Algebraic Polynomial Sum Solver Over $\{0, 1\}$

Frank Vega 🗅

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France vega.frank@gmail.com

— Abstract

Given a polynomial $P(x_1, x_2, ..., x_n)$ which is the sum of terms, where each term is a product of two distinct variables, then the problem APSS consists in calculating the total sum value of $\sum_{\forall U_i} P(u_1, u_2, ..., u_n)$, for all the possible assignments $U_i = \{u_1, u_2, ..., u_n\}$ to the variables such that $u_j \in \{0, 1\}$. APSS is the abbreviation for the problem name Algebraic Polynomial Sum Solver Over $\{0, 1\}$. We show that APSS is in #L and therefore, it is in FP as well. The functional polynomial time solution was implemented with Scala in https://github.com/frankvegadelgado/sat using the DIMACS format for the formulas in MONOTONE-2SAT.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity classes; Theory of computation \rightarrow Problems, reductions and completeness

Keywords and phrases complexity classes, polynomial time, reduction, logarithmic space

1 Introduction

1.1 Polynomial time verifiers

Let Σ be a finite alphabet with at least two elements, and let Σ^* be the set of finite strings over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string win Σ^* there is a computation associated with M on input w [2]. We say that M accepts w if this computation terminates in the accepting state, that is M(w) = "yes" [2]. Note that Mfails to accept w either if this computation ends in the rejecting state, that is M(w) = "no", or if the computation fails to terminate, or the computation ends in the halting state with some output, that is M(w) = y (when M outputs the string y on the input w) [2].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ and is defined by:

$$L(M) = \{ w \in \Sigma^* : M(w) = "yes" \}.$$

Moreover, L(M) is decided by M, when $w \notin L(M)$ if and only if M(w) = "no" [4]. We denote by $t_M(w)$ the number of steps in the computation of M on input w [2]. For $n \in \mathbb{N}$ we denote by $T_M(n)$ the worst case run time of M; that is:

$$T_M(n) = max\{t_M(w) : w \in \Sigma^n\}$$

where Σ^n is the set of all strings over Σ of length n [2]. We say that M runs in polynomial time if there is a constant k such that for all n, $T_M(n) \leq n^k + k$ [2]. In other words, this means the language L(M) can be decided by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [4]. A verifier for a language L_1 is a deterministic Turing machine M, where:

$$L_1 = \{w : M(w, c) = "yes" \text{ for some string } c\}.$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [2]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L_1 . This information

is called certificate. NP is also the complexity class of languages defined by polynomial time verifiers [7].

A decision problem in NP can be restated in this way: There is a string c with M(w, c) ="yes" if and only if $w \in L_1$, where L_1 is defined by the polynomial time verifier M [7]. The function problem associated with L_1 , denoted FL_1 , is the following computational problem: Given w, find a string c such that M(w, c) = "yes" if such string exists; if no such string exists, then reject, that is, return "no" [7]. The complexity class of all function problems associated with languages in NP is called FNP [7]. FP is the complexity class that contains those problems in FNP which can be solved in polynomial time [7].

To attack the *P* versus *NP* question the concept of *NP-completeness* has been very useful [6]. A principal *NP-complete* problem is *SAT* [6]. An instance of *SAT* is a Boolean formula ϕ which is composed of:

- **1.** Boolean variables: x_1, x_2, \ldots, x_n ;
- Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), ¬(NOT), ⇒(implication), ⇔(if and only if);
- 3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ . On the one hand, a satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. On the other hand, a truth assignment that causes ϕ to be evaluated as false is a unsatisfying truth assignment. A Boolean formula with some satisfying truth assignment is unsatisfying truth assignment is unsatisfiable and without any satisfying truth assignment is unsatisfiable. The problem *SAT* asks whether a given Boolean formula is satisfiable [6].

An important complexity is Sharp-P (denoted as #P) [9]. We can also define the class #P using polynomial time verifiers. Let $\{0, 1\}^*$ be the infinite set of binary strings, a function $f : \{0, 1\}^* \to \mathbb{N}$ is in #P if there exists a polynomial time verifier M such that for every $x \in \{0, 1\}^*$,

$$f(x) = |\{y : M(x, y) = "yes"\}|$$

where $|\cdots|$ denotes the cardinality set function [2]. We could use the parsimonious reduction for the completeness of this class [2]. In computational complexity theory, a parsimonious reduction is a transformation from one problem to another that preserves the number of solutions [2].

1.2 Logarithmic space verifiers

A logarithmic space Turing machine has a read-only input tape, a write-only output tape, and read/write work tapes [8]. The work tapes may contain at most $O(\log n)$ symbols [8]. In computational complexity theory, L is the complexity class containing those decision problems that can be decided by a deterministic logarithmic space Turing machine [7]. NL is the complexity class containing the decision problems that can be decided by a nondeterministic logarithmic space Turing machine [7].

We can give a certificate-based definition for NL [2]. The certificate-based definition of NL assumes that a logarithmic space Turing machine has another separated read-only tape [2]. On each step of the machine, the machine's head on that tape can either stay in place or move to the right [2]. In particular, it cannot reread any bit to the left of where the head currently is [2]. For that reason, this kind of special tape is called "read-once" [2].

F. Vega

A language L_1 is in NL if there exists a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$:

$$x \in L_1 \Leftrightarrow \exists u \in \{0,1\}^{p([x])}$$
 such that $M(x,u) = "yes"$

where by M(x, u) we denote the computation of M where x is placed on its input tape, and the certificate u is placed on its special read-once tape, and M uses at most $O(\log[x])$ space on its read/write work tapes for every input x, where $[\ldots]$ is the bit-length function [2]. Mis called a logarithmic space verifier [2].

An interesting complexity class is *Sharp-L* (denoted as #L). #L has the same relation to L as #P does to P [1]. We can define the class #L using logarithmic space verifiers as well.

Let $\{0,1\}^*$ be the infinite set of binary strings, a function $f: \{0,1\}^* \to \mathbb{N}$ is in #L if there exists a logarithmic space verifier M such that for every $x \in \{0,1\}^*$,

 $f(x) = |\{u : M(x, u) = "yes"\}|$

where $|\cdots|$ denotes the cardinality set function [1]. We could use the parsimonious reduction for the completeness of this class too [2].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output tape, and read/write work tapes [8]. The work tapes must contain at most $O(\log n)$ symbols [8]. A logarithmic space transducer M computes a function $f: \Sigma^* \to \Sigma^*$, where f(w) is the string remaining on the output tape after M halts when it is started with w on its input tape [8]. We call f a logarithmic space computable function [8]. We say that a language $L_1 \subseteq \{0,1\}^*$ is logarithmic space reducible to a language $L_2 \subseteq \{0,1\}^*$, written $L_1 \leq_l L_2$, if there exists a logarithmic space computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0,1\}^*$:

$$x \in L_1$$
 if and only if $f(x) \in L_2$.

For example, this kind of reduction is used for the completeness in the NL.

A literal in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [4]. A Boolean formula is in 2-conjunctive normal form or 2CNF, if each clause has exactly two distinct literals [7]. A relevant *NL-complete* language is 2CNF satisfiability, or 2SAT [7]. In 2SAT, it is asked whether a given Boolean formula ϕ in 2CNF is satisfiable. The instances of *MONOTONE-2SAT* does not contain any negated variable.

1.3 A polynomial time problem

Let's define the following problem

▶ Definition 1. $#Algebraic Polynomial Sum Solver Over \{0, 1\}(APSS)$

INSTANCE: A polynomial $P(x_1, x_2, ..., x_n)$ which is the sum of terms, where each term is a product of two distinct variables.

ANSWER: Calculate the total sum value of $\sum_{\forall U_i} P(u_1, u_2, \dots, u_n)$, for all the possible assignments $U_i = \{u_1, u_2, \dots, u_n\}$ to the variables such that $u_j \in \{0, 1\}$.

Let's see an example:

Instance: $P(x_1, x_2, x_3) = x_1 \times x_2 + x_2 \times x_3$.

x_1	x_2	x_3	$P(x_1, x_2, x_3)$
1	1	1	2
1	1	0	1
0	1	1	1
0	0	0	0
1	0	1	0
0	0	1	0
1	0	0	0
0	1	0	0

Table 1 Evaluation for all possible assignments

Answer: The total sum value is 4 for all the possible assignments:

Total: 2 + 1 + 1 + 0 + 0 + 0 + 0 + 0 = 4 (see it in Table 1).

We solve this problem reducing in logarithmic space and parsimoniously to another problem # CLAUSES-2UNSAT. We show an algorithm for the problem # CLAUSES-2UNSAT which is in #L and therefore, it is in FP as well. In this way, we prove that APSS can be solved in polynomial time.

2 Results

▶ **Definition 2.** Given a Boolean formula ϕ with m clauses, the density of states n(E) for some integer $0 \le E \le m$ counts the number of truth assignments that leave exactly E clauses unsatisfied in ϕ [5]. The weighted density of states m(E) is equal to $E \times n(E)$. The sum of the weighted densities of states of a Boolean formula in 2CNF with m clauses is equal to $\sum_{E=0}^{m} m(E)$.

Let's consider a function problem:

▶ Definition 3. #CLAUSES-2UNSAT

INSTANCE: Two natural numbers n, m, and a Boolean formula ϕ in 2CNF of n variables and m clauses. The clauses are represented by an array C, such that C represents a set of m set elements, where $C[i] = S_i$ if and only if S_i is exactly the set of literals into a clause c_i in ϕ for $1 \leq i \leq m$. Besides, each variable in ϕ is represented by a unique integer between 1 and n. In addition, a negative or positive integer represents a negated or non-negated literal, respectively. This is similar to the format [DIMACS](http://www.satcompetition.org/2009/format-benchmarks2009.html) for the formulas where the literals are representedby negative or nonnegative integers.

ANSWER: The sum of the weighted densities of states of the Boolean formula ϕ .

▶ Theorem 4. # *CLAUSES-2UNSAT* $\in \#L$.

Proof. We are going to show there is a nondeterministic Turing machine M such that M runs in logarithmic space in the length of (n, m, C). We use the nondeterministic logarithmic space Algorithm 1, where this routine generates a truth assignment in logarithmic space just selecting a negation or a positive representation of a variable $1 \le i \le n$, since every variable is represented by an integer between 1 and n in C. We also assume the value of each literal selected within y is false over the generated truth assignment.

First of all, the Algorithm 1 select the index in C of a clause from the value of the variable k. Later, we increment the variable *count* as much as the literal y appears in the clause C[k].

F. Vega

ALGORITHM 1: ALGO

```
Data: (n, m, C) where (n, m, C) is an instance of \# CLAUSES-2UNSAT
Result: Accept whether there is an unsatisfied clause for a generated truth assignment
// Generate nondeterministically an arbitrary integer between 1\ {\rm and}\ m
k \leftarrow random(1,m);
// Initialize the variable count
count \leftarrow 0;
for i \leftarrow 1 to n+1 do
    if i = n + 1 then
        \mathbf{if} \ count = 2 \ \mathbf{then}
            // The clause {\cal C}[k] is unsatisfied for the generated truth assignment
           return "yes";
        \mathbf{end}
        \mathbf{else}
            // The clause {\cal C}[k] is satisfied for the generated truth assignment
            return "no";
       end
    \mathbf{end}
    else
        // Generate nondeterministically either the integer i or -i
        y \leftarrow random(i);
        for j \leftarrow 1 to m do
           if y \in C[j] \land j = k then
               // Increment the value of the variable count
               count \leftarrow count + 1;
            \mathbf{end}
        \mathbf{end}
    \mathbf{end}
end
```

Since a clause contains only two literals, then if we finish the iteration of the possible values in the generated truth assignment, then we can say the clause indexed with the number k in C is unsatisfied when count = 2.

Furthermore, we can make this Algorithm 1 in logarithmic space, because the variables that we could use for the iteration of the variables and elements in C have a logarithmic space in relation to the length of the instance (n, m, C). Besides, the Algorithm 1 is nondeterministic, since we generate in a nondeterministic way the values of the variables k and y. In addition, every generated truth assignment is always stored in logarithmic space in relation to the instance (n, m, C), since we only focus in a single literal of the truth assignment from the for loop each time.

For every unsatisfying truth assignment represented by a generated truth assignment, then there will be always as many acceptance paths as unsatisfied clauses have the evaluation of that truth assignment in the formula ϕ . Consequently, we demonstrate that #CLAUSES-2UNSATbelongs to the complexity class #L. Certainly, the number of all accepting paths in the Algorithm 1 is exactly the sum of the number of unsatisfied clauses from all the truth assignments in ϕ , that is exactly the sum of the weighted densities of states of the Boolean formula ϕ . In conclusion, we show that #CLAUSES-2UNSAT is indeed in #L.

Let's consider an interesting reduction:

▶ **Theorem 5.** $APSS \leq_l \# CLAUSES - 2UNSAT$, where this logarithm space reduction is a parsimonious reduction.

Proof. We solve this problem reducing in logarithmic space the polynomial $P(x_1, x_2, \ldots, x_n)$ into a *MONOTONE-2SAT* formula ϕ such that for each term $x_i \times x_j$, we make a clause $(x_i \vee x_j)$ and join all the summands by a disjunction with the \wedge (AND) operator. Let's take as example the previous instance $P(x_1, x_2, x_3) = x_1 \times x_2 + x_2 \times x_3$ of *APSS* which could be reduced to $\phi = (x_1 \vee x_2) \wedge (x_2 \vee x_3)$ (the sum of the weighted densities of states for the Boolean formula ϕ is 4). This is equivalent to

p cnf 3 2

 $1 \ 2 \ 0$

 $2\ 3\ 0$

in the format DIMACS. Certainly, we can affirm the value of a term $x_i \times x_j$ is equal to 1 when $(x_i \vee x_j)$ is unsatisfied. Consequently, the sum of the weighted densities of states of the Boolean formula ϕ will be equal to the answer of the instance for *APSS*, that is a parsimonious reduction. Indeed, every unsatisfying truth assignment $T_i = \{t_1, t_2, ..., t_n\}$ in ϕ with K unsatisfied clauses corresponds to an assignment $U_i = \{u_1, u_2, ..., u_n\}$ such that $P(u_1, u_2, ..., u_n) = K$, where for each j we have " $u_j = - t_j$ " (which actually means $u_j = 1$ if and only if t_j is false).

▶ **Theorem 6.** $APSS \in #L$ and therefore, $APSS \in FP$.

Proof. We know #L is closed under a logarithm space reduction when this one is also a parsimonious reduction. Furthermore, we know that #L is contained in the class FP [1], [3], [2].

2.1 Code

This project was implemented on February 8th of 2021 in a GitHub Repository [10]. This was a partial implementation since this project receives as input the already reduced MONOTONE-2SAT formulas in the format DIMACS instead of instances from APSS.

	References
1	Carme Álvarez and Birgit Jenner. A Very Hard Log-Space Counting Class. Theor. Comput.
	<i>Sci.</i> , 107(1):3–30, January 1993. doi:10.1016/0304-3975(93)90252-0.
2	Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
	University Press, 2009.
3	Allan Borodin, Stephen A. Cook, and Nick Pippenger. Parallel Computation for Well-Endowed
	Rings and Space-Bounded Probabilistic Machines. Inf. Control, 58(1-3):113-136, July 1984.
	doi:10.1016/S0019-9958(83)80060-6.
4	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
	to Algorithms. The MIT Press, 3rd edition, 2009.
5	Stefano Ermon, Carla P. Gomes, and Bart Selman. Computing the Density of States of
	Boolean Formulas. In Proceedings of the 16th International Conference on Principles and
	Practice of Constraint Programming, pages 38–52, Berlin, Heidelberg, 2010. Springer-Verlag.
	doi:10.5555/1886008.1886016.
6	Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
	of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
7	Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
8	Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
	Technology Boston, 2006.
9	Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
	(2):189-201, 1979. doi:10.1016/0304-3975(79)90044-6.
10	Frank Vega. Algebraic Polynomial Sum Solver Over {0,1}, February 2021. In GitHub
	Repository at https://github.com/frankvegadelgado/sat. Retrieved February 9, 2021.