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—— Abstract

Given a polynomial P(x1,x2,...,Z») which is the sum of terms, where each term is a product
of two distinct variables, then the problem APSS consists in calculating the total sum value of
ZVUi P(u1,ug,...,un), for all the possible assignments U; = {u1, us2, ...un } to the variables such that
u; € {0,1}. APSS is the abbreviation for the problem name Algebraic Polynomial Sum Solver Over
{0,1}. We show that APSS is in #L and therefore, it is in F'P as well. The functional polynomial
time solution was implemented with Scala in https://github.com/frankvegadelgado/sat using
the DIMACS format for the formulas in MONOTONE-2SAT.
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1 Introduction

1.1 Polynomial time verifiers

Let ¥ be a finite alphabet with at least two elements, and let 3* be the set of finite strings
over ¥ [2]. A Turing machine M has an associated input alphabet ¥ [2]. For each string w
in ¥* there is a computation associated with M on input w [2]. We say that M accepts w if
this computation terminates in the accepting state, that is M (w) = “yes” [2]. Note that M
fails to accept w either if this computation ends in the rejecting state, that is M (w) = “no”,
or if the computation fails to terminate, or the computation ends in the halting state with
some output, that is M(w) =y (when M outputs the string y on the input w) [2].

The language accepted by a Turing machine M, denoted L(M ), has an associated alphabet
Y. and is defined by:

L(M)={we X" : M(w) =“yes”}.

Moreover, L(M) is decided by M, when w ¢ L(M) if and only if M(w) = “no” [4]. We
denote by ta(w) the number of steps in the computation of M on input w [2]. For n € N
we denote by Ths(n) the worst case run time of M; that is:

Tr(n) = max{ty(w) :we X"}

where X" is the set of all strings over X of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, Ths(n) < n* + k [2]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [4]. A verifier for a language L; is a deterministic Turing
machine M, where:

Ly ={w: M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the symbol ¢, to verify that a string w is a member of L;. This information
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is called certificate. NP is also the complexity class of languages defined by polynomial time
verifiers [7].

A decision problem in NP can be restated in this way: There is a string ¢ with M (w, c¢) =
“yes” if and only if w € Ly, where L is defined by the polynomial time verifier M [7]. The
function problem associated with L1, denoted F'Lq, is the following computational problem:
Given w, find a string ¢ such that M (w,c) = “yes” if such string exists; if no such string
exists, then reject, that is, return “no” [7]. The complexity class of all function problems
associated with languages in NP is called FNP [7]. FP is the complexity class that contains
those problems in FN P which can be solved in polynomial time [7].

To attack the P versus N P question the concept of NP-completeness has been very useful
[6]. A principal NP-complete problem is SAT [6]. An instance of SAT is a Boolean formula
¢ which is composed of:

1. Boolean variables: x1,Za, ..., ZTy;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such
as A(AND), V(OR), —(NOT), = (implication), < (if and only if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢.
On the one hand, a satisfying truth assignment is a truth assignment that causes ¢ to be
evaluated as true. On the other hand, a truth assignment that causes ¢ to be evaluated
as false is a unsatisfying truth assignment. A Boolean formula with some satisfying truth
assignment is satisfiable and without any satisfying truth assignment is unsatisfiable. The
problem SAT asks whether a given Boolean formula is satisfiable [6].

An important complexity is Sharp-P (denoted as #P) [9]. We can also define the class
#P using polynomial time verifiers. Let {0, 1}* be the infinite set of binary strings, a function
f:{0,1}* — N is in #P if there exists a polynomial time verifier M such that for every
x € {0,1}*,

fl@) =y M(z,y) = “yes”}|

where |- --| denotes the cardinality set function [2]. We could use the parsimonious reduction
for the completeness of this class [2]. In computational complexity theory, a parsimonious
reduction is a transformation from one problem to another that preserves the number of
solutions [2].

1.2 Logarithmic space verifiers

A logarithmic space Turing machine has a read-only input tape, a write-only output tape,
and read/write work tapes [8]. The work tapes may contain at most O(logn) symbols [8]. In
computational complexity theory, L is the complexity class containing those decision problems
that can be decided by a deterministic logarithmic space Turing machine [7]. NL is the
complexity class containing the decision problems that can be decided by a nondeterministic
logarithmic space Turing machine [7].

We can give a certificate-based definition for NL [2]. The certificate-based definition of
N L assumes that a logarithmic space Turing machine has another separated read-only tape
[2]. On each step of the machine, the machine’s head on that tape can either stay in place or
move to the right [2]. In particular, it cannot reread any bit to the left of where the head
currently is [2]. For that reason, this kind of special tape is called “read-once” [2].
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A language L; is in NL if there exists a deterministic logarithmic space Turing machine
M with an additional special read-once input tape polynomial p : N — N such that for every
x e {0,1}*:

ze Ly e Jue{0,1}P such that M(x,u) = “yes”

where by M (x,u) we denote the computation of M where x is placed on its input tape, and
the certificate u is placed on its special read-once tape, and M uses at most O(log[z]) space
on its read/write work tapes for every input z, where [...] is the bit-length function [2]. M
is called a logarithmic space verifier [2].

An interesting complexity class is Sharp-L (denoted as #L). #L has the same relation to
L as #P does to P [1]. We can define the class #L using logarithmic space verifiers as well.

Let {0,1}* be the infinite set of binary strings, a function f : {0,1}* — N is in #L if
there exists a logarithmic space verifier M such that for every z € {0,1}*,

f(@) = {u: M(z,u) = “yes"}|

where |- - - | denotes the cardinality set function [1]. We could use the parsimonious reduction
for the completeness of this class too [2].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [8]. The work tapes must contain at most
O(logn) symbols [8]. A logarithmic space transducer M computes a function f: X* — X%,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [8]. We call f a logarithmic space computable function [8]. We say that
a language L; C {0, 1}* is logarithmic space reducible to a language Lo C {0, 1}*, written
Ly <; Lo, if there exists a logarithmic space computable function f : {0,1}* — {0,1}* such
that for all z € {0,1}*:

x € Ly if and only if f(x) € Lo.

For example, this kind of reduction is used for the completeness in the N L.

A literal in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean
formula is in conjunctive normal form, or C N F, if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [4]. A Boolean formula is in 2-conjunctive normal
form or 2CNF, if each clause has exactly two distinct literals [7]. A relevant NL-complete
language is 2C N F satisfiability, or 2SAT [7]. In 25 AT, it is asked whether a given Boolean
formula ¢ in 2CNF is satisfiable. The instances of MONOTONE-2S5AT does not contain
any negated variable.

1.3 A polynomial time problem

Let’s define the following problem

» Definition 1. # Algebraic Polynomial Sum Solver Over {0, 1}(APSS)
INSTANCE: A polynomial P(xy1,x2,...,x,) which is the sum of terms, where each term
s a product of two distinct variables.
ANSWER: Calculate the total sum value of Y . P(u1,ug, ..., uy), for all the possible
assignments U; = {u1,us, ...un} to the variables such that u; € {0,1}.

Let’s see an example:
Instance: P(x1,22,23) = 1 X T2 + Ta X T3.
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Table 1 Evaluation for all possible assignments

z1 | 22 | 3 | P(z1,22,23)
1 1 1 2
1 1 0 1
0 1 1 1
0 0 0 0
1 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0

Answer: The total sum value is 4 for all the possible assignments:

Total :2+1+14+0+0+0+0+0=4 (see it in Table 1).

We solve this problem reducing in logarithmic space and parsimoniously to another prob-
lem #CLAUSES-2UNSAT. We show an algorithm for the problem # CLAUSES-2UNSAT
which is in #L and therefore, it is in F'P as well. In this way, we prove that APSS can be
solved in polynomial time.

2 Results

» Definition 2. Given a Boolean formula ¢ with m clauses, the density of states n(E) for
some integer 0 < E < m counts the number of truth assignments that leave exactly E clauses
unsatisfied in ¢ [5]. The weighted density of states m(E) is equal to E X n(E). The sum of
the weighted densities of states of a Boolean formula in 2CNF with m clauses is equal to

Y=o m(E).
Let’s consider a function problem:

» Definition 3. # CLAUSES-2UNSAT

INSTANCE: Two natural numbers n, m, and a Boolean formula ¢ in 2CNF of n variables
and m clauses. The clauses are represented by an array C, such that C represents a set of
m set elements, where C[i] = S; if and only if S; is exactly the set of literals into a clause ¢;
in ¢ for 1 <i < m. Besides, each variable in ¢ is represented by a unique integer between 1
and n. In addition, a negative or positive integer represents a negated or non-negated literal,
respectively. This is similar to the format [DIMACS](http: // www. satcompetition. org/
2009/ format-benchmarks2009. html ) for the formulas where the literals are represented
by negative or nonnegative integers.

ANSWER: The sum of the weighted densities of states of the Boolean formula ¢.

» Theorem 4. #CLAUSES-2UNSAT € #L.

Proof. We are going to show there is a nondeterministic Turing machine M such that M
runs in logarithmic space in the length of (n,m,C). We use the nondeterministic logarithmic
space Algorithm 1, where this routine generates a truth assignment in logarithmic space just
selecting a negation or a positive representation of a variable 1 < ¢ < n, since every variable
is represented by an integer between 1 and n in C. We also assume the value of each literal
selected within y is false over the generated truth assignment.

First of all, the Algorithm 1 select the index in C' of a clause from the value of the variable
k. Later, we increment the variable count as much as the literal y appears in the clause C[k].
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ALGORITHM 1: ALGO

Data: (n,m,C) where (n,m,C) is an instance of #CLAUSES-2UNSAT
Result: Accept whether there is an unsatisfied clause for a generated truth assignment

// Generate nondeterministically an arbitrary integer between 1 and m
k <— random(1,m);

// Initialize the variable count

count <— 0;

for

end

i< 1lton+1do
if i=n+1 then

if count = 2 then
// The clause C[k] is unsatisfied for the generated truth assignment
return “yes”;
end
else
// The clause C[k] is satisfied for the generated truth assignment
return “no”;
end
end
else
// Generate nondeterministically either the integer ¢ or —¢
y <— random(i);
for j + 1 to m do
if y € C[j] A j =k then
// Increment the value of the variable count
count <— count + 1;
end
end
end
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Since a clause contains only two literals, then if we finish the iteration of the possible values
in the generated truth assignment, then we can say the clause indexed with the number £ in
C is unsatisfied when count = 2.

Furthermore, we can make this Algorithm 1 in logarithmic space, because the variables
that we could use for the iteration of the variables and elements in C' have a logarithmic
space in relation to the length of the instance (n,m,C). Besides, the Algorithm 1 is
nondeterministic, since we generate in a nondeterministic way the values of the variables
k and y. In addition, every generated truth assignment is always stored in logarithmic
space in relation to the instance (n,m,C), since we only focus in a single literal of the truth
assignment from the for loop each time.

For every unsatisfying truth assignment represented by a generated truth assignment, then
there will be always as many acceptance paths as unsatisfied clauses have the evaluation of that
truth assignment in the formula ¢. Consequently, we demonstrate that #CLAUSES-2UNSAT
belongs to the complexity class #L. Certainly, the number of all accepting paths in the
Algorithm 1 is exactly the sum of the number of unsatisfied clauses from all the truth
assignments in ¢, that is exactly the sum of the weighted densities of states of the Boolean
formula ¢. In conclusion, we show that # CLAUSES-2UNSAT is indeed in #L. |

Let’s consider an interesting reduction:

» Theorem 5. APSS <; #CLAUSES-2UNSAT, where this logarithm space reduction is a

parsimonious reduction.

Proof. We solve this problem reducing in logarithmic space the polynomial P(z1,x2,...,Zy)
into a MONOTONE-25AT formula ¢ such that for each term x; X x;, we make a clause
(x; V x;) and join all the summands by a disjunction with the A(AND) operator. Let’s take
as example the previous instance P(x1,Z2,23) = o1 X T2 + 2 X 3 of APSS which could
be reduced to ¢ = (21 V 22) A (22 V 23) (the sum of the weighted densities of states for the
Boolean formula ¢ is 4). This is equivalent to

p cnf 3 2

120

230

in the format DIMACS. Certainly, we can affirm the value of a term x; x x; is equal to
1 when (z; V x;) is unsatisfied. Consequently, the sum of the weighted densities of states
of the Boolean formula ¢ will be equal to the answer of the instance for APSS, that is a
parsimonious reduction. Indeed, every unsatisfying truth assignment T; = {t1, s, ...t,} in
¢ with K unsatisfied clauses corresponds to an assignment U; = {uy, ug, ...u, } such that
P(uy,ug,...,u,) = K, where for each j we have “u; =— t;” (which actually means u; =1
if and only if ¢; is false). <

» Theorem 6. APSS € #L and therefore, APSS € FP.

Proof. We know #1L is closed under a logarithm space reduction when this one is also a
parsimonious reduction. Furthermore, we know that #L is contained in the class F'P [1], [3],
[2]. <

2.1 Code

This project was implemented on February 8th of 2021 in a GitHub Repository [10]. This
was a partial implementation since this project receives as input the already reduced
MONOTONE-25AT formulas in the format DIMACS instead of instances from APSS.
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