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Summer Arctic sea ice has been declining by about 14% per decade since 1979

(Stroeve et al. 2012)

All seasons show a decline even though it is less pronounced in winter



Arctic sea ice In climate projections
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Polar amplification in climate model projections

Temperature change in CMIP5 models : difference between end of 21st and 20th century
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- Arctic amplification is a robust feature of climate model projections. But what are its main
drivers? How is it linked to changes in midlatitude weather and climate ?

Need to better understand the influence of sea ice decline on atmospheric circulation. Large
body of literature (see reviews by Cohen et al., Walsh et al. 2014, Barnes et al. 2015, Screen

et al. 2018) but still many uncertainties and controversy.

- The climate response to sea-ice loss may partly counteract other aspects of the response to

increased greenhouse gases.



Proposed mechanism on the influence of sea ice

decline on midlatitude weather and climate
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-+ Atmospheric response to sea ice decline not robust across models :NAM-, NAM+, other ?
(e.g. Peings et al. 2014, Screen et al. 2014, Deser et al. 2015, Blackport and Kushner
2016)

- Need to better understand the influence of sea ice decline on atmospheric circulation.



Objective : Characterize the mid-latitude atmospheric response to an
abrupt sea ice decline in the CNRM-CM6-1 model

1. Description of the model experiments
2. Results/proposed mechanisms

3. Conclusions



Model experiments
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Albedo coupled experiments simulating a complete melt
in summer (PRIMAVERA project)

¢ Sea ice albedo reduced to ocean value (0.07)
¢ Initial state: 1950-control CNRM-CM6-1
¢ 40 members starting January 1. Run for 24 months.

=> Sea ice perturbation reflecting sea ice loss comparable
to end of century projections




Sea ice response
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- Summer (JAS): complete sea ice loss

« Winter (JFM): SIC almost recovered but SIV loss persists

Focus on the atmospheric response (PERT - CTL) in autumn (OND) and winter (JFM)
following the summer sea ice loss



Sea ice response

Sea ice concentration response (% CTL)
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Near surface response

Surface air temperature response
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- Strong polar amplification. Largest warming in fall (November). Maximum +22 °C in

Central Arctic in OND.

- Significant temperature response over land: Large-scale warming over the NH in

summer and autumn, cooling over Western Europe and Eurasia in winter consistent

with Honda et al. (2009), Mori et al. (2014, 2019)



Vertical structure of the temperature response

Zonal mean temperature response
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Warming in the lower troposphere in response to sea ice changes, cooling in the
stratosphere
=> Arctic amplification

Cooling in the stratosphere

Weak but significant warming in the upper troposphere in the tropics due to coupling?
(Deser et al. 2015)



Pressure response

Intensification of the Aleutian
Low /Siberian High and
weakening of the Iceland
Low in winter, consistent
with other coupled model
studies (Screen et al. 2018)

Baroclinic response in
autumn, barotropic in winter.
Change of sign in the upper
stratosphere in the Arctic but
not significant.

The response does not
project on the NAM

Elevated height not
restricted to the Arctic (effect
of coupling)
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Vertical structure of the response: zonal circulation
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- Narrowing of the subtropical jet in autumn / equatorward shift in winter => consistent with
Peings et al. (2014), Deser et al. (2015), Sun et al. (2015), Oudar et al. (2017), Blackport
and Kushner (2016,2017), ...\Weakening of the midlatitude westerlies only in JFM

- Weakening of the lower part of the polar vortex, strengthening of the core. Not significant.



Troposphere/stratosphere interactions

Evolution of the polar cap (60°N-90°N) geopotential height response
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Upward/downward propagation of planetary scale waves between the troposphere and the

stratosphere in response to Arctic warming (consistent with the divergence of Eliassen-
Palm fluxes)

Chripko et al. in prep



Influence of sea ice l0ss on winter cooling
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Chripko et al. in prep

Minimum temperatures are cooler over Eastern US, Western Europe and Eurasia
Forced by Barents-Kara Sea as in Sun et al. (2015) and Screen et al. (2017)?

Regional experiments will be analyzed to see the respective influence of Atlantic
vs. Pacific forcing.
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Conclusions

CNRM-CM®6-1 simulate a significant atmospheric response to the idealized Arctic sea ice
decline associated to an increase of albedo and complete summer melt.

The warming is largest in the Arctic but the circulation changes extend to the whole
Northern Hemisphere and beyond and include
- a narrowing of the subtropical jet in late fall/ a southward shift in winter
- a weakening of the near surface westerlies in winter
Increased geopotential height up to the stratosphere over the polar cap and the tropics
- Changes in temperature extremes with enhanced cooling over Eurasia / Western
Europe/ N-America in winter. Due mainly to changes in circulation (not shown)

- The atmospheric response involves planetary-scale wave propagation between the

troposphere and the stratosphere with a peak of upward propagation in December and a
downward propagation in January/February consistent with the weaker midlatitude
westerlies in winter.

Similar response in CNRM-CM®6-1-HR (not shown) except in the stratosphere

Abrupt experiments correspond to end of century sea ice forcing. Comparison with PAMIP
experiments on-going to see how the response differs from that to a more moderate sea
ice melt (2°C warming).



