
Algebraic Polynomial Sum Solver Over {0, 1}
Frank Vega
CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
vega.frank@gmail.com

Abstract
Given a polynomial P (x1, x2, . . . , xn) which is the sum of terms, where each term is a product
of two distinct variables, then the problem AP SS consists in calculating the total sum value of∑

∀Ui
P (u1, u2, . . . , un), for all the possible assignments Ui = {u1, u2, ...un} to the variables such that

uj ∈ {0, 1}. AP SS is the abbreviation for the problem name Algebraic Polynomial Sum Solver Over
{0, 1}. We show that AP SS is in #L and therefore, it is in F P as well. The functional polynomial
time solution was implemented with Scala in https://github.com/frankvegadelgado/sat using
the DIMACS format for the formulas in MONOTONE-2SAT.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, polynomial time, reduction, logarithmic space

1 Introduction

1.1 Polynomial time verifiers
Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string w
in Σ∗ there is a computation associated with M on input w [2]. We say that M accepts w if
this computation terminates in the accepting state, that is M(w) = “yes” [2]. Note that M
fails to accept w either if this computation ends in the rejecting state, that is M(w) = “no”,
or if the computation fails to terminate, or the computation ends in the halting state with
some output, that is M(w) = y (when M outputs the string y on the input w) [2].

The language accepted by a Turing machineM , denoted L(M), has an associated alphabet
Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [4]. We
denote by tM (w) the number of steps in the computation of M on input w [2]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [2]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [4]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com
https://github.com/frankvegadelgado/sat

2 APSS is in P

is called certificate. NP is also the complexity class of languages defined by polynomial time
verifiers [7].

A decision problem in NP can be restated in this way: There is a string c with M(w, c) =
“yes” if and only if w ∈ L1, where L1 is defined by the polynomial time verifier M [7]. The
function problem associated with L1, denoted FL1, is the following computational problem:
Given w, find a string c such that M(w, c) = “yes” if such string exists; if no such string
exists, then reject, that is, return “no” [7]. The complexity class of all function problems
associated with languages in NP is called FNP [7]. FP is the complexity class that contains
those problems in FNP which can be solved in polynomial time [7].

To attack the P versus NP question the concept of NP-completeness has been very useful
[6]. A principal NP-complete problem is SAT [6]. An instance of SAT is a Boolean formula
φ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ.
On the one hand, a satisfying truth assignment is a truth assignment that causes φ to be
evaluated as true. On the other hand, a truth assignment that causes φ to be evaluated
as false is a unsatisfying truth assignment. A Boolean formula with some satisfying truth
assignment is satisfiable and without any satisfying truth assignment is unsatisfiable. The
problem SAT asks whether a given Boolean formula is satisfiable [6].

An important complexity is Sharp-P (denoted as #P) [9]. We can also define the class
#P using polynomial time verifiers. Let {0, 1}∗ be the infinite set of binary strings, a function
f : {0, 1}∗ → N is in #P if there exists a polynomial time verifier M such that for every
x ∈ {0, 1}∗,

f(x) = |{y : M(x, y) = “yes”}|

where | · · · | denotes the cardinality set function [2]. We could use the parsimonious reduction
for the completeness of this class [2]. In computational complexity theory, a parsimonious
reduction is a transformation from one problem to another that preserves the number of
solutions [2].

1.2 Logarithmic space verifiers
A logarithmic space Turing machine has a read-only input tape, a write-only output tape,
and read/write work tapes [8]. The work tapes may contain at most O(logn) symbols [8]. In
computational complexity theory, L is the complexity class containing those decision problems
that can be decided by a deterministic logarithmic space Turing machine [7]. NL is the
complexity class containing the decision problems that can be decided by a nondeterministic
logarithmic space Turing machine [7].

We can give a certificate-based definition for NL [2]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[2]. On each step of the machine, the machine’s head on that tape can either stay in place or
move to the right [2]. In particular, it cannot reread any bit to the left of where the head
currently is [2]. For that reason, this kind of special tape is called “read-once” [2].

F. Vega 3

A language L1 is in NL if there exists a deterministic logarithmic space Turing machine
M with an additional special read-once input tape polynomial p : N→ N such that for every
x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃ u ∈ {0, 1}p([x]) such that M(x, u) = “yes”

where by M(x, u) we denote the computation of M where x is placed on its input tape, and
the certificate u is placed on its special read-once tape, and M uses at most O(log[x]) space
on its read/write work tapes for every input x, where [. . .] is the bit-length function [2]. M
is called a logarithmic space verifier [2].

An interesting complexity class is Sharp-L (denoted as #L). #L has the same relation to
L as #P does to P [1]. We can define the class #L using logarithmic space verifiers as well.

Let {0, 1}∗ be the infinite set of binary strings, a function f : {0, 1}∗ → N is in #L if
there exists a logarithmic space verifier M such that for every x ∈ {0, 1}∗,

f(x) = |{u : M(x, u) = “yes”}|

where | · · · | denotes the cardinality set function [1]. We could use the parsimonious reduction
for the completeness of this class too [2].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [8]. The work tapes must contain at most
O(logn) symbols [8]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [8]. We call f a logarithmic space computable function [8]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

For example, this kind of reduction is used for the completeness in the NL.
A literal in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean

formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [4]. A Boolean formula is in 2-conjunctive normal
form or 2CNF , if each clause has exactly two distinct literals [7]. A relevant NL-complete
language is 2CNF satisfiability, or 2SAT [7]. In 2SAT , it is asked whether a given Boolean
formula φ in 2CNF is satisfiable. The instances of MONOTONE-2SAT does not contain
any negated variable.

1.3 A polynomial time problem
Let’s define the following problem

I Definition 1. #Algebraic Polynomial Sum Solver Over {0, 1}(APSS)
INSTANCE: A polynomial P (x1, x2, . . . , xn) which is the sum of terms, where each term

is a product of two distinct variables.
ANSWER: Calculate the total sum value of

∑
∀Ui

P (u1, u2, . . . , un), for all the possible
assignments Ui = {u1, u2, ...un} to the variables such that uj ∈ {0, 1}.

Let’s see an example:
Instance: P (x1, x2, x3) = x1 × x2 + x2 × x3.

4 APSS is in P

Table 1 Evaluation for all possible assignments

x1 x2 x3 P (x1, x2, x3)
1 1 1 2
1 1 0 1
0 1 1 1
0 0 0 0
1 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0

Answer: The total sum value is 4 for all the possible assignments:
Total : 2 + 1 + 1 + 0 + 0 + 0 + 0 + 0 = 4 (see it in Table 1).
We solve this problem reducing in logarithmic space and parsimoniously to another prob-

lem #CLAUSES-2UNSAT. We show an algorithm for the problem #CLAUSES-2UNSAT
which is in #L and therefore, it is in FP as well. In this way, we prove that APSS can be
solved in polynomial time.

2 Results

I Definition 2. Given a Boolean formula φ with m clauses, the density of states n(E) for
some integer 0 ≤ E ≤ m counts the number of truth assignments that leave exactly E clauses
unsatisfied in φ [5]. The weighted density of states m(E) is equal to E × n(E). The sum of
the weighted densities of states of a Boolean formula in 2CNF with m clauses is equal to∑m

E=0 m(E).

Let’s consider a function problem:

I Definition 3. #CLAUSES-2UNSAT
INSTANCE: Two natural numbers n, m, and a Boolean formula φ in 2CNF of n variables

and m clauses. The clauses are represented by an array C, such that C represents a set of
m set elements, where C[i] = Si if and only if Si is exactly the set of literals into a clause ci

in φ for 1 ≤ i ≤ m. Besides, each variable in φ is represented by a unique integer between 1
and n. In addition, a negative or positive integer represents a negated or non-negated literal,
respectively. This is similar to the format [DIMACS](http: // www. satcompetition. org/
2009/ format-benchmarks2009. html) for the formulas where the literals are represented
by negative or nonnegative integers.

ANSWER: The sum of the weighted densities of states of the Boolean formula φ.

I Theorem 4. #CLAUSES-2UNSAT ∈ #L.

Proof. We are going to show there is a nondeterministic Turing machine M such that M
runs in logarithmic space in the length of (n,m,C). We use the nondeterministic logarithmic
space Algorithm 1, where this routine generates a truth assignment in logarithmic space just
selecting a negation or a positive representation of a variable 1 ≤ i ≤ n, since every variable
is represented by an integer between 1 and n in C. We also assume the value of each literal
selected within y is false over the generated truth assignment.

First of all, the Algorithm 1 select the index in C of a clause from the value of the variable
k. Later, we increment the variable count as much as the literal y appears in the clause C[k].

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html

F. Vega 5

ALGORITHM 1: ALGO
Data: (n, m, C) where (n, m, C) is an instance of #CLAUSES-2UNSAT
Result: Accept whether there is an unsatisfied clause for a generated truth assignment
// Generate nondeterministically an arbitrary integer between 1 and m

k ←− random(1, m);
// Initialize the variable count

count←− 0;
for i← 1 to n + 1 do

if i = n + 1 then
if count = 2 then

// The clause C[k] is unsatisfied for the generated truth assignment
return “yes”;

end
else

// The clause C[k] is satisfied for the generated truth assignment
return “no”;

end
end
else

// Generate nondeterministically either the integer i or −i

y ←− random(i);
for j ← 1 to m do

if y ∈ C[j] ∧ j = k then
// Increment the value of the variable count

count←− count + 1;
end

end
end

end

6 APSS is in P

Since a clause contains only two literals, then if we finish the iteration of the possible values
in the generated truth assignment, then we can say the clause indexed with the number k in
C is unsatisfied when count = 2.

Furthermore, we can make this Algorithm 1 in logarithmic space, because the variables
that we could use for the iteration of the variables and elements in C have a logarithmic
space in relation to the length of the instance (n,m,C). Besides, the Algorithm 1 is
nondeterministic, since we generate in a nondeterministic way the values of the variables
k and y. In addition, every generated truth assignment is always stored in logarithmic
space in relation to the instance (n,m,C), since we only focus in a single literal of the truth
assignment from the for loop each time.

For every unsatisfying truth assignment represented by a generated truth assignment, then
there will be always as many acceptance paths as unsatisfied clauses have the evaluation of that
truth assignment in the formula φ. Consequently, we demonstrate that #CLAUSES-2UNSAT
belongs to the complexity class #L. Certainly, the number of all accepting paths in the
Algorithm 1 is exactly the sum of the number of unsatisfied clauses from all the truth
assignments in φ, that is exactly the sum of the weighted densities of states of the Boolean
formula φ. In conclusion, we show that #CLAUSES-2UNSAT is indeed in #L. J

Let’s consider an interesting reduction:

I Theorem 5. APSS ≤l #CLAUSES-2UNSAT, where this logarithm space reduction is a
parsimonious reduction.

Proof. We solve this problem reducing in logarithmic space the polynomial P (x1, x2, . . . , xn)
into a MONOTONE-2SAT formula φ such that for each term xi × xj , we make a clause
(xi ∨ xj) and join all the summands by a disjunction with the ∧(AND) operator. Let’s take
as example the previous instance P (x1, x2, x3) = x1 × x2 + x2 × x3 of APSS which could
be reduced to φ = (x1 ∨ x2) ∧ (x2 ∨ x3) (the sum of the weighted densities of states for the
Boolean formula φ is 4). This is equivalent to

p cnf 3 2
1 2 0
2 3 0
in the format DIMACS. Certainly, we can affirm the value of a term xi × xj is equal to

1 when (xi ∨ xj) is unsatisfied. Consequently, the sum of the weighted densities of states
of the Boolean formula φ will be equal to the answer of the instance for APSS, that is a
parsimonious reduction. Indeed, every unsatisfying truth assignment Ti = {t1, t2, ...tn} in
φ with K unsatisfied clauses corresponds to an assignment Ui = {u1, u2, ...un} such that
P (u1, u2, . . . , un) = K, where for each j we have “uj =⇁ tj” (which actually means uj = 1
if and only if tj is false). J

I Theorem 6. APSS ∈ #L and therefore, APSS ∈ FP .

Proof. We know #L is closed under a logarithm space reduction when this one is also a
parsimonious reduction. Furthermore, we know that #L is contained in the class FP [1], [3],
[2]. J

2.1 Code
This project was implemented on February 8th of 2021 in a GitHub Repository [10]. This
was a partial implementation since this project receives as input the already reduced
MONOTONE-2SAT formulas in the format DIMACS instead of instances from APSS.

F. Vega 7

References

1 Carme Álvarez and Birgit Jenner. A Very Hard Log-Space Counting Class. Theor. Comput.
Sci., 107(1):3–30, January 1993. doi:10.1016/0304-3975(93)90252-O.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Allan Borodin, Stephen A. Cook, and Nick Pippenger. Parallel Computation for Well-Endowed
Rings and Space-Bounded Probabilistic Machines. Inf. Control, 58(1–3):113–136, July 1984.
doi:10.1016/S0019-9958(83)80060-6.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

5 Stefano Ermon, Carla P. Gomes, and Bart Selman. Computing the Density of States of
Boolean Formulas. In Proceedings of the 16th International Conference on Principles and
Practice of Constraint Programming, pages 38–52, Berlin, Heidelberg, 2010. Springer-Verlag.
doi:10.5555/1886008.1886016.

6 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

7 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
8 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.
9 Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,

(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.
10 Frank Vega. Algebraic Polynomial Sum Solver Over {0, 1}, February 2021. In GitHub

Repository at https://github.com/frankvegadelgado/sat. Retrieved February 9, 2021.

http://dx.doi.org/10.1016/0304-3975(93)90252-O
http://dx.doi.org/10.1016/S0019-9958(83)80060-6
http://dx.doi.org/10.5555/1886008.1886016
http://dx.doi.org/10.1016/0304-3975(79)90044-6
https://github.com/frankvegadelgado/sat

	Introduction
	Polynomial time verifiers
	Logarithmic space verifiers
	A polynomial time problem

	Results
	Code

