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Towards Data Markets in Renewable Energy
Forecasting

Carla Gonçalves, Pierre Pinson, Fellow, IEEE, and Ricardo J. Bessa, Senior Member, IEEE

Abstract—Geographically distributed wind turbines, photo-
voltaic panels and sensors (e.g., pyranometers) produce large
volumes of data that can be used to improve renewable energy
sources (RES) forecasting skill. However, data owners may be
unwilling to share their data, even if privacy is ensured, due
to a form of prisoner’s dilemma: all could benefit from data
sharing, but in practice no one is willing to do do. Our proposal
hence consists of a data marketplace, to incentivize collaboration
between different data owners through the monetization of data.
We adapt here an existing auction mechanism to the case of
RES forecasting data. It accommodates the temporal nature of
the data, i.e., lagged time-series act as covariates and models
are updated continuously using a sliding window. A test case
with wind energy data is presented to illustrate and assess the
effectiveness of such data markets. All agents (or data owners)
are shown to benefit in terms of higher revenue resulting from the
combination of electricity and data markets. The results support
the idea that data markets can be a viable solution to promote
data exchange between RES agents and contribute to reducing
system imbalance costs.

Index Terms—Collaborative forecasting, data marketplace,
data pricing, renewable energy, electricity market.

Notation Description
ρ Electricity profit function
πst Spot price
π↑t , π↓t Imbalance price for upward / downward regulation
λ↑t , λ↓t Regulation unit cost for upward / downward directions
C
↑/↓
t Imbalance cost

α∗t Nominal level which minimizes C↑/↓t

F̂−1
i,t (α∗t ) Forecasted conditional quantile for nominal level α∗t
ψ̂↑t , ψ̂↓t Forecasted upward / downward regulation price
p̂↑t , p̂↓t Probability of up/downward regulation at time t
N Number of RES power agents
A Overall set of power plants, A={1, . . . , N}
T Number of historical records
H Length of the time horizon
xi,t Power measurements for RES agent i at time t
q̂iα∗t Forecasted quantile α∗t for site i ∈ A at time t
β−− Linear quantile regression coefficients
xS
i (or xB

i ) Data from seller (or buyer) i
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XS Data from all sellers, XS=[xS
1, . . . , ,x

S
N ] ∈ RT×N

Mi Forecasting model for power production of agent i
Gi Gain function for buyer i
µi Private valuation for each unit gain
bi Public bid price (buyer i is willing to pay bi ≤ µi)
pi Data market price for buyer i
Ui Value (or utility) function for buyer i
PF Market price update function (price for the buyer)
RF Revenue function (price to be paid by buyers)
AF Allocation function (variables allocation given bi, pi)
PD Payment division function (division by sellers)
N (0, σ2) Normal distribution with σ standard deviation
SM Similarity function (similarity between two vectors)
pmin, pmax Minimum and maximum possible data market prices
∆p Increments on possible data market prices
Bp All possible market prices
ψi(m) Fraction of money paid by buyer i allocated to agent m
∆ Length of the period used to estimate the gain
K Number of repetitions in the Shapley Approximation

I. INTRODUCTION

ALARGE amount of data is being collected from geo-
graphically distributed renewable energy sources (RES)

such as wind turbines and photovoltaic (PV) panels. These
data include power generation and weather measurements like
air temperature, wind speed and direction, irradiation, etc.

Recent literature suggests that time-series data from spa-
tially distributed RES agents can improve forecasting skill
for different time horizons. For instance, a spatial grid of
numerical weather predictions (NWP) can improve days-ahead
forecasts [1]; turbine-level data can improve the day-ahead
forecasting skill of wind energy through density forecasts gen-
erated for all wind turbines with spatial dependency structure
modelled via copula theory [2]. Geographically distributed
time-series data can improve forecasting skill up to 6 hours-
ahead for wind [3] and solar energy [4]. In fact, hours-
ahead forecasts will become a crucial input for decision-aid
as intraday electricity markets (e.g., European cross-border
intraday – XBID) become increasingly important for RES
technology.

However, since RES agents are most likely competitors
in the same electricity market, they are unwilling to share
data, particularly power measurements, even if data privacy is
ensured. An effective way to encourage agents to share their
data is through monetary compensation [5], [6]. A “secondary”
market to trade data is necessary to monetize RES forecasting
data. Moreover, this data market should operate in a way that,
after some iterations, agents realize which data is relevant to
improve its gain, so that sellers are paid according to their
data. The buyers’ gain should be a function of the forecast
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accuracy and value in a specific use case, e.g. imbalance
costs reduction in electricity market bidding. It is important to
mention that a RES plant owner can buy, from a vendor, NWP
for neighbor power plants, but not their power measurements
(or forecasts) that contain relevant information to improve
hours-ahead forecasting skill. By joining a data market, the
data owner can also sell this additional data (e.g., NWP
for nearby sites) and decrease its purchasing cost. Moreover,
there are no guarantees that NWP for other locations are
cheaper than buying information from a data market where the
payment is a function of the forecasting skill improvement. In
fact, when buying NWP from vendors, there are no a priori
guarantees of improvement in the existing forecasting model.

A data auction mechanism is proposed in [7] where sellers
compute the privacy cost of selling the data and then send it
to a buyer that computes a utility score associated with the
data. Several iterations are performed until a Bayesian Nash
equilibrium is reached. A market mechanism is introduced
in [8] to solve a social welfare maximization problem that
defines the data allocation and corresponding price. In this
case, data are only shared after payment. However, in order to
compute data price, a utility function, which depends solely
on quantity (i.e., data quality is not considered), is assumed to
exist. This is not directly applicable to time-series forecasting
with RES spatial data where correlated data from neighbor
agents might be less informative than data from more distant
agents (or sites). Furthermore, in [9], the impact of a strong
correlation between data of different agents is analyzed as
a negative externality from data sharing, e.g., buying the
data from user A may reveal too much information about
user B and the market price tends to zero (i.e., no value
for data privacy). Different policies (e.g., “de-correlation”)
and regulatory schemes to data markets are proposed and
analyzed. In [10], evolutionary game theory is combined with
blockchain smart contracts to dynamically adjust incentives
and participation costs in data sharing. In the energy domain, a
market is proposed in [11] for smart meter data. The proposed
game theory mechanism works as follows: (i) the consumer
maximizes its reward from sharing consumption data; (ii)
data aggregator expects to receive more money from the data
analyst, rather than providing incentives to consumers; (iii)
data analyst is interested in high quality data at the lowest
possible cost. Also for smart meter data, a blockchain smart
contract is designed in [12] to define a set of rules for data
access control and reward against privacy risk. In both works,
the payment is directly related to the privacy loss and not
directly linked to the gain obtained from using this data in
a specific decision-making problem. The concept of pricing
data as a function of privacy loss is further discussed in [13],
where the impact of sellers’ risk attitude is analyzed.

Moreover, the temporal nature of RES forecasting also
needs to be considered. An auction mechanism for time-series
data is proposed in [14] where privacy is guaranteed with data
distortion by adding random noise, in a way that preserves
some time-series statistics and avoids the original series to
be recreated when sold incrementally. Buyers ask for specific
features together with the maximum noise they are willing
to tolerate. Based on the level of noise, the market operator

determines the privacy loss for selected data owners and sets
the market prices to compensate them for the privacy loss.
Buyer gain is not considered.

Since RES agents may be unwilling to share their data with
competitors and mask of sensible data through noise addition
involves a trade-off between privacy and accuracy [15], the
framework from [16] offers an appealing alternative based on
cooperative game theory. As far as we know, this is the first
work to consider a marketplace where data owners purchase
forecasts and pay according to resulting forecasting accuracy.
This avoids the confidentiality problem of sharing raw data
directly. Cooperation between sellers is done through a market
operator who receives all agents data and prepares forecasts:
(i) sellers with similar information receive similar revenue,
(ii) the market price is a function of the buyer’s benefit, and
so the buyer does not pay if there is no improvement in the
forecasting skill, (iii) buyers pay according to incremental
gain, and (iv) buyers purchase forecasts, instead of features,
and have no knowledge about which datasets were used to
produce these forecasts. Sellers’ loss is assumed to be zero.

Nevertheless, adaptions are necessary since time-series
models require temporal updates of the input variables. Thus,
the present paper presents the following original contributions:

i) The approach from [16] is extended for a sliding window
environment and the gain function is adapted for RES
forecasting and bidding in the electricity market.

ii) With geographically distributed time-series data, buyers
want to integrate private and local data into the market
operator’s forecasts in order to avoid paying for highly-
correlated data from close neighbors and this requirement
is covered in the proposed approach – the approach
in [16] does not consider RES agents with internal fore-
casting models and for which highly-correlated features
might provide no improvement.

iii) Agents trade between themselves, i.e. sellers are buyers
and buyers are sellers – sellers and buyers are independent
agents in [16], thus adaptions are required to ensure that
agents do not pay for their own or redundant data.

To the best of our knowledge, this is the first work to describe
an algorithmic solution for data markets that enable different
RES agents to sell data (historical power production, NWP,
etc.) and buy forecasts of their power production, and where
the economic value of this data is fundamentally related to
imbalance cost reduction in electricity markets.

The paper is organized as follows. Section II formalizes
the electricity market and forecasting framework. Section III
proposes a data market for RES forecasting. Then, three test
cases are considered in Section IV, two with synthetic data and
another with Nordpool wind energy data. The work concludes
in Section V.

II. ELECTRICITY MARKET AND FORECAST FRAMEWORK

RES market agents aim to minimize imbalance costs (i.e.,
maximize electricity market profit) by improving forecasting
skill. This section presents the market profit function and the
formulation of the forecasting problem.
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A. Electricity Market Profit Function

In a typical electricity market with dual price imbalance
settlement [17], the profit function of a RES market agent,
with power measurement xt and forecast x̂t, is determined
for each time step t as

ρ(x̂t, xt) = πstxt − C
↑/↓
t , (1)

where

C
↑/↓
t =

{
λ↑(x̂t − xt), x̂t > xt

−λ↓(x̂t − xt), x̂t < xt,
(2)

λ↑t = max(0, π↑t − πst ), (3)

λ↓t = max(0, πst − π
↓
t ), (4)

with πst , π↑t and π↓t denoting the spot price, imbalance price for
upward and downward regulation, respectively; λ↑t and λ↓t give
the regulation unit cost for upward and downward directions.

For simplicity, generation costs are not considered in the
profit function ρ. Furthermore, by calculating the derivative of
the expected regulation cost with respect to the bid [17], it
is possible to conclude that forecasts that maximize the profit
in (1) do not correspond to the expected value of xt, instead,
they correspond to the quantile of the following nominal level,

α∗t =
λ̂↓t

λ̂↑t + λ̂↓t
, (5)

where λ̂↑t , λ̂
↓
t are deterministic forecasts for λ↑t , λ

↓
t .

This means that the optimal bid (i.e., the one that mini-
mizes the expected imbalance costs in (2)) for a RES agent
i=1, . . . , N is given by F̂−1

i,t (α∗t ) [17], where F̂−1
i,t is the

inverse of the forecasted cumulative distribution function or, in
other words, corresponds to the forecasted conditional quantile
for nominal level α∗t . These analytical formulas for optimal
bidding can be generalized for other situations, such as and
joint offer of energy and reserve capacity [18].

In order to compute the “optimal” quantile from (5), a
forecast of the regulation unit costs is required. Since we do
not aim to propose a new forecasting model for imbalance
prices, the Holt-Winters model described in [19] was used in
this work. The upward regulation unit cost is estimated as the
product between the forecasted upward regulation price (ψ̂↑t )
and the probability of the system to be in upward regulation
direction (p̂↑t ), i.e.

λ̂↑t = ψ̂↑t p̂
↑
t . (6)

Similarly,

λ̂↓t = ψ̂↓t p̂
↓
t , (7)

where p̂↓t = 1 − p̂↑t since we only care about relative proba-
bilities for upward and downward regulation. The regulation
prices are forecasted by

ψ̂it|t−1=

{
ηψ̂it−1|t−2+(1−η)(λit−1−ψ̂it−1|t−2), |λit−1|>0

λ̂it−1|t−2, |λit−1|=0,

(8)

for i ∈ {↑, ↓}, and the probability of system regulation
direction by

p̂↑t|t−1=

{
ηp̂↑t−1|t−2+(1−η)(p↑t−1−p̂

↑
t−1|t−2), p↑t−1 6=0.5

p̂↑t−1|t−2, p↑t−1=0.5,

(9)

where η ∈ [0, 1[ is a smoothing factor, and

p↑t−1=


1, λ↑t−1 > λ↓t−1

0.5, λ↑t−1 = λ↓t−1

0, λ↑t−1 < λ↓t−1.

(10)

Initialization of p↑0, λ↑0 and λ↓0 is required, and η is estimated
by minimizing the mean of squared residuals.

Given the forecasted values for regulation unit costs, the last
step is to forecast the quantile with nominal level α∗t using
linear quantile regression as described in the next subsection.
Note that here we are assuming a price-taker RES agent for
the regulation market.

B. Formulation of the RES Forecasting Problem

In this work, we formulate a very short-term forecasting
problem (up to 6h-ahead) involving multiple RES power
plants. The forecasting model only uses recent measurements
at all sites of interest, but longer time horizons with extra
variables, such as grid of NWP [1] and turbine-level data [2],
may also be considered using the same framework.

Assume that RES power plants generation data are collected
at N sites, and xi,t denotes the power measurement at site i
and time t, i ∈ A, t = 1, . . . , T , where T is the number of time
steps in the dataset and A={1, . . . , N} is the overall set of
power plants. We consider that these agents operate a single
power plant, but the case where agents operate a portfolio
of RES power plants may also be elaborated using the same
framework.

The linear quantile regression model is a standard and
straightforward method of conditional quantile estimation [20].
For very short-term forecasts, satisfactory results may be
obtained by using the L most recent observations, as shown
in [4] and [3] for both solar and wind energy.

In this case, the quantile α∗t+h of power xi,t+h in site i ∈ A
is expressed as

q̂iα∗t+h
=β

(α∗t+h)

0,i +

L∑
`=1

( ∑
j∈A\{i}

β̂
(α∗t+h)

j,i,` xj,t−`︸ ︷︷ ︸
data from the market

+ β̂
(α∗t+h)

i,i,` xi,t−`︸ ︷︷ ︸
own data

)
,

(11)

where h ≤ 6 is the forecasting horizon, β(α∗t )
0,i , β(α∗t )

j,i,` and

β
(α∗t )
i,i,` are the unknown coefficients, estimated through the

minimization of the pinball loss function [20].

III. DATA MARKET FOR RES FORECASTING

This section proposes a no-regret auction mechanism for
trading RES forecasts, as illustrated in Fig. 1. The buyers
should never buy data because its value is unknown before
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Sellers

RES1...

RESN

Buyers

RES1...

RESN

Market
Operator

data {x1,t}Tt=1

payment

features

bid (and{x1,t}
T
t=1

)

Fig. 1. Proposed data market framework.

using it for a forecasting task. Instead, they should purchase
forecasts of their power production and pay according to the
obtained forecasting accuracy. The data market formulation is
inspired by the cooperative game in [16] and described in the
following subsection in order to be self-content.

In addition to large RES power plants, this data market is
also open to prosumers. Interestingly, data traders can also be
interpreted as data prosumers, i.e. data owners that consume
and supply data.

A. Data Market Agents

Like any standard market, the data market has three types of
agents described in this subsection: sellers, buyers and market
operator.

1) Sellers: A seller i observes and sells sample
xS
i={xi,t}Tt=1, xS

i ∈ RT , i=1, . . . , N . Additionally, sellers
have no idea of the forecasting methods that will use their
data and simply aim to maximize their revenue. The set of fea-
tures provided by all sellers is denoted by XS=[xS

1, . . . ,x
S
N ],

XS ∈ RT×N .
2) Buyers: A buyer i observes and seeks to improve

sample xB
i = {xi,t}Tt=1, i = 1, . . . , N , and enters the

data market to purchase the collection of features that al-
low a certain gain when forecasting {xi,t}T+H

t=T+1, through
a selected method (statistical model) Mi, H ≥ 1. Buyers
naturally have a local forecasting model Mi(x

B
i ), and en-

ter the market to improve it with more features from the
other agents, XS

¬i, where XS
¬i=[xS

1, . . . ,x
S
i−1,x

S
i+1, . . . ,x

S
N ],

XS
¬i ∈ RT×(N−1). Therefore, the gain of power agent i at

time t = T+1, . . . , T+H is measured by its marginal profit,

Gi(xi,t; XS,Mi) =
(
ρ(x̂market

i,t , xi,t)− ρ(x̂local
i,t , xi,t)

)+

, (12)

where (x)+= max(0, x), x̂local
i,t =Mi(x

B(ts)
i ; xB(tr)

i ) is the fore-
cast using only data from buyer i and x̂market

i,t =Mi(X
S(ts);

XS(tr)) is the forecast obtained by combining local data and
data from other agents — xB(tr)

i ,XS(tr) are the sets used to train
the models, while xB(ts)

i ,XS(ts) are the sets used to forecast
{x̂i,t}T+H

t=T+1. By simplicity, the same model M and gain
function G are used for all the buyers, but conceptually buyers
may provide their own Mi and Gi to the market operator.

The last two parameters from buyers are the private valua-
tion of gain µi ∈ R+, i.e., a trade-off value that means how
much buyer i is willing to pay for a unit increase in gain, and
the public bid price bi ≤ µi, bi ∈ R+. Note that buyers enter
the market to buy forecasts {x̂i,t}T+H

t=T+1, without knowing
which data were used to produce the forecasts, H ≥ 1.

Market Operator
S1 Fixes pi
S2 Bids bi
S3 Available data allocation:

X̃=AF(pi, bi;X
S)

S4 Computes payment ri
S5 Divides payment ri

among sellers

Buyer i

{xi,t}Tt=1
Mi,Gi,bi

ri

{x̂i,t}T+H
t=T+1

RES1

RES2

. . .

RESN

{x1,t}Tt=1

{x2,t}Tt=1

{xN,t}Tt=1

ψi(1)

ψi(2)

ψi(N)

Fig. 2. Data market mechanism at time t = T .

3) Market Operator: The role of the market operator in-
cludes feature allocation (Section III-C1), market price defini-
tion (Sections III-C2 and III-C4), revenue extraction from the
buyers (Section III-C2) and corresponding distribution to the
sellers (Section III-C3).

It is important to underline that only the market operator has
access to input data (power measurements, NWP, etc.) and is
responsible for fitting the quantile regression model described
in Section II-B. Sellers only have access to their own time-
series and buyers only have access to power forecasts produced
for their power plants. Therefore, data privacy is guaranteed,
assuming that the market operator is a trustworthy and neutral
agent. Note that the data market framework can be applied to
any forecasting methodology and the use of quantile regression
is not a fundamental requirement.

B. Data Market Mechanism

At time t = T , RES agents provide their historical data to
the market operator. Then, agent i aims to forecast the power
for the next H time steps, {x̂i,t}T+H

t=T+1, and the following
steps occur in sequence (illustrated in Fig. 2):
S1 The marketplace sets a market price pi ∈ R+ for a unit

increase in gain when forecasting {x̂i,t}T+H
t=T+1, following

the market solution (i.e., bid and market price, forecasting
accuracy) for the previous buyer i−1,

pi = PF(bi−1, pi−1; Θi−1), (13)

where PF is the market price update function, and
Θi−1 = (Mi−1,Gi−1,X

S,xB
i−1) – market operator de-

cides pi before buyer i arrives and according to the
previous prices, otherwise truthfulness is not ensured.

S2 Buyer i bids bi, which maximizes its value function,

bi= argmin
z∈R+

µi
∑
t Gi(xi,t; Θi)−RF(pi, z; Θi)︸ ︷︷ ︸

Ui(z,{xi,t}T+H
t=T+1) = value function

, (14)

and is related to the difference between the value derived
from the gain in forecasting accuracy and the data market
price, t = T +1, . . . , T +H . RF is the revenue function.

S3 The marketplace allocates available features according to
the market price and bid price,

X̃ = AF(pi, bi; X
S), (15)

with AF representing the allocation function.
S4 The marketplace extracts revenue ri from buyer i,

ri = RF(pi, bi; Θi). (16)
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S5 Market divides ri among the N−1 sellers using

ψi(m) = PD(xB
i , X̃,K;Mi,Gi), (17)

where PD is the payment division function, m ∈ A\{i}.
S6 Buyer i receives {x̂i,t}T+H

t=T+1 and leaves the market.
S7 If a new time step occurred, sellers update their data and

send it to the market operator.

C. Market Configuration
Certain properties must be met in order to produce a

fair auction mechanism when defining PF , AF , RF and
PD, from (13) to (17). First, the auction mechanism needs
to encourage buyers to declare their true valuation for an
increase in forecasting skill. This is achieved through the
allocation and revenue functions. From the other side, the
market operator needs to incentivize sellers to participate in
the market, meaning that the revenue division function should
ensure three properties:

i) money paid by the buyer is totally divided by the sellers;
ii) sellers with similar information receive the same amount

of money;
iii) irrelevant information receives zero payment.

1) Allocation Function: The allocation function
AF(pi, bi; X

S) defines the information that marketplace
should use when forecasting the time-series of buyer i. The
proposed mechanism assumes that all available features are
used to train and evaluate the forecasting model. However, in
order to ensure that the allocated features are a function of
the difference between the bid price and the market price, the
model is fitted (and the gain is estimated) using a perturbed
version of competitors’ data. More specifically, the allocated
features are obtained by

x̃j,t =

{
xj,t + max(0, pi − bi)N (0, σ2), j 6= i

xj,t, j = i.
(18)

where N (0, σ2) is a univariate Gaussian distribution.
2) Revenue Function: The revenue function RF(pi, bi; Θi)

is computed by the market operator based on its model
estimation for each buyer i. The market price is based on the
gain to buyer i, which is unknown for the future but can be
estimated through holdout cross-validation. While forecasting
{xi,t}T+H

t=T+1, the marketplace splits XS into training, valida-
tion and testing data, XS(tr) is used to estimate the model,
XS(val) is used to estimate the gain and XS(ts) to forecast
{xi,t}T+H

t=T+1. XS(val) corresponds to the set used to forecast
the last ∆ values {xi,t}T−∆+1

t=T , and XS(tr) to the sample used
to forecast the remaining T−∆ observations {xi,t}T−∆

t=1 , as
illustrated in Fig. 3, ∆ ≥ 1. Moreover, as previously men-
tioned, the data market should price the forecasts according
to the marginal gain accrued to its buyers. Fig. 4 illustrates
the difference between paying by the gain and paying by the
marginal gain as defined by the Myerson’s payment function
rule [21]

RF(pi, bi; Θi) = biGi(xB(val)
i ;AF(pi, bi; X

S),Mi)

−
∫ bi

0

Gi(xB(val)
i ;AF(z, bi; X

S),Mi)dz,

(19)

t∗t∗−∆

Training period Validation period
(gain estimation)

Test period
(forecast)

Fig. 3. Timeline for current time t∗.

0 b′i b′′i . . . bi pi

Gi(b′i)
Gi(b′′i )

Gi(bi) Gi

(a) Based on gain (Gi)

0 b′i b′′i . . . bi pi

Gi(b′i)
Gi(b′′i )

Gi(bi) Gi

(b) Based on marginal gain (RF )

Fig. 4. Difference between paying by the gain and paying by the marginal
gain (market price = shadow area, x axis = bid price, y axis = gain).

which is adopted in this paper — if bid prices b′i and b′′i , with
b′′i > b′i, might produce similar gain, Gi(b′i) ≈ Gi(b′′i ), then
a RES agent is incentivized to bid b′′i anyway since it would
only pay b′i according to the marginal gain rule.

A revenue close to zero means that the buyer is purchas-
ing low-quality forecasts, particularly when bid and market
prices are high and an higher revenue from data sharing was
expected.

3) Payment Division Function: The payment division func-
tion PD(xB(val)

i ,AF(pi, bi; X
S),K;Mi,Gi) divides the value

ri paid by buyer i among the N − 1 sellers. Ideally, the
relevance of each feature would be estimated by training the
statistical model Mi with all possible feature combinations.
This method is known as Shapley Allocation [22] and ensures
the three properties listed at the beginning of this section.
However, when a large number of sellers is considered, this
strategy may be computationally infeasible.

To overcome this challenge, the Shapley Approximation
method uses a smaller number of possible feature combina-
tions [23]. Given a random permutation σ of all features’
indices {1, . . . , N}, from an universe σ, two models are
trained using the features given by σi < m and σi ≤ m. The
importance of a feature m is given by the difference in gains
between these two models. The process is repeated K times
and averaged out. Theoretically, the Shapley approximation
ψ̂i(m) achieves ‖ψshapley

i (m)− ψ̂i(m)‖ < ε, with probability
1−ζ if K > [N log(2/ζ)]/(2ε)2. Since the models are trained
multiple times for different agents, the choice of the model
Mi clearly affects the computational efficiency of the payment
division function.

Furthermore, a post-processing step is applied to make the
algorithm more robust to data replication. Consider a data
market with three sellers, S1, S2 and S3, such that S1 and
S2 have uncorrelated and equally relevant data for buyer i,
while S3 is irrelevant, i.e ψi(1)=ψi(2)=0.5 and ψi(3)=0.
If S1 replicate its data once and sell again in the market-
place, the proportion of received payment will be ψi(1)=2/3,
ψi(2)=1/3. Since sellers provide a unique time-series, they
cannot replicate data; yet, they can collude with other agents
and negotiate a portion of the extra revenue. If S1 and S3

collude, then ψi(1)=ψi(2)=ψi(3)=1/3.
In order to avoid data replication, the weight ψi(m) of each
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seller m is penalized if its data are similar to others in the
market. This penalty is related to the cosine similarity, which
measures the similarity between two vectors x1,x2 ∈ RT as

SM(x1,x2) =
|〈x1,x2〉|
‖x1‖‖x2‖

,x1,x2 ∈ RT , (20)

where |〈.〉| and ‖.‖ denote the absolute value of the dot product
and the Euclidean norm, respectively.

Algorithm 1 illustrates the algorithm to determine the pro-
portion that a seller should receive from the buyer’s payment.
Regarding the example with three sellers, if S1 replicates data
then the Shapley allocation using Algorithm 1 (with λ=1)
decreases to 1/(2 + e2) < 1/2.

Algorithm 1 Payment division algorithm (PD).

1: Input: xS
i , X̃ = AF(pi, bi; X

S), Mi, Gi, K
2: Output: ψi = [ψi(m) : m ∈ A\{i}]
3: for m ∈ A\{i} do
4: for k ∈ {1, . . . ,K} do
5: σk ← Uniform(σ)

# Train models with “tr” data and forecast with “val” data
6: G = Gi(xS(val)

i ; X̃[σk<m],Mi)

7: G+m = Gi(xS(val)
i ; X̃[σk<m]∪m,Mi)

8: ψ̂ki (m) = (G+m −G)+

9: end for
10: ψ̂i(m) = 1

K

∑K
k=1 ψ̂

k
i (m)

11: end for
12: ψ′i(m) = ψ̂i(m) exp(−λ

∑
j∈A\{i,m} SM(xS

m,x
S
j))

13: ψi(m) = ψ′i(m)/
∑
m∈A\{i} ψ

′
i(m)

4) Market Price Update Function: The function
PF(bi−1, pi−1; Θi−1) computes the market price of the
data for buyer i based on the gain from the other agents.
We assume a set of possible market prices Bp, which ranges
from a minimum value pmin and a maximum value pmax,
with increment ∆p. When the data market initializes, the
market price is uniformly sampled from Bp. Then, the
market operator uses the forecasting accuracy from the first
agent and estimates the revenue for each possible market
price. The probabilities are updated and used to generate
the market price when a new buyer arrives, iteratively,
ensuring the truthfulness of the data market. Algorithm 2
proposes an online balance for the trade-off between large
and small market prices. Considering a bid price bi, if pi is
too large then the positive term in RF will be small (as the
deterioration of XS is very high) leading to lower revenue.
Similarly, if pi is too small, the negative term in RF will be
large, which again leads to an undesired loss in revenue.

D. Available Platforms for Implementation

This marketplace can be implemented in readily available
platforms and protocols, reviewed below, which enable data
transaction, verification and payment capabilities.

Ocean Protocol is an ecosystem for data trading, built on top
of blockchain technology, where Oceans Tokens are used as
the unit of exchange for buying or selling data services [24].
Enigma provides a protocol for secret contracts, which are

Algorithm 2 Market price update algorithm (PF).
1: Input: bi−1, pi−1, pmin, pmax, ∆p, Θi=(Mi,Gi,XS,xB

i )
2: Output: pi
3: Bp ← [pmin, pmin + ∆p, pmin + 2∆p, . . . , pmax]

# Initialize the weights for each possible market price
4: wj1 ← 1,∀j = 1, . . . , |Bp|

# When a buyer enters the market, the market price is
determined and the weights are updated for the next buyer

5: for i = 1, . . . , |A| do
6: pi ← Bp(j) with probability wji /

∑|Bp|
j=1 w

j
i

7: for j = 1, . . . , |Bp| do
8: gji ← RF(Bp(j), bi; Θi) # revenue for the j-th price
9: wji+1 ← wji (1 + δgji ) # update weights

10: end for
11: end for

similar to smart contracts but bring privacy by offloading the
computation over sensitive data to an external network where
it may be broken into different nodes and apply cryptographic
techniques [25]. SingularityNET is a decentralized platform
for trading Artificial Intelligence (AI) services, including data,
through the native platform’s cryptocurrency [26]. Numerai is
an AI platform that aims at bringing together the best experts
in data science for making forecasts for a common dataset and
those who perform well are reward with some Numeraires (i.e.,
cryptocurrency token) and those who did not perform well will
lose the Numeraires staked [27].

The majority of these platforms lack from an advanced
model for data trading and, therefore, a synergy between the
market mechanism described in this work and blockchain-
powered platforms (e.g, tokens, protocols and smart contracts)
can be established for a real-world implementation of this
concept.

IV. CASE STUDIES

In this section, three different case studies are constructed
to evaluate the proposed no-regret auction mechanism: (i) syn-
thetic data with 3 agents aiming to verify, with a simple setup,
how the data market operates; (ii) synthetic data with 50
agents, aiming to evaluate the effect of different covariance
matrices in the data market (iii) wind power data publicly
available from the Nord Pool electricity market.

A. Synthetic Data: Simple Setup with 3 Agents

1) Data Description and Experiments: Three agents are
assumed. Let xi,t denote the observations from agent i at time
t, and xt=[x1,t, x2,t, x3,t], where i=1, . . . , 3 and t=1, . . . , T .
The synthetic data are generated from the VAR model,

xt =

0.5 0.7 −0.1
0 0.7 0.1
0 0 0.8

xt−1+εt, (21)

where εt =
[
ε1,t ε2,t ε3,t

]
are the error terms, εi,t ∼ N (0, 1).

As experiments, hour-ahead forecasts are validated using
an out-of-sample fold with 150 consecutive time steps. The
market operator uses a sliding window with the 8760 most
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Fig. 5. Market dynamics for experiment E1 (bid price is constant and equal to 5e).
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Fig. 6. Market dynamics for agent 1 in experiments E2 and E3.

recent observations divided in 8592 for model fitting and 168
to estimate the improvement in gain.

For the data market simulation, a linear regression is used
as the model Mi, ∀i ∈ {1, 2, 3}, with covariates provided
by the 1h-lagged time-series. The gain function Gi is the
improvement over the model estimated by using only its own
(lagged) time-series, in terms of normalized root mean squared
error (NRMSE) measured for each agent i as

NRMSE =

√∑T
t=1(x̂i,t−xi,t)2

T

max({xi,t}Tt=1)−min({xi,t}Tt=1)
× 100. (22)

The market operator sets a market price between 0.50e
and 10e, with 0.50e increment, for each 1% improvement in
NRMSE when forecasting one time-step ahead. The auction
mechanism is simulated through the following experiments,
which assume that the buyers have the following bid prices
(both market and bid prices are expressed in e per 1%
improvement in NRMSE):
E1 A fixed bid price of 5e; i.e., each agent values a marginal

improvement of 1% in NRMSE as 5e.
E2 Agents bid fixed values of 3e, 5e and 7e, respectively.
E3 Agents bid fixed values of 7e, 5e and 3e, respectively.
E4 Agents bid price according to the NRMSE of their local

model. Agents with a poor local model are more prone to
improve 1% in NRMSE. The functional relation between
the bid price and local model NRMSE is expressed as

b(NRMSE) =
10

1 + exp(−0.3× NRMSE + 5)
. (23)

The NRMSE for the local model is estimated using the
∆ most recent observations.

2) Results and Discussion: Fig. 5 depicts market dynamics
when buyers always bid price 5e. At the end of 100 iterations,
the market price tends to the bid’s price values. As expected,
when the market price is below or equal to the bid price,
the gain corresponds to the gain using the real model. On the
other hand, when the market price is higher than the bid price,
the gain is reduced as a consequence of the noise addition

into the covariates from the other agents. Furthermore, in all
experiments, agent 1 has the highest benefit when using data
from the market, which was expected by (21).

Additionally, since the gain for agents 2 and 3 is small, their
payment is also small even when the market is not adding
noise to the covariates. The payment from agent 1 is divided
by agents 2 and 3 through a mean percentage of 97.6% and
2.4%, respectively, which is coherent with the fair distribution.
When some gain is estimated for agent 2, agent 3 receives
100% of the value paid. Even though agent 3 does not benefit
in terms of forecast accuracy improvement, it receives money
from agents 1 and 2 who are not aware that agent 3 is selling
data in the market.

Fig. 6 depicts data market dynamics for agent 1, at experi-
ments E2 and E3. Since the gain to agents 2 and 3 is small,
the market price is influenced by the bid price of agent 1, and
the former conclusions stand. Furthermore, when the agent
with the highest gain bids closer to the initial market price,
the market price converges faster.

The market price and revenue dynamics for E4 (not depicted
in Fig. 6) are similar to the ones from E2, where agent 1 bids
at a price higher than agents 2 and 3. Since the NRMSE for
the local forecasting model is stationary for all agents (with
values around 9.8%, 7.7% and 5.8%, respectively), the agents
bid prices around 1.2e, 0.65e and 0.37e per 1% improvement
in NRMSE, respectively. The market price converges to 1e per
1% improvement in NRMSE.

B. Synthetic Data: 50 Agents

1) Data Description and Experiments: Let
xt=[x1,t, . . . , x50,t]. The synthetic data for the 50 agents are
generated from the VAR model

xt = Bxt−1+εt, (24)

where B is the coefficient matrix, B ∈ R50×50, and
εt= [ε1,t . . . ε50,t] is the error vector, εi,t ∼ N (0, 1),∀i. Two
datasets (D1 and D2) are generated to evaluate the effect of
different covariance matrices in the proposed approach.

D1 assumes a sparse B matrix where: Agents 1, 2, 12, 16,
21 and 43 should benefit with forecasts from the data market;
agents 2, 3, 11, 12, 36 and 44 should receive payment from the
data market. D2 assumes a B matrix such that a large number
of time-series is highly-correlated.

As in Subsection IV-A1, hour-ahead forecasts are validated
using an out-of-sample fold with 150 consecutive time steps.
The market operator uses a sliding window with the 8760
most recent observations divided in 8592 for model fitting
and 168 to estimate the improvement in gain. Mi is a linear
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TABLE I
CUMULATIVE GAINS WITH D1 BY AGENT (e).

1 2 3 11 12 16 21 36 43 44 Others
Payment 589.3 30.0 0.0 0.1 88.2 58.4 22.7 0.0 101.4 0.0 [0,2[
Revenue* 0.6 570.8 26.6 98.7 48.9 2.3 0.3 19.1 0.5 90.0 [0,2[
Tot. Gain** 519.2 595.1 26.6 98.7 176.3 123.4 17.6 19.1 110.8 90.0 [0,4[
* Revenue = data market revenue (i.e. value received by selling data)
** Tot. Gain = data market revenue + revenue with purchased forecasts - value paid
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Fig. 7. Covariance and correlation for data D2 and gain after 150 time steps.

regression with covariates given by the 1h-lagged time-series,
and Gi is the improvement over the model estimated by
using only its own (lagged) time-series, in terms of NRMSE.
The market operator sets a market price between 0.50e and
10e, with 0.50e increment, and each agent values a marginal
improvement of 1% in NRMSE as 5e.

2) Results and Discussion: Table I summarizes the results
for D1, at the end of 150 time steps. Sellers with data that
improve the forecasts of other agents get higher revenue from
the data market, when compared to the others. Conversely,
agents that buy forecasts with higher accuracy pay higher
values, but are compensated by the gain associated with the
imbalance costs reduction. For instance, agent 1 pays 589.3e
but the extra gain from using these forecasts, instead of those
obtained by its internal (or local) model, is 1107.9e.

Fig. 7 summarizes the covariance and correlation matrices
for D2, as well as the total gain (boxplot) for the 50 agents.
There is a large number of correlated time-series. But once
again, agents gain money by improving their forecasting
accuracy or by selling their data to others. The lowest total
gain is 333.4e and more than 30 agents receive at least 1000e.

C. Nord Pool Data

1) Data Description and Experiments: Nord Pool runs the
largest market for electrical energy in Europe, operating in
several northern Europe countries. For illustrative purposes, we
use the historical wind power values, spot price and imbalance
prices for upward and downward regulation, available in the
Nord Pool website1, from 6 regions: 4 in Sweden (SE1, SE2,
SE3, SE4) and 2 in Denmark (DK1 and DK2). In this test case,
each region is assumed to represent an electricity market agent.
The dataset ranges between 1st January 2016 and 12th October
2017 with hourly resolution. Fig. 8 provides a geographical
representation of these regions as well as the wind roses for
the wind direction observed in Copenhagen and Malmo during
this period2.

1https://www.nordpoolgroup.com/ (accessed on June 2020)
2https://www.weatheronline.co.uk (accessed on June 2020)
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Fig. 8. Nord Pool regions in Denmark (DK) and Sweden (SE), as well as
the wind roses for the wind direction observed in Copenhagen and Malmo.

The agents are assumed to maximize their electricity
market’s revenue trough forecasting the optimal quantile
α∗t=

λ̂↓t
λ̂↓t +λ̂↑t

, as in Section II-A. Lags 1, 2 and 3 are used
as covariates in the QR model provided by (11), motivated
by preliminary cross-correlation analysis of the time-series.
The gain is computed by the improvement in the electricity
market revenue, as defined in (12), which measures how much
money an agent earns on the electricity market when using the
forecast provided by the data market instead of the forecasts
obtained through the use of local data (and model).

As in the previous case-study, hour-ahead power forecasts
are generated and validated in the same way. The parameter
η, used for forecasting upward and downward regulation unit
costs, is estimated (i.e., select the value with minimum mean
square error) by dividing the first one-year data in 9 months for
training the Holt-Winters model and the remaining 3 months
for computing the corresponding mean squared error, for η ∈
{0.9, 0.95, 0.99, 0.999}.

In this test case, the market operator is assumed to set a
market price between 5% and 70% of the gain, with 5% incre-
ments, i.e. for each 1e increase in electricity market revenue,
the market operator may define a market price between 0.05e
and 0.70e. On the other hand, the bid price is 50% for all
buyers, i.e. the buyers are willing to pay a maximum of 0.50e
for each 1e increase in electricity market revenue.

2) Results and Discussion: For each time step, the gain
in electricity market revenue is computed as the difference
between the revenue obtained when using forecasts from the
data market and the revenue obtained by using a local fore-
casting model built without neighbor time-series. Fig. 9 depicts
the cumulative revenue gain from the electricity market, i.e.
the extra revenue obtained by using the forecast provided
by the data market. Furthermore, the same plot shows the
cumulative revenue from the data market, i.e. how much each
agent receives by sharing data with the market operator, and,
finally, the cumulative payment that each agent pays to the
data market in order to buy forecasts. Table II supports the
graphical analysis by presenting the cumulative gains and total
revenue at the end of the testing period (approx. 10 months).

An agent participating in the data market may increase its
revenue either by receiving more money from the electricity
market (i.e., minimizing imbalance costs) or by receiving
money from the data market (i.e., selling data to competitors).
The fundamental goal of the data market is to have a total rev-
enue (i.e. sum of revenues obtained in the data and electricity
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Fig. 9. Cumulative values for electricity market revenue (over a quantile regression using only local data), data market revenue and payment.

TABLE II
CUMULATIVE GAINS (e) AT THE END OF TESTING PERIOD.

(1ST JANUARY 2017 TO 12TH OCTOBER 2017)

SE1 SE2 SE3 SE4 DK1 DK2
Electricity Market 5303 1907 13668 27393 15609 48883
Paid value 783 2233 1042 2501 2271 1798
Data Market 3030 1758 2048 1429 4471 2292
Total revenue 7550 1432 14674 26321 17809 49377

TABLE III
PAYMENT DIVISION BY THE COMPETITORS (IN %).

SE1 SE2 SE3 SE4 DK1 DK2
SE1 — 29.11 10.70 20.86 35.69 3.64
SE2 19.45 — 12.52 24.51 29.79 13.73
SE3 10.21 25.96 — 15.33 39.80 8.70
SE4 10.62 27.01 9.54 — 42.55 10.28
DK1 1.52 9.60 10.73 28.78 — 49.38
DK2 2.01 9.42 5.13 20.50 62.94 —

market minus the payment to the data market) higher than the
revenue obtained in the electricity market without third-party
data or data monetization.

Agent DK2 benefits the most from the data market, followed
by agent SE4. These benefits are mainly due to the increase
in the revenue from the electricity market, i.e. from the
improvement of the forecasting models. This is explained by
the fact that wind comes predominately from the West (as
depicted in Fig. 8), and their forecast models are improved by
the time-series from agent DK1 (located to the East).

On the other hand, the agent DK1 receives a higher reward
for sharing its data with the market operator, which is also
coherent with predominant wind direction. Southwest loca-
tions will be more relevant to improve forecasting models.
Consequently, northwestern regions tend to benefit most from
using forecasts with information from the other agents. The
sudden decrease in accumulated gains (e.g., for agent DK1)
occur due to extremely high values for regulation unit costs.
For agent DK1, the high losses are associated with a upward
regulation unit costs higher than 200e/MWh (when the values
in 99% of the historical period are smaller than 30e/MWh).

Finally, Table III summarizes how the value paid by each
agent is divided by the other agents (data sellers). By con-
struction, the proportion that a data seller receives is related
to the relevance (i.e., explanatory power) of its time-series
when forecasting the RES generation of a buyer. Agent DK1
receives a higher reward for sharing its data, which is due
to its geographical location. Following the same reasoning, it
would be expected that SE1 received a smaller proportion of

money from all the competitors.
In order to assess the added value of a quantile regression

with varying nominal proportions over time (αt) instead of a
constant value α, the mean values for λ↑ and λ↓ are computed
for the testing period and the related nominal proportion is
estimated. The value for the nominal proportion is 0.60. The
results show that the revenue from the electricity market for
agents SE1, SE2, SE3, SE4, DK1 and DK2 increases, respec-
tively, 176,298e, 517,218e, 437,747e, 293,813e, 887,684e
and 344,883e when using αt instead of α.

V. CONCLUSIONS

Data sharing between different owners has a high potential
to improve RES forecasting skill in different time horizons
(e.g., hours-ahead, day-ahead) and consequently the revenue
from electricity market players. However, economic incen-
tives, trough data monetization, are fundamental to implement
collaborative forecasting schemes since RES agents can be
competitors, and therefore unwilling to share their confidential
data without benefits. This work was inspired by [16] and
adapted for RES forecasting. The gain function of buyers was
adapted for RES agents, which have a local model with their
own variables and enter the market to improve it with more
information. Furthermore, an evaluation was performed using
three case studies.

Synthetic data was used in a controlled case study where it
was possible to confirm: (i) the correct allocation of revenue
across sellers by the market operator, and (ii) the buyers who
did not benefit from the forecasts of others did not pay for
such forecasts. Data from the Nord Pool market was used
to evaluate the potential of a data market for RES agents,
and it was concluded that: (i) all agents benefit (from the
economic point of view) from the data market, (ii) agents
that first observe wind-flow (or wind generation) in one
location, e.g. at timestep t−1, provide relevant information
to improve the forecasting model (e.g., for t+1) of neighbor
agents in other locations, conditioned by wind direction, and
then all agents benefit by the higher revenue accrued either
from the data market or the better forecast in the electricity
market. In summary, data markets can be a solution to foster
data exchange between RES agents and contribute to reduce
imbalance costs.

In this work, linear quantile regression and the Holt-Winters
statistical models were used for the power and imbalance
prices forecasts respectively. However, the choice of these
models, considering aspects such as time horizon, non-linear
relation between power and NWP, etc., must be carefully
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considered to deliver maximum gains in the electricity and data
markets. For instance, the market operator can use a statistical
model tailored to each RES agent, as long as the forecasting
skill is maximized since it impacts the financial incentives to
share data.

In future work, the loss of RES agents when sharing
their data should be considered when defining the data price.
Evidently, a seller sharing data with its competitors expects
a compensation for the potential impact on its business.
Furthermore, some improvements are required when using a
sliding-window approach. The current version of the algorithm
works by adding noise to the covariates, which means that,
for each new time step, the market operator needs to perform
a batch train that can result in a high computational effort
as more and more agents enter the market. Ideally, the noise
should be introduced in the output of the model, allowing the
market operator to update the model weights through online
learning whenever the variables in the data market remain the
same. The privacy of the data is another issue to address, since
in our simulations the agents share the data with the market
operator, which may represent an obstacle for some agents.
Finally, another topic for future work is to develop peer-to-peer
data trading schemes (i.e., without a central node as market
operator) for prosumers in local energy communities, in such
a way that data sellers can set their own data price.
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