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Abstract—Estimating the affective state of a user during a
computer task traditionally relies on either subjective reports
or analysis of physiological signals, facial expressions, and other
measures. These methods have known limitations, can be in-
trusive and may require specialized equipment. An alternative
would be employing a ubiquitous device of everyday use such
as a standard keyboard. Here we investigate if we can infer the
emotional state of a user by analyzing their typing patterns. To
test this hypothesis, we asked 400 participants to caption a set of
emotionally charged images taken from a standard database with
known ratings of arousal and valence. We computed different
keystroke pattern dynamics, including keystroke duration (dwell
time) and latency (flight time). By computing the mean value
of all of these features for each image, we found a statistically
significant negative correlation between dwell times and valence,
and between flight times and arousal. These results highlight the
potential of using keystroke dynamics to estimate the affective
state of a user in a non-obtrusive way and without the need for
specialized devices.

Index Terms—Kkeystroke, keyboard, typing, arousal, valence,
affect

I. INTRODUCTION

Estimating the affective state of users while interacting
with computers attracted much interest in recent years due
to its potential for enhancing Human-Computer Interaction
(HCI). This has been the focus of the affective computing
field for the last few decades, with the expectation of having an
impact in many fields that depend —increasingly so— in HCI,
such as education, robotics, or human health, among others.
Furthermore, progress in affective computing could also help
to advance our knowledge of emotions and human cognition
[1].

Typical experimental approaches for inferring affective
states include subjective reports, in which users are repeatedly
asked to describe or rate how they are feeling, or estimates
from measures such as physiological responses, facial expres-
sions or body gestures. Subjective reports are a traditional
tool in a large portion of affective sciences. Multi-item scales
[2] or pictorial tools [3] can be easily administered both in
paper or digital formats. Meanwhile, estimations from bodily
responses or expressions require devices that have to be either
worn by the users or placed close to them. Examples of this
include inferring emotional states by detecting changes in
electrodermal activity (EDA) [4], [5] and heart rate variability
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(HRV) [6], [7]. Facial expression analysis typically requires a
classification between a set of discrete basic emotions [8].

These methods, although valid in assessing affective states,
present several issues. Subjective reports interrupt the regular
user’s workflow and present known limitations in terms of
validity and reliability [9], [10]. In the case of bodily re-
sponses, different devices are required to be working alongside
the computer, in many cases in direct physical contact with
the user (e.g., electrodes placed on the skin), which can be
intrusive to the user and expensive due to the economic cost
of these devices.

A way to overcome these problems would be using com-
ponents that are already available when interacting with a
computer. Devices that do not require any unusual or particular
action from the user, while still able to provide relevant
correlates of internal states. Several studies have previously
attempted to infer specific user’s traits by analyzing the way
a person types on a keyboard. The initial observation of
unique typing rhythms across individuals [11] promoted in
the last three decades great interest in the study of keystroke
dynamics, particularly in the field of user authentication [12].
Several studies have succeeded in authenticating users with
high accuracy based on a variety of classification algorithms
[13], [14], suggesting that the relevant component in typing is
not only the content typed but also how it is typed [15].

More recently, some studies have also provided evidence
of the possibility of using keystroke dynamics to estimate
emotional states [16]. In a recent field study, typing rhythms
were coupled with periodic self-reports to classify between a
series of discrete emotional states [17] with high accuracy.
In a different study, keystroke patterns were successfully
used to estimate the level of individual stress (induced by a
mental arithmetic test), as self-reported in a pre- and post-
questionnaire, as well as heart rate variability [18].

To the best of the authors’ knowledge, no previous study
has investigated the possibility of adopting keystroke dynamics
to discriminate the affective features of presented stimuli
that participants are describing. This would imply that the
emotional content of these stimuli is actively affecting the
participant’s way of typing in subtle ways that could be
detected through the analysis of their typing patterns. In this
study, we show that this is indeed a possibility. To do this,
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we asked 400 participants to caption a set of images rated
in terms of continuous values of arousal and valence, instead
of discrete emotions. The arousal and valence dimensions of
affect follow the circumplex model of affect [19], which is
generally used in experiments related to affect induction and
detection [20].

II. METHODS

We performed an online study where participants (N =
400) were asked to observe a series of 46 images and to type
a description for each one of them.

A. Participants

Participants were recruited using the Amazon Mechanical
Turk (MTurk) service. To guarantee high-quality responses,
we restricted participation to volunteers with at least 50 tasks
previously completed and an approval rate of over 90 % and
with a proficient level of English. No personal information
from the participants (such as names or IP addresses) was
recorded. As expected from this pool of participants, there was
considerable variability in demographic backgrounds, with a
mean age of 37.51 (SD = 12.17). 60.4 % of participants were
male. 47.11 % reported spending over 5 hours per day typing
on a keyboard, 38.35 % between 3 and 5 hours, and 14.54 %
fewer hours.

B. Experimental Protocol

Before starting the task, a page informed the participants
about the experimental protocol and their right to recess at
any moment. Subsequently, they were required to fill a set
of questions including demographics (age, gender, education
level, and primary language), keyboard experience (number of
hours per day spent typing) and keyboard layout used. After
this, the main task started.

The main task consisted of visualizing a sequence of 46
images and providing a description of each one. In each trial,
an image was presented for 2 seconds, and it was followed by
a text field in which the participants were instructed to type
a free description of the image seen using a minimum of 4
words.

The images were selected from the Open Affective Stan-
dardized Image Set (OASIS) [21], a set of 900 open-access
images available for online use with normative ratings of
arousal and valence. From the whole set, 46 images were
extracted to cover the entire range of arousal and valence
ratings. To select the images, we first binned the dataset into
a 7 by 7 matrix along the two dimensions of valence and
arousal (OASIS ratings are expressed using a 7-point Likert
scale), and we selected two images at random from the 23
bins which contained at least 2 images. Thus, 46 images were
finally selected (see Fig. 1 which were randomly presented to
every participant.

C. Data Collection and Processing

During the task session, all keyboard events performed on
the provided text field have been logged. Specifically, this
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Fig. 1. The selection process of the 46 images included in the experimental
dataset. Two images were extracted at random from each of the 23 non-
empty bins in which the 900 OASIS image set was previously divided [21].
This selection covers the entire range of arousal and valence. Dark circles
represent the selected images, while semitransparent ones represent the rest
of the images in the original set.
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Fig. 2. Visualization of keystrokes during an example image description. An
example of the graphical representation of one instance of flight time and
dwell time is provided in the annotations.

includes both key-down (or key-press) and key-up (or key-
release) events (see Fig. 2). For each event, three pieces of
information were stored: the type of event (key up or down),
the key that was pressed, and the timestamp (in milliseconds).
We also recorded the time in which each image and the text
field were presented to the participants, as well as when they
clicked to proceed to the next image. All these data were
collected in a file for each participant in JSON format. The
mean duration of the experiment was 14.52 minutes, and the
mean length of the image descriptions was 5.93 words.
After collection, data were inspected to ensure that there
were no instances of image descriptions that were copied
and pasted, missing data due to connectivity issues or other
problems that might affect the integrity of the acquired data.
To do this, we reconstructed each final image descriptions
provided by the participants from the individual keystroke
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events.

For each image description provided by the participants,
we derived a series of features. Two standard features in
keystroke dynamics are the duration and the latency [14], [15],
[17]. Keystroke duration (also known as dwell time) represents
the time that a single key was pressed in an instance (time
since key-down until key-up). Keystroke latency (or flight
time) represents the elapsed time between two sequential key
presses (time since key-up until next key-down). Additionally,
we computed the number of error corrections (presses of
the backspace key), the total time to write each description,
the time since the presentation of the text field until the
participants started typing, and the time since the participants
finished typing until they pressed the button to continue. See
Table I for a summary.

TABLE I
FEATURES EXTRACTED FROM PARTICIPANT’S BEHAVIOR WHILE TYPING
Feature Description
Dwell time Keystroke duration, time a key was pressed

Flight time
Backspace count

Keystroke latency, time between two key presses
Number of error corrections

Time total Time since text field was available until submission
Time start Time to start typing since text field appears
Time end Time since finishing typing until submission

For each of the derived features, we computed the Spear-
man’s rank correlation coefficient between each feature and
the reported arousal and valence ratings.

III. RESULTS

In order to assess how affective properties of perceived
content modulate typing behavior, we tested the interplay
between the previously described features (see Table I) and
the affective ratings of the stimuli as provided in the image
set.

We first asked how valence affects the typical typing be-
havior of individuals. To do so, we extracted each participant
average flight times and grouped participant’s scores per va-
lence binned category. Statistical testing revealed a significant
negative correlation between valence and typing flight times,
with shorter flight times consistently associated to high valence
ratings (Fig. 3, top-left, Spearman-test r = —1.0, p = 0.0).
A similar analysis was then performed for each participant
average of dwell times and again grouped the individuals’
scores per valence binned category. Statistical testing revealed
a significant interplay between valence and typing dwell times
(Fig. 3, top-middle, Spearman-test r = —1.0, p = 0.0).

Next, we examined whether the content arousal score would
reveal similar effects in the typing behavior of individuals.

As for valence analysis, we extracted each participant aver-
age flight times and grouped the individuals’ scores per arousal
binned category. Statistical testing revealed a significant inter-
play between arousal and typing flight times (Fig. 3, bottom-
left, Spearman-test r = —1.0, p = 0.0). Similarly, we analyzed
each participant average of dwell times and the individuals’
scores per arousal binned category. Statistical testing revealed
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Fig. 3. Correlation analysis of each of the extracted features with valence
and arousal considering bins of these affective ratings. The three features of
interest are shown. We can observe highly significant correlations between
both flight times and dwell times with both arousal and valence. Additionally,
there is an highly significant correlation between the time to start typing since
the text field was presented (Times start) and valence. There is no significant
correlation between the start time and arousal (r = —0.7, p = 0.188). Times
are expressed in milliseconds.

a significant interplay between arousal and typing dwell times
(Fig. 3, bottom-middle, Spearman-test » = —1.0, p = 0.0).

So far we have reported how affective features modulate
the typing behavior of individuals. However, in a natural
environment, the valence rate of a stimulus does affect how
quickly humans, and other animals, react to that same stimu-
lus. To test whether, in a goal-oriented typing task, the onset
of typing could be predicted by the affective content upon
which participants were reporting, we grouped the individuals
time to start typing scores accordingly to the stimuli affective
rate. We observed a significant negative correlation between
the onset of typing (initiation of behavior) and valence rate
(Fig. 3, top-right, Spearman-test » = —1.0, p = 0.0).

These metrics capture how much individuals modulate their
typing profile based on the perceived and reported content.
Next, we asked whether the content alone could generalize
the participants typing behavior. To do so, we extracted the
values of each feature individually for each image calculating
the participant’s population mean of the different features per
image. We found a significant correlation between dwell times
and valence (r = —0.293, p = 0.0479), as well as a highly
significant correlation between flight times and arousal (r =
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Fig. 4. Correlation analysis of the mean value of the extracted features
for each image with valence and arousal. Only the two features of interest
are shown. We can observe a significant correlation between dwell times
and valence, and between flight times and arousal. Times are expressed in
milliseconds.

—0.377, p = 0.009) (see Fig. 4). Therefore, suggesting an
overall modulating effect between content and typing behavior.

IV. DISCUSSION AND CONCLUSION

Being able to reliably estimate the affective state of a user
while interacting with a computing device would significantly
improve the interaction process, with machines that can be
more reactive and adaptive. Such capability could be beneficial
for diverse fields such as education, human-robot interaction,
digital health, and others [1].

However, typical approaches for inferring these emotional
traits rely on either subjective reports (e.g., [3]) or on the usage
of specialized equipment (e.g., [4]), which can be intrusive and
expensive. Therefore, a way to overcome these issues would
be to use an automatic approach that would take advantage
of a device that users would typically use, without interfering
with their behavior.

A possibility for this is to use keystroke dynamics computed
from the typing patterns of users on regular keyboards. Such
an approach has been explored mainly in the field of digital
authentication [15], and only recently it has been extended
to the field of affective computing with promising results.
However, current research within this field has relied still
on subjective reports to validate the estimations or classifies
emotional states within discrete states [17].

In this study, we analyzed the typing patterns of a large
sample of participants that were asked to describe a set
of images selected from the OASIS normative database for
affective research [21].

We processed the recorded data in order to extract a series of
keystroke features, including keystroke latency and duration,
and timings, for each participant and each image. Analyzing
the keystroke dynamics of the participants, we found highly
significant negative correlations of both flight times and dwell
times with both arousal and valence, as well as between time
to start and valence. We then checked for generalization on the
content itself, finding significant negative correlations between
dwell times and valence, and between flight times and arousal.

These results show that keystroke dynamics do indeed
correlate with both arousal and valence. Therefore, it could
be possible to infer affective states from keyboard activity.

Furthermore, we achieved these results by merely exposing
participants to emotionally charged images (for 2 seconds
each) and asking them to describe them, without using any
subjective report, thanks to the fact that the images were
already rated. Each participant rated only 46 images, which
shows that not a lot of typing information is required from an
individual user.

Although we have found significant results using a limited
amount of keystroke features, it is possible that we could
have obtained relevant results by using more sophisticated
features such as digraphs (combinations of two letters) or
trigraphs (combinations of three letters) [17], [22], or by using
a simultaneous combination of multiple features.

Our results highlight the potential for a more in-depth
analysis. This could include sentiment analysis on the de-
scriptions written by the participants, in order to test the
correlation between those results and both the affective ratings
provided in the image set and the keystroke features we
computed. Furthermore, machine learning techniques could be
employed to train a model capable of determining the affective
state during the typing of a sentence by using the described
keystroke features.

In conclusion, this study reveals the correlation between
keystroke dynamics and affective content by using descriptions
of images from a rated set. This showcases the potential of
using keyboard activity in order to infer affective states, either
in addition to other techniques (such as physiological signals)
or as a replacement when they are not possible, with the benefit
of being an unobtrusive and inexpensive method.
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