

APPLICATE.eu Advanced prediction in polar regions and beyond

Link between Autumn Arctic Sea Ice and Northern Hemisphere Winter Forecast Skill

J.C. Acosta-Navarro, L. Batté, <u>P. Ortega</u>, D. Smith, P.A. Bretonnière, V. Guemas, F. Massonnet, V. Sicardi, V. Torralba, E. Tourigny, F.J. Doblas-Reyes, Ilona Välisuo and Matthieu Chevallier

Published in: Acosta-Navarro et al (GRL, 2020)

EUROPEAN POLAR SCIENCE WEEK VIRTUAL EVENT – 26-30th Oct 2020

A multi-model seasonal forecast analysis

Model	CNRM-CM6-1	EC-Earth 3.2.2	SEAS5	GloSea5	
Atmosphere	ARPEGE 6.3	IFS Cy36r4	IFS Cy43r1	UM v6	
Ocean	NEMO 3.6	NEMO 3.6	NEMO 3.4	NEMO 3.4	
Sea ice	GELATO v6	LIM3	LIM2	CICE 4.1	→ Different sea-ice models
Atmospheric resolution	tl127l91r (~150 km)	tl255l91r (~80 km)	tCo319L91 (~35 km)	N216L85 (~40 km)	Different resolutions
Ocean resolution	eORCA1L75 (~1°)	ORCA1L75 (~1°)	ORCA025L75 (~0.25°)	ORCA025L75 (~0.25°)	
Sea ice initial conditions	GELATO-NEMO run constrained towards GLORYS 2V4 (Mercator)	LIM3-NEMO run with ENKF SIC assimilation	ORA-S5	NEMOVAR	→ Different flavours of sea ice initialization
Ensemble size	30	25	25	28	→ All at least 25 members

Common reforecast period: All systems initialized around the **1st November** 25 members from each system 1993-2014 focus on DJF 100 members

Main Goal - To determine the impact of Barents-Kara Seas on Northern Hemisphere winter predictive skill

Methodology

A new set of seasonal forecasts is synthetically built by **regressing out** (using linear regression) the **Barents-Kara sea ice (BKSI) area in November** of the **winter (DJF)** surface air temperature, sea level pressure and precipitation fields **from the original set** Anomaly of mean November BKSI area

By computing the **differences** in skill **between the BKSI removed and the original set** of seasonal predictions we can now evaluate the BKSI contribution to climate prediction capacity in the Arctic region and the mid-latitudes

Multi-model skill (and skill gain) in NH winter SLP

Multi-model Original vs no-BKSI ACC difference

Multi-model Anomaly Correlation Coefficient (ACC)

The **multi-model** ensemble prediction system has **limited skill** for SLP over Europe **BKSI** is associated with **enhanced predictive capacity** on Western Russia

Multi-model skill (and skill gain) in NH winter climate

Multi-model Anomaly Correlation Coefficient (ACC) OBS Ref: ERA-Interim

Surface Air

Multi-model Original vs no-BKSI ACC difference

BKSI also linked with enhanced predictive capacity on Western Russia precipitation and surface temperature in South East Asia

W. Russia SLP skill behind other Eurasian signals

Scatterplots with the DJF skill relationship between

The scatterplot is generated by **randomly sampling 10-members** from each forecast system and computing the respective skill metrics **1,000 times for each system**

There is a **strong linear relationship** between the skill in W. Russia SLP and the skill in W. Russia precipitation and South East Asia temperature

Teleconnection Mechanism: W. Russia SLP link to BKSI

In all systems the **stronger BKSI-West Russia teleconnection** is, the higher the SLP skill is in Western Russia

Interestingly, all systems tend to underestimate the TS

Constrained Forecasts: Sub-selecting of stronger TS sets

ACC **skill gain** with respect to original complete set

By subselecting the members for which **TS** is more realistic we improve prediction of areas/variables affected by teleconnection

Take home messages

- Climate forecast systems have limited predictive capacity at seasonal scales in the Northern Hemisphere midlatitudes
- Autumnal Barents and Kara Sea ice (BKSI) is likely a source of winter climate predictability in large regions of northern Eurasia
- Analysis of multimodel initialized predictions suggests that winter predictability in Eurasia is enhanced by a sea ice-atmosphere teleconnection with BKSI
- This teleconnection is hindered by systematic model biases, which can be partly circumvented through a process-based ensemble subselection

Constrained Forecasts: Link with mean-state SLP biases

ā

ced

O

Jave

member SLP

Strong a re

The skill improvement comes from a reduction in systematic SLP model biases, which enable a more realistic teleconnection Multi-model November SLP mean difference between 10% members with strongest/weakest TS

November multi-model SLP bias (in Pa)

