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A Hybrid Classification Framework
Based on Clustering

Jin Xiao
Xiaoyi Jiang

Abstract—The traditional supervised classification algo-
rithms tend to focus on uncovering the relationship be-
tween sample attributes and the class labels; they seldom
consider the potential structural characteristics of the sam-
ple space, often leading to unsatisfactory classification re-
sults. To improve the performance of classification models,
many scholars have sought to construct hybrid models
by combining both supervised and unsupervised learning.
Although the existing hybrid models have shown signifi-
cant potential in industrial applications, our experiments
indicate that some shortcomings remain. With the aim of
overcoming such shortcomings of the existing hybrid mod-
els, this article proposes a hybrid classification framework
based on clustering (HCFC). First, it applies a clustering
algorithm to partition the training samples into K clusters.
It then constructs a clustering-based attribute selection
measure—namely, the hybrid information gain ratio, based
upon which it then trains a C4.5 decision tree. Depending on
the differences in the clustering algorithms used, this article
constructs two different versions of the HCFC (HCFC-K and
HCFC-D) and tests them on eight benchmark datasets in
the healthcare and disease diagnosis industries and on 15
datasets from other fields. The results indicate that both
versions of the HCFC achieve a comparable or even better
classification performance than the other three hybrid and
six single models considered. In addition, the HCFC-D has
a stronger ability to resist class noise compared with the
HCFC-K.
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[. INTRODUCTION

LASSIFICATION is an active research problem in the
C areas of data mining and machine learning [1], and has a
wide range of applications in industry, including fault diagnosis
[2], image recognition [3], network anomaly detection [4],
disease diagnosis [5], and power system security [6]. To date,
most classification algorithms are based on supervised learning.
In supervised learning, the class labels of the training samples
are known. The goal of a supervised classification algorithm
is to determine the relationship between the sample attributes
and the class labels; from there, it can be used to construct a
classification model that can accurately predict the class labels
of new samples. However, few of the current supervised classifi-
cation algorithms consider the potential structure of the sample
space when conducting the modeling, which often leads to poor
classification results. Unlike supervised learning, unsupervised
learning can group similar samples together based on their
distance or similarity: it does not rely on the class labels of
the samples. Although unsupervised learning does not directly
generate label predictions, it can reveal the underlying structure
of the sample space and uncover the intrinsic relationship
between the samples; in this way, it provides useful information
for solving classification problems [7], [8]. An increasing num-
ber of researchers have, therefore, recently started combining
supervised and unsupervised learning.

A. Literature Review

The existing supervised classification algorithms can be
roughly divided into two categories, namely, symbolic and
statistical learning algorithms. Symbolic learning algorithms
are the most common, and include decision tree algorithms,
such as ID3 [9] and C4.5 [10]; rule-based algorithms, such
as CN2 [11] and first-order inductive learners (FOIL) [12];
and example-based algorithms, such as k-nearest neighbor
(KNN) [13] and a parallel exemplar-based learning system [14].
Statistical learning algorithms, by contrast, mainly include the
classification and regression tree [15], support vector machine
(SVM) [16], naive Bayes (NB) [17], logistic regression (LR)
[18], and neural network algorithms. In recent years, deep neural
networks (DNNs) have achieved a significant level of success
in various applications, particularly, in tasks involving visual
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and speech information. Nevertheless, DNNs also have clear
deficiencies. For example, DNNs usually require a significant
amount of training data and powerful computational facilities,
and a lot of time is required to tune their parameters [19].

In the last ten years, scholars have successively proposed
a number of hybrid models that combine unsupervised and
supervised learning, to improve the classification performance
of models. The most commonly used method for constructing
a hybrid model is to combine clustering with a decision tree
algorithm. For example, Gaddam e al. first proposed a hybrid
model called K-means+ID3 [20]. With this method, K-means
clustering is applied to partition the training samples into K
disjoint clusters; an ID3 decision tree is then trained on each
cluster. Finally, to obtain a final classification decision for each
test sample, the following two rules are used: 1) the nearest-
neighbor rule and 2) the nearest-consensus rule. Experiments on
three network anomaly detection datasets showed that the hybrid
model achieves a better performance than a single ID3 model.
Bose et al. proposed a two-stage hybrid model (KM-Boosted
C5.0) [7] consisting of an unsupervised clustering technique
and a boosted C5.0 decision tree to predict customer churn.
In the first stage, a clustering algorithm is used to cluster the
samples; from there, the clustering labels are added to the
original dataset as a new attribute. During the second stage,
the newly obtained dataset is used to train the boosted C5.0
decision tree model. Their experiment results indicate that the
use of clustering information leads to an improved top-decile
lift for the hybrid model, as compared with a benchmark case
in which no clustering information is applied. Kaewchinporn
et al. combined a decision tree with a clustering algorithm,
and proposed a hybrid model called tree bagging and weighted
clustering (TBWC) [21]. First, important attributes and their
weights are selected by applying decision tree bagging; the
weighted attributes are then used to generate clusters through
which new objects are classified. The experiment results showed
that, based on five experiment datasets applied, the TBWC
model achieves a higher accuracy than the C4.5 decision tree.

In addition, there are some studies that use unsupervised and
supervised learning to improve the classification performance
of neural networks. Wang et al. proposed a hybrid intrusion
detection approach called FC-ANN [22], which is based on a
back propagation neural network (BPNN) and fuzzy c-means.
The training set is first divided into several subsets by fuzzy
c-means clustering. Then, based on different training subsets,
different BPNN models are trained as different base models.
Finally, a metalearner, namely, a fuzzy aggregation module, is
employed to aggregate the results. Experiment results on the
KDD CUP 1999 dataset showed that the proposed approach
outperforms a BPNN and other well-known methods, such
as decision tree and NB in terms of the detection precision
and detection stability. Eslamloueyan proposed a duty-oriented
hybrid model for isolating the faults of the Tennessee—Eastman
process (TEP) [23]. First, it applies a fuzzy c-means clustering
algorithm to partition the fault pattern space into a few sub-
spaces. Then, for each subspace, a special multilayer perceptron
(MLP) neural network is trained to diagnose the faults of
that subspace. Finally, a supervisor MLP neural network is

developed to determine which special MLP neural network
should be triggered. Experiments on the simulation datasets
showed that the proposed hybrid method is considerably better
than a single MLP neural network. Ma et al. proposed a hybrid
approach called spectral clustering and deep neural network
(SCDNN) [24], which combines spectral clustering and a DNN.
First, the training set is divided into K subsets and K cluster
centers are obtained. Second, a DNN model is trained on
each training subset. Finally, initialized using the K cluster
centers, the test set is divided into K subsets, and each subset
is then fed into the most appropriate DNN model to evaluate
the performance of the hybrid approach. Experiments on six
intrusion detection datasets showed that the SCDNN model
performs better than a BPNN, SVM, random forest, and Bayes
tree models in terms of the detection accuracy.

Finally, some other supervised learning techniques have also
been used to construct hybrid models. For example, Huang et al.
proposed a learning system for predicting customer behaviors,
which combines a weighted K-means clustering algorithm and
FOIL (WK+FOIL) [8]. First, to obtain satisfactory clustering
results on high-dimensional datasets, a weighted K-means algo-
rithm is used to cluster the samples. Then, to obtain a highly in-
terpretive classification model, the system uses a rule-inductive
technique on each cluster to obtain a set of rules that can accu-
rately identify churn customers. The experiment results showed
that the WK+FOIL model performed better than other hybrid
models on the experiment datasets. Furthermore, Rajamohamed
et al. consecutively combined rough K-means clustering with
five supervised classification models, to construct different
versions of hybrid models [25]. The final experiment results
showed that, when the rough K-means algorithm was combined
with a support vector machine (RK+SVM), the hybrid model
achieved the best performance.

B. Our Motivation

The aforementioned propositions have made important con-
tributions to the development of hybrid models. However,
we found experimentally that the existing studies, and their
outcomes, still have a number of shortcomings.

1) Most of the existing hybrid models first partition the
training set into multiple clusters, and then, train a single
classifier on each cluster. Finally, for each test sample,
a classifier is selected according to certain classification
criteria [8], [20], [25]. Intuitively, the advantage of this
approach is that it breaks down a complex classification
problem into many simpler problems such that each
classifier is more focused on the classification of samples
in a specific region. However, a potential problem caused
by this type of approach is that many samples may be
located near the boundaries of the clusters when given
a training set that is not-well-separated [26], and such
samples are often difficult to classify correctly using
nearby classifiers because they are far from any cluster
center.

2) Real-world datasets may contain a large amount of noise;
therefore, it is important to compare the performance of
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the classification models in noisy environments. To the
best of our knowledge, the existing research on hybrid
models does not consider the effects of noise.

C. Our Contributions

To compensate for the deficiencies inherent in the existing
hybrid models, we propose a new hybrid classification frame-
work based on clustering (HCFC). Unlike the existing hybrid
models, which train classifiers separately on many clusters, the
HCEFC integrates the clustering information into the training of
classifiers from the perspective of the information theory. The
HCEFC can be roughly divided into two steps: 1) clustering and
2) classification. In the first step, any clustering algorithm can be
used to cluster the training set. In the second step, we construct a
clustering-based attribute selection measure, namely, the hybrid
information gain ratio, to train a single C4.5 decision tree on the
entire training set. Because the training of the final classifier of
the HCFC is conducted on the whole training set, it has a sig-
nificant advantage in solving classification problems where the
training sets are not-well-separated compared with the existing
hybrid models. Moreover, because the hybrid information gain
ratio proposed in this article considers both the class labels of
the samples and the clusters to which they belong, the HCFC
is expected to achieve a better performance for classification
problems with a large amount of class noise.

In this article, we constructed two versions of the HCFC
(HCFC-K and HCFC-D), using an improved version of K-means
[27] and a density-based spatial clustering of applications with
noise (DBSCAN) [28], respectively. We used these two clus-
tering algorithms because they are widely applied in industry
and have their own unique advantages. In addition, we choose
C4.5 because it remains one of the most popular classification
models in the industry, and not only does it achieve a good
classification performance, it also has strong interpretability
[29]. The final experiment results on the 23 UCI (University
of California at Irvine) datasets show that the proposed models
achieve a better classification performance than three hybrid and
six single classification models considered.

The novelty of this article can be summarized as follows.

1) We propose a new hybrid classification framework that
does not restrict the selection of clustering algorithms and
is extremely flexible in industrial applications.

2) We propose a clustering-based attribute selection method
called the hybrid information gain ratio that effectively
integrates the clustering information into the training
of the decision tree and improves the classification
performance.

3) The proposed framework takes into account the influence
of noise while effectively utilizing the clustering infor-
mation, and effectively avoids the shortcomings of the
traditional hybrid models.

D. Organization of this Article

This article is structured as follows. Section II introduces
related theories. Section III details the HCFC, including the

Algorithm 1: Improved K-means Algorithm(H).

Input: Dataset H
Output: Clustering result C

1. CM =0

2: forj=1toJdo

3: let H; be a small random subset of H

4 Hj is clustered via the classical K-means algorithm

producing cluster centers C'M;
CM =CMUCM,;
end for
for j =1toJdo
let C'M; be the initial cluster centers
CM is clustered via the classical K-means algorithm
producing a solution "M
10:  end for
11: let F Miefinea = arg minp s, {distortion(F'M;, CM)}
12: F M efineq 1S used as the refined initial cluster centers in
the classical K-means clustering
13:  return clustering result C

Lo

basic concept, a calculation of the hybrid information gain
ratio, a complexity analysis, and the modeling steps. Section IV
presents the experiment results and the corresponding analysis.
Section V concludes this article.

Il. RELATED THEORIES
A. Improved K-means Algorithm

K-means is one of the most widely used clustering algorithms.
However, given the gradient descent nature of the K-means
algorithm, it is highly sensitive to the initial placement of the
cluster centers. To address this issue, numerous initialization
methods for the cluster centers have been proposed. Celebi
et al. compared eight different initialization methods in detail
using five effectiveness and two efficiency criteria [30]. Their
experiment results show that, in terms of most of the criteria
considered, the method proposed by Bradley and Fayyad [27]
is superior to other methods. We, therefore, used this method
to derive the refined initial cluster centers for the K-means
algorithm.

The general steps of Bradley and Fayyad’s method are
as follows. First, J subsets are randomly selected from the
dataset H, which is denoted as H;(j =1,2,...,J). Second,
the classical K-means algorithm is used to cluster the J sub-
sets consecutively, and we let CM;(j =1,2,...,J) denote
the K cluster centers obtained from the subset H;. Next, we
set CM = {CM,,CM,,...,CMj,...,CM;}, which contains
J x K cluster centers. Third, C'M is clustered J times using
the classical K-means algorithm, each time initialized using the
cluster centers C'M;; here, F'M; denotes the final cluster centers
obtained by the jth clustering. Finally, the refined initial cluster
centers ' Mcfineq are chosen as F'M;, which achieves minimal
distortion over the set C'M . Algorithm 1 briefly summarizes the
method, and further details can be found in [27].
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B. DBSCAN

DBSCAN is a classical density-based clustering algorithm
that has been applied in many fields of science [28]. Compared
with the K-means algorithm, DBSCAN can find clusters with
an arbitrary shape. In DBSCAN, the density of a sample can be
measured by counting the number of samples within a specified
radius (€) around the sample. The samples with a density above
a specified threshold (MinPts) are constructed as clusters. Refer
to [28] for a more detailed description of this algorithm.

C. C4.5 Decision Tree

C4.5 is a well-known algorithm for generating decision trees.
As an extension of ID3, this algorithm can handle continuous
attributes and uses the information gain ratio as a criterion by
which to select splitting attributes. Compared with the informa-
tion gain used in ID3, the use of the information gain ratio can
preclude bias toward multivalued attributes. In addition, C4.5
uses a pruning method called “error-based pruning” [10], which
has the advantage of not requiring an additional validation set.

The general steps required for building a decision tree are as
follows. Given a training set D that includes M different classes,
L={l, |m=1,2,.., M}, its attribute set is S. For any at-
tribute A € S, the information gain ratio GainRatio(D, A, L)
is calculated and the best splitting attribute Apes With the highest
information gain ratio is chosen. Once the splitting attribute is
determined, the training set D is divided into multiple subsets
according to the values of the splitting attribute. In each subset,
the algorithm terminates if any one of the following three
situations occurs:

1) all training samples are of the same class;
2) the current attribute set is empty;
3) no training samples exist.

Otherwise, the partitioning process will be conducted recur-
sively. Algorithm 2 shows the pseudocode of the C4.5 decision
tree, and further details can be found in [10].

IIl. HCFC FRAMEWORK
A. Basic Underlying Ideas

Clustering results can provide useful information for con-
structing classification models, and thus, combining unsuper-
vised with supervised learning to construct a hybrid classi-
fication model may achieve good classification results. Most
existing hybrid models train classifiers on the clusters obtained
through clustering, which may make it easier to misclassify
the samples near the boundaries of the clusters. Unlike the
existing hybrid models, the HCFC proposed in this article does
not train classifiers separately on numerous clusters; rather, it
builds a clustering-based attribute selection measure, namely,
the hybrid information gain ratio, to train a single decision tree
classifier. Because the training of the final classifier in the HCFC
is applied to the entire training set, it can effectively avoid the
shortcomings of the existing hybrid models. Additionally, the
hybrid information gain ratio considers both the class labels of
the samples and the clusters to which they belong, which may

Algorithm 2: C4.5(D, S, L).

Input: Training set D; attributes set S; class set L
Output: Decision tree Tree

1. Tree={}
2: if all samples in D are of the same class [, € L then
3: return a single node with the class /,,
4: end if
5: if S is empty then
6: return a single node with most frequent class in D
7: end if
8: for Ac Sdo
9: compute GainRatio(D, A, L)
10:  end for
I1: Apey = arg mjlx(GainRatio(D, A, L))
12:  Tree = create a decision node that tests Ay in the root
13: D, = induced subsets from D based on Apeg
14. for all D, do
15: Tree, = C4.5(D,, S\{ Apest }, L)
16: attach Tree, to the corresponding branch of Tree
17: end for
18: return Tree

reduce the effect of the class noise on the model to a certain
extent.

Let a classification problem include M different classes,
L={l, |m=1,2,..., M}, and D and T represent the training
and test sets, respectively. The HCFC can be roughly divided
into the following two steps: 1) clustering, in which any
clustering algorithm can be applied to partition the training set
into K clusters (the class labels of the training samples are not
used), where C = {¢; | k =1,2,..., K}, and 2) classification,
in which a decision tree is trained on the training set D according
to the hybrid information gain ratio, and the resulting decision
tree is simply the final classifier of the HCFC framework. We
can then verify the generalization ability of the final classifier
on the test set 7. As mentioned earlier, we constructed two
versions of the HCFC (HCFC-K and HCFC-D), which use an
improved K-means model and DBSCAN during the clustering
step, respectively. Fig. 1 shows a flowchart of the HCFC
framework. In the next subsection, we describe in detail the
specific calculation steps for the hybrid information gain ratio.

B. Calculation of Hybrid Information Gain Ratio

In general, a decision tree consists of internal nodes and leaf
nodes. Each internal node denotes a test on a splitting attribute
that is chosen according to the attribute selection measure
applied. In this subsection, one of the internal nodes is taken
as an example to illustrate the calculation steps of the proposed
hybrid information gain ratio. The notation used herein is as
follows. Let D’ denotes the sample set of the current node, |D'|
represents the number of samples in D', p(m) represents the
proportion of samples belonging to class 1,, in D', and q(k)
represents the proportion of samples belonging to cluster ¢, in
D. Furthermore, suppose S is the set of all attributes in D/,
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Clustering
\ D D is clustered via Clusteri
aclustering  —» ustering
Training set D algorithm result C

Classification Train a decision tree classifier according
to the hybrid information gain ratio
Classification é) ) 9
results m
=
Do
Fig. 1. Flowchart of the HCFC framework.

and that we partition the samples in D' on an attribute A € S
having V' distinct values, {a;,ay, ..., ay,...,ay }, as observed
from the training set. As a result, D' is divided into V subsets,
{D\,D,,...,D,,... D}, where D, contains those samples
in D', that have an outcome a, of A. For class set L and
cluster set C, the information entropy of D' can be expressed as
follows:

M

Ent(D',L) = — Y p(m) x log p(m) )
.
Ent(D',C) = =Y q(k) x log q(k). 2)

k=1

Next, we define the information gain on attribute A separately
as follows:

D,|

Gain(D', A, L) = Ent(D', L)

Ent(D,, L)

v

3)

JISERRS]IS

M< i M<

Gain(D', A,C) = Ent(D',C) — Ent(D; O). (4

v=1

Similarly, according to Gain(D', A, L) and Gain(D', A, C'), we
calculate the corresponding information gain ratio as follows:
Gain(D', A, L)
Splitinformation(D’, A)
Gain(D', A, C)
SplitInformation(D’, A)

GainRatio(D', A, L) = (5)

GainRatio(D', A, C) = (6)

where

/ ’

v D |
SplitInformation(D', A) Z l,
-1

(7

Finally, we define the hybrid information gain ratio as
HybridGainRatio(D', A, C, L)
= A x GainRatio(D', A, C') + GainRatio(D', A, L) (8)

where the coefficient A controls the relative importance of
GainRatio(D', A, C') and GainRatio(D', A, L).

The attribute that achieves the highest hybrid information
gain ratio will be used to split the current dataset into multiple
subsets. In addition, unlike the traditional information gain ratio,
the hybrid information gain ratio considers both the class labels
of the samples and the clusters to which they belong; therefore,
the samples in each subset are more consistent in terms of both
their class labels and attributes.

C. Complexity Analysis

Because the HCFC is a framework for building hybrid
models, its time and space complexity depend on two aspects,
namely, clustering and classification. In this subsection, we take
HCFC-K as an example for analysis because the complexity of
hybrid models using different clustering algorithms varies.

Assume that dataset D contains N samples with W attributes.
During the clustering step, the refined initial cluster centers need
to be determined first, and thus, J small subsets are selected
from the dataset D and clustered using the classical K-means
algorithm. The time complexity for determining the refined
initial cluster centers is O(N T'KW.J), where N represents
the number of samples in the subset, 7" represents the number of
iterations required for convergence, and K indicates the number
of clusters. Then, D is clustered according to the obtained initial
cluster centers; the time complexity of this partis O(NTKW),
where T represents the number of iterations required for conver-
gence. Because N' < N, T' < T,and J is generally quite small
[27], the time needed to determine the initial cluster centers
is negligible. Therefore, the time complexity of the clustering
step is O(NTKW). During the classification step, because the
calculation of the hybrid information gain ratio does not change
the overall time complexity, the time complexity of this step is
identical to that of the C4.5 decision tree, which is O(NW?)
[31]. Finally, the time complexity of the two parts is added to
obtain the time complexity of HCFC-K as O(NW (T K + W)).
Because the running time of the HCFC-K increases linearly
with the number of samples N and quadratically with the
number of attributes W, it is not very efficient in processing
high-dimensional datasets. The main reason being the C4.5
decision tree, which is used in the hybrid model, requires a
large amount of time to process continuous attributes. In fact,
numerous studies on how to reduce the time complexity of
C4.5 have been conducted [31]-[33]. If a more effective C4.5
decision tree is adopted, the time complexity of the hybrid model
is expected to reduce to O(NWTK).

The space complexities of the classical K-means approach
and the method for determining the initial cluster centers
are O((N + K)W) and O((N + K)W.J), respectively. In
addition, the space complexity of the C4.5 decision tree
is O(NW) [32]. Because N', K < N, and J is generally
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Algorithm 3: HCFC(D, K, S, L).
Input: Training set D; number of clusters K; attributes set
S; class set L
Output: Decision tree Tree
1: procedure Clustering(D)

2: A clustering algorithm is applied to partition the
training set D into K clusters, C' = {¢;; | k = 1,2,
., K}
3: Return cluster set C'
4: end procedure
5: procedure Classification(D, S,C, L)
6: Tree = {}
7. if all samples in D are of the same class [,,, € L then
8: return a single node with the class [,
9: end if
10: if S is empty then
11: return a single node with most frequent class in D
12: end if
13: for A € Sdo
14: compute HybridGainRatio(D, A, C, L)
15: end for
16: Apest = arg mjx(HybridGainRatio(D, A,C,L))
17: Tree = create a decision node that tests Apeg in the
root

18: D, = induced subsets from D based on Apes
19: for all D, do

20: Tree, = Classification(D,, S\{ Apes }, C, L)
21: attach Tree, to the corresponding branch of Tree
22: end for

23: return Tree

24: end procedure

extremely small, the space complexity of the HCFC-K can be
regarded as O(NW).

D. Modeling Process

Algorithm 3 introduces the two main steps of the HCFC. The
clustering results returned in the first step will be used as input
in the second step. In the second step, the hybrid information
gain ratio is used to determine the optimal splitting attributes
of the decision tree. After these two steps, we obtain the final
decision tree classifier.

IV. EXPERIMENTS

In this section, we first introduce the experiment datasets
and the parameter settings for each model. Second, through
experiments, we investigate the effects of some of the important
parameters on the HCFC-K performance. Third, we analyze the
effects of clustering and the hybrid information gain ratio on the
classification performance of the proposed framework. Fourth,
we compare the classification performances of the HCFC-K and
HCFC-D with that of the six single and three hybrid models.
Finally, we compare the classification performance of HCFC-K,
HCFC-D, C4.5, and the three hybrid models on datasets
containing class noise.

TABLE |
UCI DATASETS FOR CLASSIFICATION EXPERIMENTS

Dataset Instance Attribute Class Industry

Abalone 4177 8 28 biology

Auto 205 26 6 business
Blood-Transfusion(BT) 748 5 2 healthcare
Connectionist 208 60 2 others
Dermatology 366 33 6 disease diagnosis
E.coli 336 8 8 healthcare

Flags 194 30 8 others

Flare 1389 10 2 astronomy
Frogs-MFCCs-Family(FMF) 7196 22 4 biology

Glass 214 10 6 materials

Magic 19020 11 2 astronomy
Monk2 432 7 2 others
Parkinsons 197 23 2 disease diagnosis
Seeds 210 7 3 biology

Soybean 307 35 15 disease diagnosis
Teaching-Assistant-Evaluation (TAE) 151 5 3 others
User-Knowledge-Modeling(UKM) 403 5 4 others
Vertebral-column-2C(VC2) 310 6 2 disease diagnosis
Vertebral-column-3C(VC3) 310 6 3 disease diagnosis
Wholesale-Customers(WC) 44 8 2 business

Wilt 4889 6 2 disease diagnosis
Yeast 1484 8 9 biology

Zoo 101 17 7 biology

A. Experimental Setup

To analyze the performance of the HCFC proposed in this
article, we conducted experiments on eight benchmark datasets
from the healthcare and disease diagnosis industry, as well
as 15 datasets from other industries; all were extracted from
the University of California at Irvine (UCI) repository [34].
Table I summarizes the properties of all datasets applied. For
convenience, the names of some of the datasets are abbrevi-
ated. This article compares the HCFC-K and HCFC-D to six
commonly used single models, namely, C4.5 [10], KNN [13],
SVM [16], NB [17], LR [18], and MLP [35]. Furthermore,
it compares HCFC-K and HCFC-D to the three hybrid mod-
els, namely, K-means+ID3, proposed by Gaddam et al. [20];
RK+SVM, proposed by Rajamohamed e? al. [25]; and TBWC,
proposed by Kaewchinporn et al. [21]. It is worth mentioning
that the hybrid model WK+FOIL [8] deals only with binary
classification problems, and because most of the datasets in
this article contain multiple classes, is not considered in this
article.

In order to compare the performance of 11 classification
models on the 23 datasets considered fairly, we used a fivefold
cross-validation method. First, each dataset was divided equally
into five subsets at random. During each experiment, one subset
was selected as the test set, one subset was randomly selected
as the validation set from the other four subsets, and the
remaining three subsets were selected as the training set. Next,
the training set was used to estimate the model parameters, and
the validation set was applied to select the optimal parameters
for each model. Finally, the test set was used to evaluate the
classification performance of each model with the optimal
parameters. The aforementioned process was repeated five times
to ensure that each of the five subsets was used as the test set
one time, and the entire process underwent a fivefold cross
validation.

The parameters of HCFC-K include the coefficient A in (8),
the number of clusters K, and the number of subsets J. During the
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experiment, A was set to within the range of [0.1, 1], with a step
size of 0.1, and K was set to within a range of [2, 8], also with the
step size of 1. Because we found during the experiment that the
parameter J has little effect on the performance of the model,
we set J = 10, as per [27]. The parameters of the HCFC-D
include the radius of the cluster (¢) and the minimum samples
required inside the cluster (MinPts), where € was set to within
of the range [0.1, 1], with a step size of 0.1, and MinPts was
set within the range of [2, 10], with a step size of 1. Both
K-means+ID3 and RK+SVM need to determine the number of
clusters K. According to [20] and [25], K in K-means+ID3 is
set to within a range of [2, 20], with a step size of 1, and K in
RK+SVM is set to within a range of [2, 8], also with a step size
of 1. The parameters of TBWC include the number of decision
trees num_trees and the number of clusters K. According to [21],
we let both num_trees and K have a range of [5, 40] with a step
size of 5. For the KNN, the parameter & is set within the range
of [1, 9], with a step size of 2. In this article, we set up two
hidden layers for MLP and use ReLLU as the activation function.
The optimal number of neurons in the hidden layer is varied
from 1 to 20 with a step size of 1. We chose the library for
support vector machines (LIBSVM) [36] to achieve the SVM
classifier and used the radial basis function kernel. In LIBSVM,
the kernel parameter v is set to 1/W by default, where W
represents the number of attributes of the dataset. In addition,
the penalty parameter P was selected from (1, 10, 100, 1000)
[37]. For C4.5, it is necessary to select the confidence factor to
determine the degree of pruning. Here, we allowed it to be 25%,
as suggested by Quinlan [10]. Because NB and K-means+ID3
can handle only discrete attributes, we used the method proposed
by Fayyad and Irani [38] to discretize the continuous attributes
prior to the modeling.

Finally, in order to further enhance the reliability of the ex-
perimental results, the aforementioned fivefold cross validation
was repeated ten times and the average was applied as the final
result. All models were implemented in Python 2.7.

B. Effects of the Parameters on HCFC-K Performance

In this subsection, we take HCFC-K as an example to
investigate the effects of the parameters on the classifica-
tion performance of the proposed framework. Specifically, we
considered two parameters, namely, the number of clusters
K and the coefficient A. Given a lack of prior knowledge,
when studying the effects of parameter K on the model, we
temporarily set A = 1. After determining the optimal K for each
dataset, we investigated the effects of parameter A on the model
performance.

1) Effects of Parameter K on the Performance of HCFC-K:
Because the distribution of samples in each dataset differs, it
is clearly unreasonable to use the same parameter K with all
datasets. Therefore, we selected the optimal parameter K for
each dataset on the validation set mentioned earlier. Table II
shows the classification accuracy of the HCFC-K on the valida-
tion set when K takes different values. According to the results
in Table II, we can determine the corresponding parameter K
for each dataset.

TABLE Il
CLASSIFICATION ACCURACY (%) OF HCFC-K ON ALL THE DATASETS
WHEN K TAKES DIFFERENT VALUES

Dataset K
2 3 4 5 6 7 8
Abalone 2486 2513 2350 2336 2337 2313 2313
Auto 73.17 7268 7659  77.07 76.10 7512  77.07
BT 75.67 7487 7474 7568 7594 7635 7554
Connectionist ~ 78.82  78.89  76.47 7649 7645 7458  72.58
Dermatology 92.64 9454 9289 92,62 9208 9127  90.99
Ecoli 8246 8097 81.87 8186 81.87 8097 8186
Flags 61.81 60.82 5876 5870  60.80 58.79  57.73
Flare 8470 8598 8543 8548 8525 8556  85.87
FMF 91.70 9263 9096  90.83  91.34  94.17  90.45
Glass 6797 69.03 6932 67.14 68.15 6752 67.52
Magic 81.09 81.72 81.48 7882 7990 81.01  79.31
Monk2 86.80 8532 8576 8476 8641 87.86 84.76
Parkinsons 88.21  87.69 8513 83.08 86.15 89.23  85.64
Seeds 93.81 9143 9143 9286 9333 9381 9571
Soybean 88.25 8879 8897 8897 8325 89.15  88.07
TAE 6295 6l.61 60.90 6157 6022 6228 6292
UKM 91.31 9229 9379 91.82 9205 9281  92.05
vC2 81.61  81.61 8161 8226 8194 8194 8290
VC3 8290 8226 8226 8226 81.94 8129  83.55
wC 89.32  89.32  89.09 89.77 90.23 8955  89.89
Wilt 9536 9387 9213 8323 9208 93.57  93.60
Yeast 5020  50.07 50.05 51.64 5035 50.24  50.13
Zoo 98.05 96.10 96.10 97.05 96.14 97.00 97.10
TABLE I

CLASSIFICATION ACCURACY (%) OF HCFC-K ON ALL THE DATASETS
WHEN 2 TAKES DIFFERENT VALUES

Dataset A
0.1 02 03 04 05 06 07 08 09 10

Abalone 23.25 24.85 23.31 23.71 23.23 23.18 23.05 24.19 23.17 24.84
Auto 75.12 73.17 73.17 74.15 74.15 72.20 72.20 71.71 76.10 76.59
BT 76.88 76.34 75.67 75.40 75.40 75.01 75.13 75.01 75.00 74.60
Connectionist 74.96 74.97 74.58 79.30 77.86 76.40 75.92 76.90 78.35 78.35
Dermatology 92.34 92.34 92.89 92.34 92.34 91.80 91.80 91.80 92.63 94.53
Ecoli 81.26 82.15 81.28 81.55 82.72 80.97 81.55 81.26 80.65 80.65
Flags 63.93 65.99 65.48 65.45 65.98 65.96 65.96 65.96 63.39 61.84
Flare 85.84 85.15 86.19 86.87 82.98 85.61 86.55 85.78 86.41 85.75
FMF 93.46 95.03 94.58 94.94 96.32 92.80 91.28 92.11 92.41 90.65
Glass 65.84 68.83 71.37 70.86 72.94 70.40 69.23 71.90 72.08 68.99
Magic 81.81 82.67 83.23 81.96 80.97 81.74 81.14 82.32 82.23 81.44
Monk2 86.36 87.44 88.75 87.63 84.39 85.25 86.19 88.09 87.61 87.96
Parkinsons 88.72 88.72 87.18 88.72 88.21 84.10 85.13 85.13 88.72 89.23
Seeds 92.86 92.86 93.33 91.90 91.90 93.81 92.48 92.48 92.86 92.38
Soybean 88.61 88.79 89.86 86.83 86.65 87.90 88.26 87.72 87.54 87.18
TAE 60.92 60.92 62.92 61.66 61.66 60.32 60.32 60.32 60.24 60.24
UKM 91.31 91.31 91.31 92.54 92.54 92.55 91.81 91.81 91.31 91.31
vC2 83.87 84.52 82.90 81.94 81.94 81.29 81.29 79.68 81.61 81.61
VvC3 83.55 82.90 81.29 80.65 80.65 80.97 80.97 81.94 82.26 82.58
wC 89.32 89.32 89.32 89.55 89.55 90.23 89.32 89.32 89.32 89.32
Wilt 97.25 97.76 97.78 98.50 98.39 98.33 97.81 96.79 96.97 96.34
Yeast 47.36 51.58 52.52 52.31 49.75 49.68 48.49 53.02 52.36 52.35
Zoo 98.00 98.00 98.00 98.05 97.10 97.10 97.10 97.10 97.00 97.05

2) Effects of Parameter » on the Performance of HCFC-K:
Table III shows the classification accuracy of the HCFC-K
on the validation set when A = 0.1,0.2, ..., 1. The maximum
value in each row is shown in bold. According to the results in
Table III, we can determine the corresponding parameter A for
each dataset.

C. Influence of Clustering and Hybrid Information Gain
Ratio on the Performance of HCFC

To analyze the influence of the clustering and hybrid informa-
tion gain ratio on the performance of the HCFC, we compared
HCFC-K and HCFC-D to the following four models.
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TABLE IV

COMPARISON OF CLASSIFICATION ACCURACY (MEAN + STANDARD DEVIATION, %) OF SiX MODELS

IK+C4.5

DB+C4.5

C4.5

2421 (3) £ 0.74
68.68 (6) + 4.92
77.84 (4) £ 4.39
77.07 (4) + 5.89
76.34 (6) & 3.93
81.90 (5) & 2.69
49.24 (6) £ 2.47
80.73 (6) + 3.73
94.87 (3) £ 0.15
67.88 (5) + 1.62
80.41 (6) + 0.52
83.99 (4) +3.22
78.13 (6) £ 4.05
90.55 (5) + 4.76
82.76 (6) + 2.43
56.10 (6) + 6.42
84.05 (5) + 4.92
81.40 (5) + 1.74
81.29 (4) 4 2.61
87.66 (6) + 2.82
96.59 (5) + 0.48
54.81 (1) = 2.72
96.15 (4) + 4.14

2419 (&) £ 2.30
69.98 (5) + 5.25
75.89 (6) & 5.42
77.24 (3) £ 5.59
80.41 (5) + 3.53
82.47 (3) £ 4.38
53.47 (5) £ 4.15
82.43 (4) £ 8.07
93.72 (5) £ 0.67
72.22 (1) + 7.06
81.35(2) £ 0.36
83.70 (5) + 5.67
86.44 (4) + 4.33
91.14 (2) £ 7.45
85.37 (5) + 4.62
57.95 (5) £ 5.71
81.70 (6) + 5.03
80.55 (6) + 1.86
80.87 (5) £ 3.53
88.10 (5) £ 2.77
96.65 (4) =+ 0.04
50.36 (5) = 3.40
94.08 (5) £ 5.11

23.10 (6) £ 1.43
74.15 (4) £ 5.42
77.57 (5) £ 3.01
72.60 (6) + 7.39
90.44 (4) £ 3.13
79.16 (6) + 3.12
61.88 (3) & 2.77
81.76 (5) % 8.98
93.66 (6) £ 0.23
60.31 (6) + 7.87
80.68 (5) + 0.32
80.53 (6) + 1.12
82.05 (5) + 5.82
90.95 (4) + 5.09
85.40 (4) + 0.77
60.26 (3) + 4.19
89.82 (4) + 0.09
81.45 (4) + 4.05
79.35 (6) + 3.51
88.41 (4) + 2.54
96.36 (6) + 1.78
46.36 (6) =+ 3.61
91.10 (6) £ 2.51

Dataset HCFC-K HCFC-K1 HCFC-D
Abalone 26.05 (1) £ 0.46 24.14 (5) £ 1.30 2591 (2) £ 0.68
Auto 76.10 (1) £ 2.02 74.27 (3) £ 4.86 74.39 (2) £3.19
BT 78.48 (1) £ 3.54 78.08 (2) = 4.21 77.94 (3) £3.24
Connectionist 79.88 (1) £ 5.35 77.85(2) £ 4.21 76.68 (5) £ 6.92
Dermatology 93.98 (2) 4= 2.90 93.75(3) £ 1.41 94.27 (1) £ 3.60
Ecoli 83.05 (2) £4.50 82.03 (4) +2.30 83.78 (1) £ 2.75
Flags 63.43 (2) +3.07 5773 (4) £5.24 63.66 (1) £ 2.53
Flare 84.70 (2) £=4.25 82.99 (3) £2.87 85.11 (1) £ 3.00
FMF 96.13 (1) = 0.52 94.83 (4) £ 0.65 95.57 (2) £0.82
Glass 70.73 (3) = 3.55 68.61 (4) £8.15 70.78 (2) £ 8.64
Magic 82.51 (1) + 0.49 81.23 (3) £ 0.33 80.81 (4) = 0.91
Monk2 86.36 (1) + 2.87 85.79 (3) £2.87 86.20 (2) + 3.10
Parkinsons 91.28 (1) + 3.94 86.92 (3) = 5.06 87.95(2) = 6.13
Seeds 91.90 (1) + 2.72 91.10 3) £ 6.44 90.48 (6) £ 5.39
Soybean 89.67 (1) = 3.29 87.86 (3) = 2.08 88.96 (2) + 2.05
TAE 64.90 (2) +3.85 59.91 (4) £5.68 66.55 (1) +4.94
UKM 92.31 (1) + 0.58 91.89 (2) £2.71 91.07 (3) £ 0.37
vC2 83.55(1) £ 245 82.18 (3) = 4.65 82.58 (2) =4.90
VC3 81.29 (4) £ 2.65 82.11 (2) = 4.61 83.39 (1) £ 291
wC 90.68 (1) + 2.67 89.52 (3) = 4.00 90.16 (2) £ 1.23
Wilt 98.22 (1) + 0.18 97.71 (2) £ 1.47 97.59 (3) £ 0.43
Yeast 51.49 (3) £ 2.84 50.39 (4) £2.83 53.40 (2) £2.63
Zoo 99.05 (1) + 2.05 97.39(3) £5.74 97.55(2)£2.73
Average

80.68 (1.52) £ 2.64 79.06 (3.13) £ 3.64 80.21 (2.26) + 3.18 76.20 (4.83) £3.10 76.97 (4.35) =4.19 76.84 (4.96) + 3.43

1) HCFC-K1, which uses the classical K-means algorithm
directly during the clustering step (without refining the
initial cluster centers), as opposed to the hybrid infor-
mation gain ratio, which is used during the classification
step, similar to HCFC-K.

2) IK+C4.5, which is similar to K-means+ID3 but uses
the improved K-means algorithm and classical C4.5
algorithm during the clustering and classification steps,
respectively.

3) DB+C4.5, which is similar to K-means+ID3 but uses
DBSCAN and the classical C4.5 algorithm during the
clustering and classification step, respectively.

4) C4.5 (i.e., the classical C4.5 model).

Table IV shows the classification accuracy (mean =+ standard
deviation) of the six different models on the 23 UCI datasets.
For each dataset, the highest classification accuracy is shown in
bold.

To verify whether there are statistically significant differences
in the classification performance among the six models, we
adopted nonparametric methods, namely, the Friedman test [39]
and the Iman—Davenport test [40]. As the null hypothesis of
the Friedman and Iman—Davenport tests, the six classification
models achieve the same classification performance. If this null
hypothesis is rejected, an additional Nemenyi post hoc test [41]
will be conducted to compare the six different models with each
other. In this article, we let the significance level a = 0.05. We
sort the classification accuracy of the models on each dataset,
starting with the highest (=1); ties receive a rank equal to the
average values they span. The final row of Table IV shows the
average rank of each model.

During this experiment, the Friedman test and Iman-
Davenport test statistics follow a x? distribution with five
degrees of freedom and an F-distribution with 5 x 110 degrees

TABLE V
RESULTS OF THE FRIEDMAN AND IMAN-DAVENPORT TESTS FOR
COMPARING PERFORMANCE

Method Test value  Distribution value ~ Hypothesis
Friedman 68.93 11.07 reject
Iman-Davenport ~ 32.91 2.30 reject
CD=1.57
6 5 4 3 2 1
—C45 | L HCFC-K
IK+C4.5 HCFC-D
DB + C4.5 HCFC-K1

Fig. 2. Nemenyi post hoc test results for six models.

of freedom, respectively. Table V shows the test results. Because
the test values of both tests exceed the corresponding critical
values, we reject the null hypothesis. Thus, we can conclude that,
at a 95% confidence level, statistically significant differences
occur in the classification performance of the six models. Next,
we applied a Nemenyi post hoc test to compare the six different
models with each other. When the number of classification
models is six, the critical value is 2.85, and the critical difference
(CD) is 2.851/(6 x 7/(6 x 23)) = 1.57. Fig. 2 shows the test
results; here, there is no statistically significant difference among
the models connected by a line segment. From Fig. 2, we can
draw the following conclusions.
1) At a 95% confidence level, there is no statistically sig-
nificant difference between the HCFC-K and HCFC-D,
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TABLE VI
COMPARISON OF CLASSIFICATION ACCURACY (MEAN £ STANDARD DEVIATION, %) OF 11 MODELS ON 23 UCI DATASETS

Dataset HCFC-K HCFC-D C4.5[10] SVM [16] LR [18] KNN [13] NB [17] MLP [35] RK+SVM [25] K-means+ID3 [20]  TBWC [21]
Abalone 2605(2) £ 046 2591 (3) £ 0.68  23.10(10) 4+ 143 25.16(4) £ 244  2380(8) £ 1.61  2337(9) £ 190  2442(7) £ 0.68  2745() £ 112 2485(6) £ 247  2255(11) £ 168 24.89(5) & 1.26
Auto 7610(1) 202 7439 () 319 T4I5(3) 542 6537(6) £ 613 6390(7) £ 577 6048(8) £ 7.67  3805(11) £ 9.19  5829(9) 789  T31T(4) £ 869  69.34(5) £ 343 46.59 (10) & 4.98
BT 7848 (1) £ 354 77940 £324 71574 E£301 76207 £363  77.80(3) £408  7527(10) £ 186 7595(9) £ 428  7727(5) £368 70731 £ 412 T618(®) £3.27  77.20(6) +3.76

79.88(2) £ 5.35
93.98 (4) % 2.90

76.68 (5) % 6.92
94.27 (3) £ 3.60

72.60 (9) 4 7.39
90.44 (6) & 3.13

7641 (7) 4 7.8
96.99 (2) & 2.27

76.46 (6) 4 3.25
98.36 (1) & 1.24

Connectionist

Dermatology

80.98 (1) + 3.82
87.43(8) £ 3.32

76.82 (4) £ 3.81
87.15 (9) & 4.99

74.54 (8) % 6.02
80.56 (11) & 3.52

69.23(11) =& 6.85
87.97 (7) & 2.62

7842 (3) 4 2.83
84.42 (10) + 6.08

69.73 (10) £ 10.27
93.03 (5) £ 2.28

Ecoli 83.05(4) £ 450  8378(3) £ 275 79.16(9) £ 312 8689(2) +349  7530(11) £ 443 8734(1) =393 7860(10) =381 81.26(8) £ 603  82.88(5) 408  81.89(7) £ 573 8199 (6) & 2.18
Flags 6343(2) £3.07  63.66(1) 253  61.88(3) £ 277  3254(11) £ 437 4437(6) £7.82  38.64(7) £ 484  4588(5) 628  3635(8) £ 708 3379(10) £ 195  54.64(4) £225  33.82(9) % 351
Flare 8470(2) £ 425  85.11(1) £ 300  81.76(9) £ 898  8423(4) 362  8454(3) £ 427  8375(6) £ 342  S105(11) 574  8330(8) £ 866  8346(7) +3.69 8150 (10) £ 6.04 8391 (5) & 3.75
FMF 96.13(3) 4 052 95.57(4) 4 0.82  93.66(8) £ 023  9348(9) £ 059  92.38(10) £ 042 98.95(1) £ 0.51  87.46(11) 4 095 97.21(2) £ 041 9391 (7) £ 058  9553(5) £ 1.02  94.25(6) & 1.19
Glass 7073(2) £ 355 70.78(1) & 8.64 6031 (6) £ 787  49.56(10) £ 839 5563 (9) £422  6643(4) =755  4575(11) £ 1183 57.92(71) £ 663  6141(5) £8.16  68.67(3) 402 57.19(8) &+ 6.10
Magic 8251(1) £ 049 8081 (3) £ 091  80.68(4) £ 032 69.28(10) £ 059  78.87(8) £0.86  80.60(5) £ 038 7283 () & LI7  7957() £070  67.16(11) £ 0.63  81.06(2) £ 0.52  79.82(6) & 0.75
Monk2 8636(2) 287  8620(3) £3.10  80.53(4) £ 112 6473(®) % 118 6539(6) & 137 5973 (11) 230 6373 (10) 248 8687 (1) £7.98  64.39(9) & 141 8037(5) £ 649 6489 (7) & 249
Parkinsons 9128 (1) + 394  87.95(2) £ 6.13  82.05(6) £ 582  7333(10) £ 417 84.62(5) 4 1.76  85.64(4) £ 1.79 7231 (11) 4 8.63 7846(8) =524  76.67(9) £3.71  8586(3) £ 129  81.79(7) % 3.18
Seeds 91.90(5) 272 9048(8) £ 539 9095(1) 509  9476(1) £ 412 9238(3) £239  89.05(11) £ 279  8952(9) £ 608  92.14(4) & 140 9429(2) £321  91.43(6) £ 628  89.29(10) £ 533
Soybean 80.67(2) 329  8896(3) £ 205  8540(6) £ 0.77  9L63(1) =497  87.90(5) 4222 T758(9) £ 342  8452(7) £ 447 T4I8(10) £ 245 8825(4) £ 467 8381 (8) £ 216 69.67(11) & 271
TAE 64.90(2) £ 385 66.55(1) 494 6026 (3) £ 419 4290(9) £ 361 4441 (7) £ 948  39.66(11) £ 738 52954 944 4163 (10) £ 984  S50.71(6) £ 261  5287(5) E 731 42.94(8) & 3.09
UKM 9231(3)+ 058  91.07(4) 4037  89.82(5) 4 009  8486(10) & 501 7597 (1) £ 8.10  86.74(8) +3.39  89.10(6) = 488 9529 (1) £ 2.17  87.11(7) £ 646  8561(9) 424  92.69(2) & 2.66
ve2 83.55(2) 245  8258(3) £ 490  8145(5 £405  7935(9) 453 8097(8) £ 427  8372(1) £ 192 7839(10) £ 597 81.61(4) £ 560  7339(11) £ 682 8101 () £201  8129(6) & 524
ve3 8129(6) 265  8339(1) £ 291  7935(10) 351  80.32(8) £ 879  81.94(4) 448  8323(2) £ 291  8258(3) £ 425  81.61(5) £ 748 7661 (11) £ 856 8023(9) 4224 8081 (7) =& 2.10
wC 90.68(2) 267  90.16(4) 123 8841 ()£ 254 T273(11) £ 538 89.32(6) £432  8977(5) £ 313 9023(3) £225 9080 (1) £ 517 8697(8) £ 558  8682(9) £ 199 74.32(10) £ 2.93
wilt 98.22(1) + 0.18  97.59(3) 043 9636(6) & 178  94.17(10) & 041  95.02(9) £ 0.32  96.50(5) £ 0.02 8973 (11) £ 027 97.71(2) £ 028  9505(8) £ 0.55  96.86(4) & 244 9587 (7) & 1.29
Yeast 5149(6) 284 5340 (4) £2.63  4636(10) £ 3.61  5842(1) £ 260  50.68(7) +£230 5728+ 175 2205(11) £ 248 5583(3) £266  4973(9) £ 268  5327(5) £ 508 5027 (8) & 2.10
Zoo 99.05(1) =205 97.55() 4273 9L1I0(7) £ 251 95.00(5 £ 749  87.00(11) £ 7.16  89.43(8) £ 9.19  96.00(4) 4357  89.02(9) £ 356  87.29(10) £ 733 96.73(3) £ 374 92.10(6) & 6.84
Average 80.68 (2.48) & 2.64 80.21 (2.87) & 3.18 76.84 (6.39) = 343 7341 (6.74) £ 4.16 74.22(6.70) & 3.74 74.85(5.96) & 3.44 69.06 (8.30) &= 4.70 75.07 (5.48) £ 4.57 7324 (7.61) £ 4.37 76.96 (6.13) & 3.57 71.77(7.35) & 335

both of which show a good classification performance.
This result indicates that the framework proposed in this
article does not have strict restrictions on the selection
of the clustering algorithms and is extremely flexible in
industrial applications.

2) The classification performance of the HCFC-K is sig-
nificantly better than that of IK+C4.5. Likewise, the
classification performance of the HCFC-D is significantly
better than that of DB+C4.5. These results indicate that
the hybrid information gain ratio is a more effective
method for constructing a hybrid model.

3) No statistically significant difference can be seen between
the HCFC-D and the HCFC-K1, but the classification
performance of the HCFC-K is significantly better than
that of the HCFC-K1. This may be due to the improved
K-means algorithm used in the HCFC-K obtaining more
reasonable clustering results than the classic K-means
approach.

D. Comparison of Classification Performance to That of
Other Models

Table VI compares the classification accuracy of the HCFC-K
and HCFC-D to that of the three hybrid and six single models on
all datasets. The HCFC-K and HCFC-D have a higher average
classification accuracy with a lower average standard deviation
than the other models. Using the same process described in
Section I'V-C, we use a Friedman test and an Iman—Davenport
test to study whether the 11 models exhibit any statistically
significant differences; Table VII shows the test results. Because
test values of both tests exceed the corresponding critical values,
we reject the null hypothesis. Thus, we can conclude that,
at a 95% confidence level, statistically significant differences
occur among the classification performances of the 11 models
considered. Next, we conducted a Nemenyi post hoc test to
compare the 11 different models. From Fig. 3, we can draw the
following conclusions.

TABLE VII
RESULTS OF THE FRIEDMAN AND IMAN-DAVENPORT TESTS
FOR COMPARING PERFORMANCE

Method Test value  Distribution value  Hypothesis
Friedman 69.82 18.31 reject
Iman-Davenport ~ 9.59 1.87 reject
| CD=3.15 |
N T A N A O A
I
— NB ]
NB HCFC-K
RK+SVM
HCFC-D
TBWC
MLP
SVM
KNN
LR
C4.5 K-means+ID3
Fig. 3. Nemenyi post hoc test results for all models.

1) At a 95% confidence level, no statistically significant
difference is shown among HCFC-K, HCFC-D, and MLP,
which achieved the best classification performances.
Nevertheless, the advantage of HCFC-K and HCFC-D
over the MLP is that their results are easier to interpret.

2) The classification performances of the HCFC-K and
HCFC-D are significantly better than those of the hybrid
models K-means+ID3 and RK+SVM, and TBWC, which
indicates that the HCFC framework proposed in this
article has clear advantages over the existing hybrid
models.

3) No statistically significant difference among MLP, KNN,
K-means+ID3, C4.5, LR, SVM, TBWC, RK+SVM, and
NB is demonstrated. Likewise, no statistically significant
difference among HCFC-D, MLP, and KNN is shown.
Overall, the classification performances of the hybrid
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W 0=0 M 0=0.15 W 0=0.3

C
Fig. 4. Average accuracy of six models on 23 datasets when the noise
level o = 0, 0.15, and 0.3.

I 65.
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4. RK+SVM K-means+ID3 BW
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HCFC-K

HCFC-D Cca.5

RK+SVM K-means+ID3 TBWC

Fig. 5. Average ranking of six models on 23 datasets when the noise
level o = 0, 0.15, and 0.3.

models HCFC-K, HCFC-D, and K-means+ID3 are rel-
atively good, whereas the classification performances of
the hybrid models RK+SVM and TBWC are relatively
poor. This indicates that it is extremely important to
choose a proper method for building a hybrid model:
if an appropriate method is not chosen, it may not be
possible to improve the classification performance of the
hybrid model by very much.

E. Comparison of Classification Performance in Noisy
Environment

In reality, classification problems often contain a considerable
amount of noise, and it is very meaningful to compare the perfor-
mance of classification models using noisy datasets. In general,
noise within a dataset can be classified as class or attribute
noise. Some studies have shown that class noise is potentially
more harmful than attribute noise [42]; therefore, we mainly
compared the classification accuracies of HCFC-K, HCFC-D,
C4.5, and the three hybrid models on datasets containing class
noise. Because most of the UCI datasets applied in this article
do not contain class noise, to add such noise we used a manual
mechanism adopted by Zhu and Wu [43]. Fig. 4 shows the
average accuracy of the six models on 23 datasets when the
noise level is 0 = 0, 0.15, and 0.3. Fig. 5 shows the average

TABLE VIII
RESULTS OF THE FRIEDMAN AND IMAN-DAVENPORT TESTS (0 = 0.15)

Method Test value  Distribution value  Hypothesis

Friedman 41.82 11.07 reject

Iman-Davenport ~ 12.57 2.30 reject
TABLE IX

RESULTS OF THE FRIEDMAN AND IMAN-DAVENPORT TESTS (0 = 0.3)

Method Test value  Distribution value  Hypothesis
Friedman 35.84 11.07 reject
Iman-Davenport ~ 9.96 2.30 reject
CD=157 CD=1.57
I —
6 5 4 3 2 1 6 5 4 3 2 1
N O O O A
RK+SVM HCFC-D C4.5 HCFC-D
c4.5 HCFC-K RK+SVM HCFC-K
K-means+ID3 TBWC K-means+ID3 TBWC
(@ (b)
Fig. 6.  Nemenyi post hoc test results for the six models. (a) o = 0.15.
(b) o =0.3.

ranking of the six models on the 23 datasets when the noise
levelis 0 = 0, 0.15, and 0.3.

We used a Friedman test and an Iman—Davenport test to
further investigate whether the six models exhibit any statis-
tically significant differences. Tables VIII and IX show the test
results, respectively. From these tables, it can be seen that, under
different noise levels, the test values of both tests exceed the
corresponding critical values, thereby, indicating the presence of
statistically significant differences among the six models. Next,
we used a Nemenyi post hoc test to compare the six models.
Fig. 6 shows the test results when the noise level is 0 = 0.15
and 0.3. Finally, we can draw the following conclusions.

1) When o = 0.15, the classification performance of the
HCFC-D is significantly better than that of the TBWC,
K-means+ID3, C4.5, and RK+SVM at a 95% confi-
dence level. Likewise, the classification performance
of the HCFC-K is significantly better than that of
K-means+ID3, C4.5, and RK+SVM. No statistically
significant difference is shown between the HCFC-D and
HCFC-K, or between the HCFC-K and TBWC. In addi-
tion, no statistically significant difference is demonstrated
among TBWC, K-means+ID3, C4.5, and RK+SVM.

2) When o = 0.3, the classification performance of the
HCFC-D is significantly better than that of the TBWC,
RK+SVM, K-means+ID3, and C4.5, and the classifica-
tion performance of the HCFC-K is significantly better
than that of the RK+SVM and C4.5. In addition, there is
no statistically significant difference between the HCFC-
D and HCFC-K, and there is no statistically significant
difference among HCFC-K, TBWC, and K-means+ID3.
Likewise, no statistically significant difference is shown
among TBWC, K-means+ID3, C4.5, and RK+SVM.
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3) As indicated in Figs. 4 and 5, when the noise level
increases, the average rankings of the HCFC-K and
C4.5 increase gradually, whereas the average rankings of
HCFC-D, RK+SVM, and TBWC decrease. In addition,
the average accuracy and ranking of the HCFC-D is
better than those of the HCFC-K in a noisy environment.
Therefore, the antinoise ability of the HCFC-D is better
than that of the HCFC-K. When a large amount of class
noise is present in a dataset, the HCFC-D may be a better
choice.

V. CONCLUSION

In this article, we proposed an HCFC. Depending on the
differences of the clustering algorithms used, we constructed
two versions of the HCFC (HCFC-K and HCFC-D), which use
an improved K-means approach and DBSCAN, respectively.
Unlike a traditional supervised classification model, the HCFC
combines the advantages of supervised and unsupervised learn-
ing, and integrates the information obtained through clustering
into the training process of the C4.5 decision tree classifier.
We conducted a series of experiments on eight benchmark
datasets from the healthcare and disease diagnosis industry, and
15 datasets from other industries to evaluate the classification
performance of the HCFC. The experiment results showed that,
when the training sets do not contain class noise, HCFC-K
and HCFC-D exhibit a comparable or even better classification
performance than other single and hybrid models. When the
training sets contain class noise, the classification performances
of the HCFC-K and HCFC-D are still superior to those of C4.5
and the existing three hybrid models. In addition, HCFC-D
has a stronger ability to resist class noise compared with the
HCFC-K. Therefore, compared with the existing single and
hybrid classification models, the HCFC has clear advantages
in its classification performance under various environments,
making it a favorable choice for practical industrial use.

In future research, we will focus on the following four
aspects. First, to further enhance the practicability of the hybrid
models proposed in this article, we will explore a better way
to automatically determine the parameters of the hybrid models
and further reduce their time complexity. In addition, ensemble
learning has been one of the hotspots in the field of machine
learning in recent years, the basic idea of which is to combine a
series of weak learners to enhance their performance [44], [45].
To further improve the classification performance of a hybrid
model, we will attempt to combine the hybrid information gain
ratio with the random forest. Next, in this article, we did not
consider the class imbalance of datasets during the model-
ing process, and thus, we plan to preprocess the unbalanced
datasets and consider new evaluation indicators such as the area
under the receiver operating characteristic in our next study.
Finally, we will also explore the application of hybrid models
in semisupervised learning. In many practical classification
problems, it is frequently difficult to obtain labeled samples;
however, numerous unlabeled samples are available [46], [47].
In this case, using semisupervised learning techniques to build
a classification model is a common practice. In this article, we

found that the use of clustering information can improve the
classification performance of the proposed model, and that the
clustering does not need to apply the class labels of the samples;
for these reasons, research into a semisupervised hybrid model
holds considerable promise.
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