiϕ =
cos ϕ + i ∗ sin ϕ. For example, x = exp(iπx R), where x R is
normalized in [0, 1], and x is bounded and distributed along
the unit circle in quadrants I and II of the complex plane [30].

The second type is a nonlinear transformation [37]–[42].
First, the real-valued input feature x R is mapped to be the
complex number by a linear function, cx R + d, where c is a
random complex number and d is a constant. Next, a final
complex-valued input feature x is obtained by a nonlinear
function. For instance, x = sin(ax R + ibx R + α), where x R

is normalized in [0, 1], a, b ∈ [0, 1] are the randomly chosen
scaling constants, and α ∈ [0, 2π] is used to shift the origin to
effectively use the four quadrants of the complex plane [39].

B. Motivation

Previous work significantly advanced the state of the art
for the CVNNs and their applications, especially for real-
valued classification problems. However, some limitations of
the CVNNs remain. First, these models pose difficulties in
confirming the optimal training parameters [43], such as the
number of hidden layers and the number of neurons in each
layer. Thus, the model must be debugged repeatedly to find
the optimal parameters. Second, they are prone to overfitting
the noise data in the training set [44]. The overfitted neural
network model will fit the training data perfectly, but it fails
to predict well the unseen testing data. Third, because most
ANNs are black-box models [45], so are the CVNNs, these
networks cannot be interpretable. Thus, the explanatory power
of the modeling results is poor.

In recent years, deep learning has received widespread
attention [46]–[49], and the group method of data han-
dling (GMDH)-type neural network, a heuristic self-organizing
modeling technology, is perhaps the first deep learning
system [50]. To overcome the above shortcomings, the
GMDH-type neural network is a good approach. It was
first developed by Ivakhnenko [51] as a method of multi-
variate analysis for modeling and identification of complex
systems. In the GMDH-type neural networks, training set
Tr is randomly divided into two subsets: model learning
set A and model selecting set B . The basic idea of this
algorithm is to build a multilayer feedforward network struc-
ture. It starts with the input layer, generates new candi-
date models in each layer by combining two models of the
previous layer, and estimates the model parameters in A.
In particular, the transfer function between the input and
output variables can be expressed by the Kolmogorov–Gabor
(KG) polynomial [52], [53]. Next, the algorithm uses an
external criterion to evaluate and select the middle candi-
date models in B . Finally, a model with an optimal com-
plexity is found by the termination principle [54], [55].
Therefore, GMDH-type neural networks can automatically
determine the number of layers of the neural network,
the variables that enter the optimal complexity model, and the
model parameters. In summary, GMDH-type neural networks
add several advantages to contemporary ANNs [52], [56]–[59]:
1) they have strong antinoise capabilities and generate poly-
nomial equations that are interpretable better than any other
ANN model (i.e., white-box models) and 2) they learn the
weights rapidly in a single step by standard ordinary least
squares (LS), which eliminates the need to search for their

values and guarantees finding locally good weights thanks
to the reliability of the fitting technique. Thus, this approach
can avoid the limitations of traditional ANNs to some extent.
In recent years, the real-valued GMDH (RGMDH)-type neural
network has been successfully applied in various fields, such
as engineering, science, and economics [60]–[66].

Therefore, if an RGMDH model is extended to the complex
field, the complex-valued GMDH-type neural network may
outperform the RGMDH and avoid the limitations of the exist-
ing CVNNs to some extent. Recently, Xiao et al. [67] proposed
a phase-encoded complex-valued GMDH (PE-CGMDH)-type
neural network for real-valued classification. The experimental
results show that PE-CGMDH outperforms RGMDH and other
four CVNN and RVNN models.

C. Our Contributions

In fact, several shortcomings of the PE-CGMDH model
remain as follows.

1) A complex-valued symmetric regularity criterion
(CSRC) was constructed, but the properties of the
CSRC were not studied, that is, whether it has sufficient
property similarity to the real external criterion
[68] or its global minimum value exists.

2) The model used a simple mean square error deviation
between the actual and predicted outputs (i.e., regularity
criterion) as the external criterion in the complex field.
This approach has problems with phase approximation,
because it explicitly minimizes only the magnitude error.

3) The phase encoding for the transformation of real-valued
inputs may be ineffective, because this phase encoding
only restricts the projection to I and II quadrants.

To overcome the shortcomings of the PE-CGMDH
model, a new model, the circular complex-valued
GMDH (C-CGMDH)-type neural network, is proposed
in this study. First, the parameter estimation method of the
RGMDH model is extended to the complex field. Next, a new
reasonable complex-valued external criterion is proposed and
studied theoretically to solve the first and second problems.
Finally, a circular transformation is adopted to transform
the real-valued input features into the complex field to use
effectively all four quadrants of the complex plane. The
experimental results on 25 real-valued UCI classification
data sets show that C-CGMDH significantly outperforms
PE-CGMDH and RGMDH, as well as other complex-valued
and real-valued models.

The novelty of this article can be summarized as follows.
1) This article provides sufficient theoretical research of the

properties of the CSRC, which makes the work techni-
cally sound and complete, and proposes a new CSRC
(NCSRC) with the logarithmic function to overcome the
limitations of the CSRC.

2) The circular transformation is introduced for the first
time to construct a C-CGMDH model for overcoming
the limitations of phase-encoded transformation.

D. Structure of the Article

This article is organized as follows. Section II describes the
model of RGMDH. Section III presents the C-CGMDH model
in detail, including the parameter estimation, the construction
of the external criterion, and the modeling process. The
experiments are shown in Section IV to demonstrate the
performance of the C-CGMDH model, including the ablation
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study, convergence speed, feature selection, classification
performance, time complexity, and explanation performance.
Finally, the conclusions are summarized in Section V.

II. RGMDH-TYPE NEURAL NETWORK

A model can be represented as a set of neurons by the
RGMDH model; different pairs of neurons in each layer are
connected with a polynomial to produce new neurons in the
next layer. Let X R = (x R

1 , x R
2 , . . . , x R

n ) and Y R be the real-
valued input vector and the actual output, respectively. Given
m observations of “multidimensional input, single output” data
pairs {(y R

j , x R
j1, x R

j2, . . . , x R
jn)}( j = 1, 2, . . . , m) in the model

learning set, AR ∈ R, we hope to train an RGMDH model to
predict the output values ŷ R

j

ŷ R
j = f̂

(
x R

j1, x R
j2, . . . , x R

jn

)
, j = 1, 2, . . . , m. (1)

The challenge now is to validate an RGMDH model

m∑
j=1

[
f̂
(
x R

j1, x R
j2, . . . , x R

jn

)− y R
j

]2 → min. (2)

The transfer function between the input and output variables
can be expressed by a complicated discrete form of the
Volterra functional series, as follows:

y R = a0 +
n∑

i=1

ai x
R
i +

n∑
i=1

n∑
j=1

ai j x R
i x R

j

+
n∑

i=1

n∑
j=1

n∑
k=1

ai jk x R
i x R

j x R
k + · · · (3)

which is also known as the KG polynomial [52], [53].
In particular, the linear transfer function only consists of two
variables (i.e., features and neurons). We have x R

j p, x R
jq for

different vales of p, q ∈ {1, 2, . . . , n}, p �= q , in the form of

ŷ R
j = g j

(
x R

j p, x R
jq

) = a0 + a1x R
j p + a2x R

jq (4)

where a0, a1, a2 are calculated with LS [52], [53]. Thus,
the coefficients of each linear function, g j , are obtained to
optimally fit output y R

j in set AR . That is

E =
m∑

j=1

(y j − g j (x j p, x jq))2 → min. (5)

In the basic form of the RGMDH model, any two out
of n input variables are combined to construct the regres-
sion polynomial in the form of (4). Consequently, C2

n =
n(n − 1)/2 candidate models will be built up in the first
layer of the feedforward network from the observations,
{(y R

j , x R
j p, x R

jq)}. In other words, it is now possible to con-
struct m data triples, {(y R

j , x R
j p, x R

jq)}, from the observations

with p, q in the form

⎡
⎢⎢⎢⎣

y R
1 x R

1p x R
1q

y R
2 x R

2p x R
2q

...
...

...
y R

m x R
mp x R

mq

⎤
⎥⎥⎥⎦

m×3

. Furthermore,

the corresponding matrix equation can be readily obtained as
DRa = Y R , where a = (a0, a1, a2)

T is the coefficient vector,
Y R = (y R

1 , y R
2 , . . . , y R

m )T is the vector of observations, and

Fig. 1. Modeling process of the RGMDH-type neural network.

DR =

⎡
⎢⎢⎢⎣

1 x R
1p x R

1q
1 x R

2p x R
2q

...
...

...
1 x R

mp x R
mq

⎤
⎥⎥⎥⎦

m×3

. The LS leads to the solution of the

normal equations, as follows:

a = (DR T
DR)−1 DR T

Y R (6)

which determines the vector of the best coefficients of (4) for
the entire set of m data triples.

The above procedure is repeated for each neuron of the
next hidden layer per the connectivity topology of the network.
In each layer, the algorithm uses LS to estimate the parameters
of the candidate models in the model learning set, AR , and
uses an external criterion to evaluate and select the candi-
date models in the model selecting set, B R . The algorithm
continues and stops when it finds the optimal model by
the termination principle, presented by the theory of optimal
complexity [52]. Along with the increase in model complexity,
the value of the external criterion will first decrease and then
increase, and the global extreme value will correspond to the
optimal complexity model [53]. The modeling process of the
RGMDH model is shown in Fig. 1.

III. C-CGMDH-TYPE NEURAL NETWORK

By Occam’s razor principle, entities should not be multi-
plied beyond necessity [69]; thus, complex models are not
necessarily superior to simple models. Hence, in the proposed
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C-CGMDH model for real-valued classification, the trans-
fer function between the input and output variables is also
described by the linear function in (4), as in the RGMDH
model. In the C-CGMDH model, parameter estimation and
selection of the external criterion are two key steps. Therefore,
in this section, we first extend the LS parameter estima-
tion method of the RGMDH model to the complex field.
Furthermore, we introduce complex-valued external criterion
construction for the C-CGMDH model, including a relation
between the complex-valued external criterion and the com-
plexity of the model. We propose a new reasonable complex-
valued external criterion. Finally, we summarize the detailed
modeling steps of the C-CGMDH model for real-valued clas-
sification.

A. Complex LS Parameter Estimation

In the RGMDH model, all the middle candidate models
are trained on the model learning set, AR ; the parameters are
estimated by LS. In the C-CGMDH model, we need to adopt
a parameter estimation method similar to the one of RGMDH.

To meet this requirement, let A = (YA, x1, x2, . . . , xn) ∈
Cm×(n+1) be the model learning set in the complex field and
let A contain m training samples. Suppose x p, xq (p, q ∈
{1, 2, . . . , n}, and p �= q) are the two initial variables. The
transfer function between the inputs x p, xq and the output YA
can be expressed by (4), as follows:

YA = g(x p, xq) = a0 + a1x p + a2xq (7)

where ai ∈ C, i = 0, 1, 2.
Similarly, the corresponding complex matrix equation can

be readily obtained as Da = YA, where a = (a0, a1, a2)
T is

the coefficient vector, YA = (y1, y2, . . . , ym)T is the vector of

the complex-valued output, and D =

⎡
⎢⎢⎣

1 x1p x1q
1 x2p x2q
...

...
...

1 xmp xmq

⎤
⎥⎥⎦

m×3

.

Then, by the theory of matrices [70], we can obtain a
solution to the complex matrix equation, as follows:

a = (D∗D)−1 D∗YA (8)

where (.)∗ and (.)−1 denote the conjugate transpose matrix
and inverse matrix of some matrix, (.), respectively. The
rank of D mostly reflects the column number, because the
number of the samples is usually much larger than that of the
variables. Thus, matrix D∗D is mostly nonsingular. Because
D∗D may be singular, we compute the so-called Moore–
Penrose pseudoinverse [71]. The method mentioned in [67]
can also be used.

B. Selection of the External Criterion

When we model real-valued systems, different requirements
may be proposed, reflecting the aims of the model or prior
knowledge of the systems. In a GMDH-type neural network,
an external criterion is a mathematical description of these
specific requirements that can select the optimal model among
the candidate models according to the theory of optimal
complexity [53]. Therefore, when we construct a GMDH-type
neural network model, the selection of the external criterion
is a key issue [52].

In this study, we select the SRC [53] to measure the
performance of the middle candidate models. For the training

set T R
r of the real-valued problems, the SRC has the following

form:

d2(T R
r

) = �2(B R|AR)+�2(AR|B R)

= ‖X B R âAR − yB R‖2 + ‖X AR âB R − yAR‖2 (9)

where yB R and yAR are the actual outputs of the model
selecting set B R and the model learning set AR . Next, X B R

and X AR are the input vectors of B R and AR . Then, âAR

and âB are the coefficient vectors of the model trained on
A and B , respectively. Therefore, �2(B R|AR) in (9) indi-
cates the classification error on B R of the model constructed
on AR , and �2(AR|B R) indicates the classification error on
AR of the model constructed on B R . As shown, the SRC
uses the information in sets AR and B R equally and considers
the error of the model in different parts. Mueller and Lemke
demonstrated that the SRC satisfied the theory of optimal
complexity [53].

To construct a CSRC, the complete complex-valued training
set Tr is equally but randomly partitioned into two subsets:
model learning set A and model selecting set B . Furthermore,
let YA be the actual output of A, let ŶA be the prediction
output on A by the model trained on B , let YB be the actual
output on B , and let ŶB be the prediction output on B by the
model trained on A. Then, we define the CSRC as follows:

d2(Tr ) = �2(B|A)+�2(A|B) = ε∗BεB + ε∗AεA (10)

where εB = ŶB − YB and εA = ŶA − YA are the prediction
errors in B and A, respectively. The next question is whether
the CSRC has a good property that is similar to the SRC [53].

To solve this problem, we want to first investigate the
relation between the complexity of the model and the for-
mer part of the CSRC [i.e., �2(B|A)], which is also called
the complex-valued asymmetric regularity criterion (CARC).
Hence, consider (3) and (7) again, and suppose that the number
of variables for learning the model (i.e., the complexity of the
model) is S − 1; then the model is of the form

Y = (lm×1 Xm×(S−1))aS = DSaS (11)

where lm×1 = (1, 1, . . . , 1)T , Xm×(S−1) ∈
Cm×(S−1), DS = (lm×1 Xm×(S−1)), Y ∈ Cm×1, and
aS = (a0, a1, . . . , aS−1)

T ∈ C S×1. Then, the rank of DS
is predominantly S, because the number of the samples is
usually much larger than that of the variables.

In the CARC, data set A is used to learn the model first.
The estimates of the coefficients are obtained by (8)

âAS =
(
D∗AS DAS

)−1
D∗ASYA = H−1

AS D∗AS YA (12)

where HAS = D∗AS DAS . Therefore, the estimate of the output
in G is

ŶG = DGSâAS = DGS
(
D∗AS DAS

)−1
D∗AS YA = PG ASYA

(13)

where PG AS = DGS(D∗AS DAS )−1 D∗AS , and G can be A,
B , or Tr (=A ∪ B).

Next, the property of the CARC in the mean sense (i.e.,
the mathematical expectation) is analyzed in this study to
discuss the relation between the CARC and the complexity.
In addition, a natural approach is to check the change in the
CARC when the complexity increases.

Typically, data contain noise. Hence, we have the following
propositions about CARC.
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Proposition 1: The expected value of the CARC is related
to the model structure and the noise. The proof is given in
supplementary material.

Theorem 1: If U is an n × m complex matrix and V is an
m × n complex matrix, then tr(U V ) = tr(V U).

Proof: According to the definition of trace, we have

tr(U V ) =
n∑

i=1

m∑
j=1

Uij Vj i =
m∑

j=1

n∑
i=1

VjiUi j = tr(V U).

�
Here, we first analyze the special situation G = A and then

expand to G = B .
Proposition 2: If G = A, then as the complexity of

the model increases; there is a minimum expected value for
�2(G|A). It first monotonically decreases and then monotoni-
cally increases. The proof is given in supplementary material.

Proposition 3: If G = B , then as the complexity of
the model increases, there is a minimum expected value for
�2(B|A). It first decreases, but the decrease may not be
monotonic. Then, it monotonically increases. The proof is
given in supplementary material.

Because (10) is symmetrical, there is a similar conclusion
to the latter part of CSRC, �2(A|B), with the increase in the
complexity, S. Thus, we can obtain Proposition 4.

Proposition 4: The property of the CSRC is similar to the
SRC. The proof is given in supplementary material.

In summary, the CSRC satisfies the theory of optimal
complexity [52] and can be used as an external criterion for
the CGMDH-type neural network.

However, CSRC is limited: it explicitly minimizes only the
magnitude error. For a better phase approximation, we try to
improve the CSRC in this study. To minimize simultaneously
both the magnitude and phase errors, we use the logarithmic
function to represent explicitly the magnitude and phase of the
actual and predicted complex outputs

�2
ln(B|A) = ‖ln ŶB − ln YB‖2

=
m′∑
j=1

((ln rŶB j
− ln rYB j

)2 + (ϕŶB j

− ϕYB j
)2)

(14)

where ln(.) represents the natural logarithmic function, m′ is
the sample number of B , and ŶB j = rŶB j

exp(iϕŶB j

), YB j
=

rYB j
exp(iϕYB j

), respectively.

Proposition 5: The improved CARC [see (14)] satisfies
Propositions 1 and 3 of the CARC. The proof is given in
supplementary material.

Therefore, we construct an NCSRC as follows:

NCSRC = �2
ln(B|A)+�2

ln(A|B)

= ‖ln ŶB − ln YB‖2 + ‖ln ŶA − ln YA‖2. (15)

In addition, to facilitate the comparison of experimental
results, we first divide the NCSRC by the sample number of
A ∪ B (i.e., a constant) and then obtain the square root of the
corresponding result. Thus, the final form of the NCSRC used
in this study is of the form

NCSRC←
√

NCSRC

m + m′
. (16)

Fig. 2. Process of C-CGMDH model for real-valued classification.

Importantly, (16) does not affect the monotonicity of the
NCSRC about the complexity of the model theoretically by
the calculus.

C. Modeling Process

Suppose that a real-valued classification data set, D =
{y R, x R

1 , x R
2 , . . . , x R

n } ∈ Rn+1, includes two parts: training set
T R

r and testing set T R
e . There are m + m′ and u samples in

T R
r and T R

e , respectively. Then, the process of the C-CGMDH
model for real-valued classification proposed in this study is
shown in Fig. 2.

In many real-world classification problems, the data sets are
usually imbalanced. Some classes have much more instances
than others [72]. The level of imbalance (i.e., ratio of the
majority class to the minority class) can be as huge as 106 [73].
The class imbalance has a serious impact on the model
performance. To solve this issue, scholars have proposed
several methods [74], mostly resampling techniques and cost-
sensitive learning. Among those, resampling techniques are
used more often, and the commonly used ones are random
undersampling and random oversampling. Marqués et al. [75]
compared logistic regressions and support vector machine
(SVM) with and without resampling on five real customer
classification data sets and demonstrated superior performance
with oversampling compared with undersampling techniques.
Hence, we first adopt random oversampling to balance the
class distribution of the training data set T R

r in this study.
In general, training a C-CGMDH model for real-valued

classification problems requires the class labels to be coded in
the complex field and the real-valued input features to also be
mapped onto the complex space, Rm → Cm . As for the class
labels, taking the training set T R

r of a binary classification
problem as an example, with labels 1 and −1, coded class
label y j in the complex field is given by

y j =
{

1+ 1i, if y R
j = 1

−1− 1i, if y R
j = −1

(17)
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where y R
j ( j = 1, 2, . . . , m + m′) is the real-valued

actual output. That is, in the complex field, label 1 and label
−1 are L1 = 1+ 1i and L2 = −1− 1i , respectively.

For real-valued input feature x R
jk( j = 1, 2, . . . , m + m′,

k = 1, 2, . . . , n) of T R
r , we adopt the circular transformation

in this study, because it performs a one-to-one mapping of
the real-valued inputs to the complex field and effectively
uses all the four quadrants of the complex plane. It can
overcome the issues in the existing transformations [39]. Let
x R

jk ∈ [r1, r2], r1, r2 ∈ R, then x R
jk
′ = (x R

jk − r1)/(r2 − r1)
and the complex-valued input feature, x jk , is obtained by
the circular transformation

x jk = sin
(
(a + ib)x R

jk
′ + αk

)
(18)

where a, b ∈ [0, 1], αk ∈ [0, 2π] are all randomly chosen.
Next, we train the C-CGMDH model with the complex-

valued inputs and outputs until the optimal complexity model
yopt is found. Next, we classify the testing set with yopt. The
prediction output of the model is a complex number. Thus,
the final prediction result (i.e., the real-valued class label) is
obtained as follows:

ŷ R
j = arg min

i∈{1,2}
d(ŷ j , Li ) (19)

where ŷ j is the prediction output by the model yopt, and
d(ŷ j , Li ) = ‖ln ŷ j − ln Li‖2, j = 1, 2, . . . , u.

Finally, the detailed steps of the C-CGMDH model for real-
valued classification are shown next.

1) Data Preprocessing:
a) Balance the class distribution of the real-valued

training set T R
r by random oversampling.

b) Transform real-valued training set T R
r and testing

set T R
e into complex-valued sets, Tr and Te, by (17)

and (18).
2) Train the CGMDH-Type Neural Network:

a) Equally divide the complex-valued training set Tr
into model learning set A and model selecting set
B at random, and let n features of A be the base
models of the initial layer.

b) Set the layer L = 0, F0 = n, and the smallest
external criterion value V = g (g is a large positive
number, such as g = 106).

c) Combine every two models of layer L by (7) to
generate nL+1 = C2

FL
middle candidate models of

layer L + 1 and estimate the parameters by (8) in
A.

d) Compute the NCSRC values of all candidate mod-
els by (16) in B and sort them in ascending order.

e) Consider the smallest external criterion value Vmin
of layer L + 1, and if Vmin ≥ V , then STOP and
find the optimal complexity model yopt with the
smallest external criterion value in the layer L; else
CONTINUE.

f) Select FL+1(≤FL ) models with the smallest exter-
nal criterion values to enter the next layer.

g) Repeat Steps 3)–6) with L = L+1 and V = Vmin.
3) Classify the Testing Set:

a) Classify the complex-valued testing set, Te, by the
optimal complexity model yopt and obtain the
complex-valued classification result.

b) Obtain the real-valued classification result by (19).

TABLE I

DATA SETS USED IN THE EXPERIMENTS

IV. EXPERIMENTS

We demonstrated the classification performance of the
C-CGMDH model on a set of binary and multiple-category
classification data sets. First, we did the ablation study to ana-
lyze the influence of the external criterion NCSRC and circular
transformation on the performance of the C-CGMDH model.
Second, we analyzed the convergence speed and feature
selection performance of the C-CGMDH, PE-CGMDH, and
RGMDH models. Next, we compared the classification perfor-
mance of the C-CGMDH model with that of existing models,
including four CVNNs: PE-CGMDH [67], fully complex-
valued relaxation network (FCRN) [39], fully complex-valued
fast learning classifier (FC-FLC): AF1 and AF2 [41]; and three
real-valued classification models: RGMDH [54], SVM, and
real-valued multilayer perceptron (RMLP). Then, we analyzed
the time complexity of the above eight models. Furthermore,
we analyzed the explanation performance of three GMDH-type
neural networks on a data set.

A. Data Sets and Experimental Setup

We used 25 classification data sets from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/
datasets.ph-p). Table I summarizes the characteristics of the
data sets used in this study. Among them, there are 17 binary
classification problems and eight multiple-category ones.

Because the class distributions of most data sets are imbal-
anced, we defined the imbalanced factor (IF) [73] as follows:
IF = max j=1,2,...,M N j /min j=1,2,...,M N j , where M is the
number of classes in the data set and N j is the total number
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of samples belonging to class j. Then, IF ≥ 1, and a larger
value of IF means a worse imbalance of the class distribution.
If IF = 1, the class distribution is balanced. The last column of
Table I is the IF of each data set. Data sets “Seeds” and “Iris”
are balanced, whereas data set “Zoo” has the worst imbalance
(its IF value is 10.25).

For the parameters in the FCRN, FC-FLC(AF1),
FC-FLC(AF2), SVM, and RMLP models, we let their
values reflect the best performance from the repeated
experiments. The external criteria of the RGMDH,
PE-CGMDH, and C-CGMDH models were SRC, CSRC,
and NCSRC, respectively. Meanwhile, the eight models did
not consider the impact of class imbalance on performance,
except for the C-CGMDH and PE-CGMDH models. To ensure
fairness of comparison, we balanced the class distribution of
the training data set using the random oversampling technique
before training the six classification models. Furthermore,
we adopted fivefold cross-validation in our experiments to
evaluate the classification performance of different models.
All experiments were performed on an MATLAB 2016a
platform with a dual-processor, 2.40-GHz Core i7 Windows
10 PC. In each case, the result was the average of ten
experiments. We implemented the SVM with the radial basis
function kernel function and the RMLP with two hidden
layers. Finally, regarding the C-CGMDH and RGMDH
models, a one-versus-one approach was used to deal with
multiple-category classification problems, as in the SVM
model.

To evaluate the classification performance of each model,
we used the following performance measures.

1) Total accuracy (Tac)

Tac = uc/u × 100% (20)

where u is the number of total samples in the testing set
and uc is the number of correctly classified samples.

2) Average accuracy (Aac)

Aac = 1/M
M∑
j

ucj/u j × 100% (21)

where u j is the number of samples with class label j
in the testing set and ucj is the number of correctly
classified samples with class label j .

B. Influence of the External Criterion NCSRC and Circular
Transformation on C-CGMDH Performance

To analyze the influence of the external criterion NCSRC
and circular transformation on the performance of the
C-CGMDH model, we did the ablation study compar-
ing it with the following three models: 1) PE-CGMDH;
2) PE-CGMDH1, which is similar to the PE-CGMDH model,
but uses the circular transformation; and 3) PE-CGMDH2,
which is also similar to the PE-CGMDH model, but uses
the NCSRC. Table II shows the Tac of the four GMDH-type
models on 25 data sets, and the last row shows the average Tac.
For each data set, the boldface marks the highest Tac.

To analyze whether the difference in Tac of the above four
models is statistically significant, we used the nonparametric
Wilcoxon signed-rank test [76] to perform the pairwise test.
The null hypothesis is that the two compared classification
models have equivalent performance. In this study, we let R+
be the sum of ranks for the data sets, in which the former

TABLE II

COMPARISON OF Tac FOR FOUR GMDH-TYPE
MODELS ON 25 DATA SETS (%)

TABLE III

RESULTS OF WILCOXON TEST FOR COMPARING THE Tac OF FOUR MODELS

algorithm outperformed the latter, R− the sum of ranks for the
opposite case, and the significance level α = 0.05 in all cases.
Then, when the number of data sets is 25, the corresponding
critical value (CV) is 89. Table III shows the test results.
In each row, if T = min(R+, R−) is less than or equal
to the corresponding CV, we reject the null hypothesis, that
is, there are significant differences between the two models.
Furthermore, if T = R− ≤ 89, it means that the former model
significantly outperforms the latter, and T = R+ ≤ 89, for the
opposite case. From Table III, we can obtain the following
conclusions.

1) C-CGMDH significantly outperforms the PE-CGMDH1,
PE-CGMDH2, and PE-CGMDH models, which indi-
cates that the C-CGMDH model that simultaneously
considers the circular transformation and NCSRC
achieves the best performance, and the model proposed
in this study is reasonable and effective.
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Fig. 3. Learning curves of the C-CGMDH, PE-CGMDH, and RGMDH models in four data sets. The curves with triangle, diamond, and circle correspond
to the RGMDH, PE-CGMDH, and C-CGMDH models, respectively. (a) Layers in data set Monk3. (b) Layers in data set MAGIC. (c) Layers in data set
Australia-C. (d) Layers in data set Ionosphere.

2) PE-CGMDH1 significantly outperforms PE-CGMDH,
and the performance of the PE-CGMDH2 model is
significantly worse than that of the PE-CGMDH model.
This indicates that the circular transformation can sig-
nificantly improve the performance of the PE-CGMDH
model. The reason may be that it can use all the four
quadrants of the complex plane effectively. Further-
more, the NCSRC degrades the performance of the
PE-CGMDH model. The reason may be that it does
not conform to the class label prediction method in the
PE-CGMDH model, especially in the multiple-category
classification problems.

We can also obtain similar conclusions for Aac.

C. Convergence Speed of C-CGMDH, PE-CGMDH, and
RGMDH Models

Because the convergence speed of the GMDH-type neural
networks is usually related to the number of features,
we selected data sets with fewer features (such as “Monk3”
and “MAGIC”) and more features (such as “Australia-c” and
“Ionosphere”) to comprehensively analyze the convergence
speed of the C-CGMDH, PE-CGMDH, and RGMDH mod-
els. In addition, to facilitate the comparison of experimental
results, we performed the same process as in (16) for the
external criteria of the PE-CGMDH and RGMDH models.

The learning curves of the three models in one experiment
on the four selected data sets are shown in Fig. 3. Taking
“Monk3” as an example [see Fig. 3(a)], the vertical axis
denotes the external criterion values, and the horizontal axis
denotes the number of layers of the GMDH-type neural
networks. According to its modeling mechanism, the max-
imum number of layers is the number of features of the
data set. Hence, the possible maximum number of layers
is 6 for “Monk3.” The external criterion values for three

models are of no practical significance, because they are
different. We are more interested when the external criterion
value is the minimum, which corresponds to the optimal
complexity model. From Fig. 3(a), the optimal complexity
model of the RGMDH and PE-CGMDH models is found in
the second layer. Meanwhile, that of C-CGMDH is found in
the first layer, meaning that the external criterion value of the
C-CGMDH does not have a decreasing phase on this data set.
It is a special case of the theory of optimal complexity. Similar
conclusions can be reached for three other data sets. In short,
the convergence speed of the C-CGMDH model is faster than
that of the RGMDH and PE-CGMDH models.

Considering that there may be deviations in the conclusions
based on only one experiment, we repeated our experiment ten
times and found interesting results. In data set “Australia-c,”
the three models can be ranked according to the convergence
speed, from fast to slow: C-CGMDH, PE-CGMDH, and
RGMDH. The optimal complexity model of C-CGMDH was
mostly found in the first or second layer. Otherwise, it was
approximately 0.9 of the probability that the convergence
speed of the C-CGMDH model was the fastest. Therefore,
according to our experiments, the convergence speed of the
C-CGMDH model proposed in this study was the fastest.

D. Feature Selection Performance of C-CGMDH,
PE-CGMDH, and RGMDH Models

Feature selection was related to the convergence speed:
a faster convergence speed typically meant fewer selected
features. In Section IV-C, we compared the convergence speed
of different GMDH-type neural networks. In this section,
we further analyze the feature selection performance of the
three models.

We experimented on the four data sets from Section IV-C.
On each data set for each model, we performed feature
selection ten times and counted the number of selected features
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TABLE IV

NUMBER OF SELECTED FEATURES ON THE DATA SET AUSTRALIA-C

TABLE V

MODE OF THE NUMBER OF SELECTED FEATURES ON FOUR DATA SETS

each time. For the “Australia-c” data set, the results are
shown in Table IV. It would be inconvenient to compare
directly the results of ten selections for each model. Thus,
in the last column of Table IV, we give the mode of the ten
experiments for each model. In most of the cases, the RGMDH
model selected 9 out of 15 features from this data set. The
PE-CGMDH model selected six, whereas the C-CGMDH (the
proposed) model only selected three.

Table V shows the mode of the number of features selected
by each GMDH-type neural network in ten experiments on our
selected data sets. On the four data sets, the number of features
selected by the C-CGMDH model was typically smaller than
that of the PR-CGMDH and RGMDH models.

E. Comparison of Classification Performance

Table VI reports Tac of eight classification models on
25 data sets, and the average Tac value of each model is in the
last row. From this table, it can be observed that the average
Tac value of the C-CGMDH model is the largest. In “Monk3,”
compared with the RGMDH model, the improvement of the
PE-CGMDH model is approximately 12.45%, whereas that of
the C-CGMDH model is approximately 16.25%.

To find significant differences among the results obtained
by the eight models, a statistical analysis is necessary. Thus,
to check whether there are significant differences in the
classification performance of the eight models, we employed
the Friedman test [77], [78] and the Iman–Davenport test [79].
If there are statistically significant differences in the perfor-
mance, we can proceed with the Nemenyi test [80] post hoc.

As shown in Table VI, we first conducted the Friedman
test to establish the statistical significance of the C-CGMDH
model. The rank of performance of different models was
calculated for each data set. For every model, we ordered
the accuracy from the largest to the smallest with ranks,
1, 2, . . . , 8. If the accuracy of two or more models was the
same, we selected their average values as their rank values.
For example, in the second data set, “Australia-c,” Tac of the
five models was 85.51, the largest. Thus, their rank values are
the same, (1+2+3+4+5)/5= 3. Similarly, the average rank
of Tac of the eight models on 25 data sets is shown in the last
row of Table VI. A smaller average rank means a better model
performance. The null hypothesis states that all models are
equivalent, and thus, their ranks must be equal. The Friedman

Fig. 4. Nemenyi post hoc test results for eight models on Tac.

statistic is 74.54. A better statistic, derived by Iman and
Davenport, following the F-distribution, is 17.81. The modified
statistic follows the F-distribution with 7 and 168 degrees of
freedom; the CV for rejecting the null hypothesis is 2.06.
Because the modified Friedman statistic is greater than the
CV (17.81 > 2.06), we can reject the null hypothesis. Thus,
it can be inferred that the models used in this study are not
equivalent.

After the null hypothesis was rejected, we applied the
Nemenyi test. This test assumes that the performance of
the two models is considered significantly different if the
corresponding average ranks differ by at least the critical
difference. When the number of models is equal to 8 and
the significance level is 0.05, the CV is 3.03 and the critical
distance (CD) is 3.03(8 ∗ 9/(6 ∗ 25))1/2 = 2.10. Fig. 4 shows
the test results, where the models connected by a line segment
are not significantly different. Thus, from Fig. 4, we can
identify that Tac of the C-CGMDH model is statistically
significantly better than the others.

Similarly, the average accuracy among the classes (Aac) and
their ranks of eight models on 25 data sets are summarized
in Table VII. The last row shows the average Aac value and the
average rank of different models. The average Aac value and
the average rank of the C-CGMDH model remain the best.
Furthermore, we can also infer that the performance of the
C-CGMDH model is statistically significantly better than the
others in Aac, using the Friedman test and the Nemenyi post
hoc test.

F. Comparison of Time Complexity

To compare the time complexity of the eight models,
we compare the computation time in the same conditions.

Table VIII presents the average computation time for each
model on every data set. As in Tables VI and VII, the ranks
are marked with superscripts. Furthermore, considering the
modeling characteristics of the GMDH-type neural networks,
Table VIII is divided into three parts. The last row of each part
shows the average computation time and the average rank of
different models. From Table VIII, we obtain the following
conclusions.

1) When the number of features in the data set is greater
than ten (displayed in the first part of Table VIII),
the eight models can be ranked according to their
average rank, from low to high: FC-FLC(AF1), SVM,
FCRN, RMLP, FC-FLC(AF2), RGMDH, PE-CGMDH,
and C-CGMDH. The computation time of three
GMDH-type neural networks is not ideal, perhaps owing
to their modeling mechanism. When modeling with the
GMDH-type neural networks, the new candidate model
in each layer is a combination of any two models of the
previous layer. Thus, its time complexity is high if the
classification problem has many features.
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TABLE VI

COMPARISON OF Tac FOR EIGHT CLASSIFICATION MODELS ON 25 DATA SETS (%)

2) When the number of features in the data set is between
7 and 10 (displayed in the second part of Table VIII),
the eight models can be ranked according to the aver-
age rank, from low to high: FCRN, FC-FLC(AF1),
PE-CGMDH, RGMDH, SVM, RMLP, C-CGMDH, and
FC-FLC(AF2).

3) When the number of features in the data set is fewer
than seven (displayed in the third part of Table VIII),
the eight models can be ranked according to the average
rank, from low to high: FCRN, RGMDH, PE-CGMDH,
C-CGMDH, FC-FLC(AF1), SVM, FC-FLC(AF2), and
RMLP. Three GMDH-type neural networks are only
poorer than the FCRN model.

Regarding time complexity, the C-CGMDH model is com-
parable with others when dealing with the data sets having
few features.

G. Explanation Performance

In this section, we present the final models of the three
GMDH-type neural networks on the same data set to show
their explanatory power.

For convenience, we take the data set “Monk3” as an
example. Its IF is 1.08, which does not require balancing of
the training set and, thus, excludes the impact of randomness
of resampling on the experimental results. In addition, there is
a substantial difference among the three models on this data
set, as shown in Tables VI and VII. This data set contains

554 samples and two classes. For reproducibility of results,
the data set was divided in its original order. We first selected
the former 222 samples from each class to constitute the
training set, and the remaining 110 samples constituted the
testing set. Furthermore, the training set was equally divided
into a model learning set and a model selecting set. Finally,
the modeling results of the three GMDH-type neural networks
are shown as follows:

1) The final form of the RGMDH model

y = 0.2547+ 0.3350x2 + 0.0427x4 + 0.1889x5

Tac = 76.36%, Aac = 75.00%.

2) The final form of the PE-CGMDH model

y = (−0.1478− 0.3474i)+ (0.4804− 0.1018i)x2

+ (0.0575+ 0.0007i)x4 + (0.4697− 0.2146i)x5

Tac = 87.27%, Aac = 88.64%.

3) The final form of the C-CGMDH model
Parameters: a = 0.8979, b = 0.6512, α =
(1.5460, 1.4704, 3.4459, 2.4682, 4.7425, 2.4666)T .
y = (−5.1766 + 3.9064i) + (3.4467 − 1.7800i)x2 +
(−2.8244+ 0.9457i)x5.
Tac = 92.73%, Aac = 92.05%.

The explanatory power of three GMDH-type neural net-
works is strong.
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TABLE VII

COMPARISON OF Aac FOR EIGHT CLASSIFICATION MODELS ON 25 DATA SETS (%)

H. Discussion

From our experiments, we reach the following conclusions.

1) Compared with the PE-CGMDH and RGMDH models,
the convergence speed of the C-CGMDH model is faster,
and the number of features selected by it is fewer,
whereas its classification performance is significantly
better. In addition, combined with the results of the abla-
tion study, the improvement of the PE-CGMDH model is
quite necessary. The C-CGMDH model can recover the
disadvantages of the PE-CGMDH model effectively by
the circular transformation and the new external criterion
NCSRC together. In addition, the contribution of circular
transformation is greater than NCSRC in the C-CGMDH
model.

2) Compared with the three real-valued models, RGMDH,
SVM, and RMLP, the classification performance of
C-CGMDH is statistically significantly better in both
Tac and Aac. This is, perhaps, owing to the orthogonal
decision boundaries of the C-CGMDH model, which
helps it to classify more efficiently than the real-valued
models [5], [39].

3) The C-CGMDH model has significantly better Tac and
Aac than three other CVNNs: FCRN, FC-FLC(AF1),
and FC-FLC(AF2). The results seem reasonable. The
three CVNNs require confirmation of the optimum
model parameters, which is very difficult. However, the
C-CGMDH model is a heuristic self-organizing

modeling technology, which can automatically
determine the number of layers of the neural network,
variables entering the optimal complexity model, and
model parameters.

Meanwhile, the convergence speed of the C-CGMDH model
is fast, and its time complexity is comparable with others
when dealing with the data sets having few features, whereas
it is not ideal when the number of features is relatively large.
This is, perhaps, owing to its modeling mechanism. In fact,
the three GMDH-type neural networks have the same orders
of magnitude with respect to the time complexity, because
they use the same modeling mechanism. However, the time
complexity of the PE-CGMDH model is lower than that of
the RGMDH and C-CGMDH models on some data sets. This
may be mainly because it does not use one-versus-one strategy
for multiple-category classification problems.

In addition, compared with other CVNNs, the C-CGMDH
model has some advantages. First, once the external criterion
and the transfer function are selected, it can complete the
entire modeling process by self-organizing modeling, includ-
ing selecting some of the most important features from all
features. Second, it is a white-box model that can display
an interpretable expression. Thus, its explanation performance
is stronger than most other CVNNs. However, it also has
some disadvantages. If the real-valued classification problem
has many features, then the number of initial models par-
ticipating in the combination is large, and the number of
middle candidate models in each layer is also relatively large.
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TABLE VIII

COMPARISON OF COMPUTATION TIME FOR EIGHT CLASSIFICATION MODELS ON 25 DATA SETS (UNIT: SECONDS)

Thus, the time complexity may be high, although it is suitable
for classification problems with relatively low dimensions.

Finally, compared with the RGMDH model, the C-CGMDH
model has the following differences.

1) This study extends the GMDH method from real field to
complex field, and it constructs a complex-valued classi-
fication model C-CGMDH for real-valued classification
problems.

2) To improve the classification performance of the
C-CGMDH model, a new complex-valued external crite-
rion NCSRC is proposed and proved to satisfy the theory
of optimal complexity, which indicates its effectiveness
and rationality.

3) Its convergence speed is faster.
4) It can select fewer important features.
5) Its classification performance is significantly better.

V. CONCLUSION

To overcome the shortcomings of existing CVNNs, this
study presented a C-CGMDH model. First, we proposed a
complex LS for parameter estimation. Next, a new complex-
valued external criterion NCSRC was constructed with the
logarithmic function to represent explicitly the magnitude and
phase of the actual and predicted complex outputs, to evaluate
and select the middle candidate models. Its property was

proven to be similar to that of the real external criterion.
Finally, before training this model, a circular transformation
was used for data preprocessing to transform the real-valued
input features to the complex-valued input features. Exper-
iments on 25 UCI data sets showed that our improvement
was quite necessary. Among the three GMDH-type neural
networks, the C-CGMDH model’s convergence speed was
the fastest, and the number of features selected by it was
the smallest. Furthermore, its classification performance was
statistically significantly better than that of the four complex-
valued and three real-valued models in terms of both Tac
and Aac. The time complexity of the C-CGMDH model was
comparable with that of other models when dealing with the
data sets that have few features. In addition, it is a white-box
model that displays an interpretable expression.

The C-CGMDH model proposed in this study uses the
first-order linear transfer function, and its classification
performance remains poor on some data sets. For example,
on the data set “Teaching-a,” as shown in Table VI, its Tac
increases by 2.65%, but this value is still less than 60%,
compared with the best of the other seven alternative models.
In fact, for data sets with a complex data structure, nonlinear
transfer functions may achieve better classification perfor-
mances. Therefore, to improve the classification performance,
we should adopt more complex transfer functions on these
data sets in the future, such as the second-order and third-order
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KG polynomials. In addition, due to the unique modeling
mechanism of GMDH-type neural networks, the middle
candidate model in the first layer is a combination of any
two input features. Thus, the time complexity may be very
high for data sets with many features. To address this issue,
a possible approach is to calculate the correlation coefficients
between any two features and rank them in the ascending
order. In theory, combining pairs of features with a lower
correlation for modeling may achieve better performance.
Therefore, if we select a part of the feature pairs ranking
in the top to construct the model, then it is expected to
reduce the time complexity without affecting the model’s
performance. We plan to work on this in the future.
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