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1. Gibbs free energy of the solid end-members

We write the Helmoltz Free energy as follows,

F (V, T ) =F (V0, T0) + (F (V, T0)− F (V0, T0)) + (F (V, T )− F (V, T0))

=F (V0, T0) + F cT0
(V ) + F th(V, T )

(1)

where the so-called cold part, F cV0,T0
(V ) describes the volume dependence of F at T = T0 and the thermal

part F th(V, T ) accounts for the effects of thermal agitation.

1.1. The cold part, F cV0,T0
(V )

We follow Stixrude and Lithgow-Bertelloni (2005) and De Koker and Stixrude (2009) where the cold
part is the volume integrale of the 3rd order Birch-Murnaghan equation of state (EoS),

F cV0,T0
(V ) = 9K0

[
1

2
f2 +

1

2
(K ′ − 4)f3

]
(2)

and,

f =
1

2

[(
V

V0

)2/3

− 1

]
(3)

where K0 is the incompressibility and K ′ its pressure derivative at T = T0 and V = V0.

1.2. The thermal part, F th(V, T )

The thermal part, F th(V, T ), is computed using the Debye approximation,

F th(V, T ) = 9nRT

(
T

θD

)3 ∫ θD/T

0

ε2ln
(
1− e−ε

)
dε (4)

where n is the number of atoms of the chemical specie in question (e.g., for MgO, n = 2) and R is the
universal gas constant. θD(V, T0) is the Debye temperature,

θD = θ0e
γ0−γ
q (5)

where the Grüneisen parameter, γ, is reduced to

γ = γ0

(
V

V0

)q
(6)

where q is a constant and γ0 is Grüneisen parameter of reference at V = V0. For solids, the Gibbs function,
G, is computed from the Heltmotz free energy, F . Maxwell’s relations give:

G = F + V

(
∂F

∂V

)
T

(7)

and (
∂F

∂V

)
T

= −P (8)
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2. Gibbs free energy of the liquid end-members

We consider here three end-members in the liquid phase (MgO)l, (FeO)l et (SiO2)l. Sadly, each end-
member has its own EoS, hence a specific Gibbs function.

• For (MgO)l, we follow exactly the model described in Liebske and Frost (2012) and De Koker and
Stixrude (2009).

• For (SiO2)l, it has been shown that the variation of its incompressibility requires a 5th order Birch-
Murnaghan EoS (De Koker and Stixrude, 2009; Sanloup et al., 2013). However, the thermodynamic
model of De Koker and Stixrude (2009) is hard to reproduce. Consequently, we fit their FPMD calcu-
lation with a simple exponential EoS. We then derived the self-consistent thermodynamic potentials
associated with this EoS.

• For (FeO)l, we need a simple well-behaved thermodynamic model as we inverse various experimental
data for the thermodynamic parameters of liquid FeO (Boukaré et al., 2015).

For the liquids end-members, we summarize in Table 1 the mathematical functions that describe the key
ingredients of the thermodynamic models: the EoS, the thermal capacity (or equivalent) and the Grüneisen
parameter (or equivalent).

End-members EoS CV (ou eq.*) γ (ou eq.*)
MgO 3rd order BM** Constant Linear in V
FeO Murnaghan Linear in T Exponential in V
SiO2 Exponential Linear in V and T Function of V et T

Table 1: We summarize here the mathematical formalism that describe the key ingredients (EoS, thermal capacity, CV and
Grüneisen parameter, γ) used to build the Gibbs function of the liquid end-members. *eq : equivalent.**BM: Birch-Murnaghan.

2.1. Liquid MgO [Liebske et al, 2012][DeKoker et al, 2009]

For liquid MgO, the Helmotz free energy is also decomposed into a cold and a thermal part. The cold
part, F cT0

(V ) for liquid MgO is the same as for the solids (equation 2). While the thermal part of the solid
end-members is developed using the vibrational approach, the thermal part of F is otbained by integrating
an entropy model.

We have,

dS =

(
∂S

∂V

)
T

dV +

(
∂S

∂T

)
V

dT (9)

By using the definition of CV , the thermodynamic identity dF = −SdT − PdV and the definition of the
Grüneisen parameter γ = αV KT /CV , we get,

dS = αKT dV +
CV
T
dT =

γCV
V

dV +
CV
T
dT (10)

Assuming that CV = CV0
is constant and γ = γ0

(
V
V0

)q
(equation 6), we obtain,

S(V, T ) = S0 + CV 0
γ0
q

[(
V

V0

)q
− 1

]
+ CV 0 ln

T

T0
(11)

We have,

S(V, T ) = −
(
∂F

∂T

)
V

(12)
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It turns out that,

F thV0,T0
(T ) = −S0(T − T0)−CV 0

[
T ln

[
T

T0

]
− (T − T0)

]
−CV 0

γ0
q

(T − T0)

[(
V

V0

)q
− 1

] (13)

2.1.1. SiO2 liquide (home-made)

De Koker and Stixrude (2009); DeKoker et al. (2013) describe the Gibbs free energy of liquid SiO2 with
high degree polynomial functions. However, they do not provide the coefficients required to reproduce the
Gibbs function. Here, we develop a simple Gibbs function for liquid SiO2 that we use to fit the FPMD
calculations of De Koker and Stixrude (2009).

We start with the following equation of state.

P (V, T0) = P (V0, T0) + F (V ) (14)

where,
F (V ) = p0Exp [p1V ] + p2Exp [p3V ] (15)

We use an exponential function to describe the EoS as it allows to reproduce very precisely high order
Birch-Murnhaghan EoS with four parameters (from 0 to 140 GPa, liquid SiO2 requires a 5th order BM).

FPMD calculations show a volume dependance of CV (see Figure 1). We choose,

CV = C0
V + C1

V V + C2
V T (16)

(C2
V seems absolutely useless, can’t remember why I have this guy) and Maxwell relations imposes,(

∂αKT

∂T

)
V

=
1

T

(
∂CV
∂V

)
T

=
C1
V

T
(17)

FPMD calculations also show a volume dependance of αKT (see Figure 1). We choose,

αKT = f1V
f2 + C1

V ln

[
T

T0

]
(18)

Note that the last term on the right-hand side of equation 18 is constrained by equation 16 through equation
17. By integrating equation 18, we can add the thermal pressure to the EoS (equation 14) using,(

∂P

∂T

)
V

= αKT . (19)

We get,

P (V, T ) = P (V0, T0) + F (V ) + (T − T0)f1V
f2 + C1

V

[
T ln

[
T

T0

]
− (T − T0)

]
(20)

From the definition of αKT and CV , we can build the entropy (equation 10),

S(V, T ) = S(V0, T0) +
(
C0
V + C1

V V
)

ln

[
T

T0

]
+ C2

V (T − T0) + C1
V (V − V0) ln

[
T

T0

]
(21)

The others thermodynamic potential (F , G, E...) can then be obtained by integration.
In Figure 1, we show our fits of the FMPD calculations of De Koker and Stixrude (2009) for the internal

energy, E(V, T ), the EoS, P (V, T ), the thermal capacity at constant volume, CV and αKT . The best fitting
thermodynamic parameters are shown in Table 2.
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Figure 1: We fit the FPMD calculations of De Koker and Stixrude (2009) with our Gibbs function. The best fitting parameters
can be found in Table 2.
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2.1.2. FeO liquide (home-made)

Taking into account the limited amount of observations available for the iron liquid oxyde end member,
we start from a simple Murnaghan expression Murnaghan (1951)

ρ0
ρ
≈ (1 + n

P

KT
0

)−
1
n (22)

as the density ρ is mostly a function of the pressure P . To account for the minor effect of temperature T ,
we choose a linear correction:

ρ0
ρ

= (1 + n
P

KT
0

)−
1
n +A(P )α0(T − T0) (23)

where A(P ) is a yet unknown function of P . We assume, as what is usually done with solid EOS Anderson
(1979) that (

∂P

∂T

)
ρ

= α0K
T
0

(
ρ

ρ0

)1−q

(24)

which using (23) constrains A and leads to the semi-empirical EOS

ρ0
ρ

= (1 + n
P

KT
0

)−
1
n + (1 + n

P

KT
0

)−
n+q
n α0(T − T0) (25)

The shape of this last equation is certainly arbitrary. However it is a simple, mathematically well behaved
equation, with a limited number of parameters, 5, a reference density ρ0, thermal expansion α0, compress-
ibility K0, and two exponents n and q.

From the Maxwell relation ∂(1/ρ)/∂T |P= −∂S/∂P |T , we can derive the pressure dependence of the
entropy according to (25) and we choose as a general entropy parametrization:

S =S0 + C0(T − T0) + C1 log
T

T0

+
α0K0

qρ0

(
1 + n

P

KT
0

)− q
n

(26)

Finally, we obtain an expression for the reference potential by using

dµ0 =
1

ρ
dP − SdT (27)

which is

µ0 = G0 − S0(T − T0)

− C1

(
T log

(
T

T0

)
− (T − T0)

)
− C0

2
(T − T0)

2

− α0K
T
0

ρ0q

(
1 + n

P

KT
0

)− q
n

(T − T0)

+
KT

0

ρ0(n− 1)

(
1 + n

P

KT
0

)1− 1
n

(28)
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MgO Liquid

T0 3000.0
V0 16.46
K0 34
K ′ 4.5
γ0 0.96
γ′ -0.37
Cv 56
S0 173.5
F0 -843.89

FeO Liquid

T0 2000
P0 20
ρ0 3.82641
K0 30.961
α0 -9.54849
q -0.97
n 3.26
S0 175.617
Cp,0 3.0 ×10−3

Cp,1 73.7532
G0 -1153.52

SiO2 Liquid

T0 4000
V0 27.4
p0 1447.2
p1 -0.24865
p2 10.27 × 106

p3 -1.1258
f1 7.45
f2 -2.701
S0 275
Cv,0 0.10451
Cv,1 0.1353 × 10−2

Cv,2 0.6 × 10−7

F0 -2030.3

Table 2: Thermodynamic parameters of the liquid end-members. The expression of the Helmotz Free Energy, F(V,T), is
derived in section 2.

Unit Mg-Perovskite Fe-Perovskite Periclase Wustite Sthishovite

T0 K 300.0 300.0 300.0 300.0 300.0
V0 10−6 m−3 / mol 24.45 25.49 11.24 12.256 14.02
K0 GPa 251 272 161 149 314
K ′ - 4.14 4.1 4.8 3.6 3.8
γ0 - 1.57 1.57 1.3 1.41 1.37
q - 1.1 1.1 1.7 0.5 2.8
θ0 - 905 871 767 417 1108
F0 kJ/mol -1408 -1048 -569 -165 -819

Table 3: Thermodynamic parameters of solids phases. The expression of the Helmotz Free Energy, F(V,T), is derived in section
1.
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