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a b s t r a c t 

Proteins are natural modular objects usually composed of several domains, each domain bearing a spe- 

cific function that is mediated through its surface, which is accessible to vicinal molecules. This draws 

attention to an understudied characteristic of protein structures: surface, that is mostly unexploited by 

protein structure comparison methods. In the present work, we evaluated the performance of six shape 

comparison methods, among which three are based on machine learning, to distinguish between 588 

multi-domain proteins and to recreate the evolutionary relationships at the protein and species levels of 

the SCOPe database. 

The six groups that participated in the challenge submitted a total of 15 sets of results. We observed that 

the performance of all the methods significantly decreases at the species level, suggesting that shape-only 

protein comparison is challenging for closely related proteins. Even if the dataset is limited in size (only 

588 proteins are considered whereas more than 160,0 0 0 protein structures are experimentally solved), we 

think that this work provides useful insights into the current shape comparison methods performance, 

and highlights possible limitations to large-scale applications due to the computational cost. 

© 2020 Published by Elsevier Ltd. 
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Table 1 

Number of classes and number of shapes in the dataset, at the 

protein and the species levels. 

Level Number of classes Shapes by class (min / max) 

Protein 7 19 / 168 

Species 26 12 / 63 
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1. Introduction 

Proteins are complex macro-molecular molecules with various

shapes and sizes ranging from hundreds to millions of atoms [1] .

The 3D arrangement of protein atoms is directly linked to specific

functions that are mostly mediated through the protein surface.

Protein surfaces are of great interest in drug discovery pipelines,

adverse drug reaction or the characterization of cellular processes

at the molecular level. However, challenges in protein surfaces

comparison may arise from (a) the dynamical, non-rigid nature of

the proteins that allows protein conformational changes, i.e., surfi-

cial modifications and therefore specific functions, (b) the intrinsic

structure of multi-domain proteins, i.e., the fusion of multiple, in-

dividual domains into one protein throughout evolution, and (c)

the similarity between distinct protein structures and surfaces in-

herited from their evolutionary relationships. 

The SHape REtrieval Challenges (SHREC) are time-restricted

challenges, which aim to evaluate the effectiveness of 3D-shape re-

trieval algorithms. Typically, a challenge is opened by proposing a

dataset of related shapes to participants while retaining the class

membership. In the SHape REtrieval Challenge 2020 (SHREC2020)

track on multi-domain protein shapes, the participants had 7

weeks from the dataset publication to send their results with

a description of the methods used to generate the results (see

Section 4 ). This SHREC2020 track on multi-domain protein shapes

evaluates the current ability of shape comparison methods pro-

posed by 6 different groups to tackle the protein surface compar-

ison problem. The participants were asked to send their results in

the form of matrices containing all-to-all dissimilarity scores. The

results were analyzed and the overall retrieval performances are

presented here. 

The dataset includes 588 proteins consisting of two domains

(the functional units of the proteins); only the corresponding tri-

angulated meshes of their solvent-excluded surfaces (SES) [2] were

provided as input to the participants. We then evaluated the re-

trieval performance of each method to retrieve the evolutionary

relationships between orthologous proteins (proteins that have the

same function in different organisms), and to retrieve the differ-

ent conformations of an individual protein. Here, we present the

results of all the participants and methods, and briefly discuss the

trade-off between performance in retrieval and computational cost

of each method. 

2. Dataset 

Proteins are linear polymers (the so-called protein chains) made

of amino-acid residues (up to several hundreds), which fold into

a specific, well-defined 3D structure. Furthermore, many proteins

need to form a complex of several chains to become functional. For

instance, the human heamoglobin requires two α-globin and two

β-globin chains to be fully functional. Domains define the func-

tional units of the proteins, and are usually associated with a spe-

cific function and/or interaction; it is thus commonplace for two

proteins to share one domain while their other respective domains

differ. This characteristic led to the development of databases clas-

sifying proteins according to both their structure and the functions

of their domains. The SHREC2020 track on multi-domain protein

shapes dataset is devoted to the analysis of protein shapes gener-

ated from protein chains that comprise two domains. 

Dataset creation The SCOPe database [3–5] organizes the pro-

tein domains according to their structural (in the 2 top levels of

the SCOPe tree) and evolutionary (for the 4 bottom levels) rela-

tionships. Protein domains in the SCOPe database originate from

Protein Data Bank (PDB) experimental structures [6] , and are char-

acterized by their PDBId and chainId, allowing for filtering based

on these parameters. From all entries implemented in the SCOPe
ree (excluding entries from the ‘Artifacts‘ and ‘Low resolution pro-

ein structures‘ classes), we kept only the entries from X-ray crys-

allography PDB structures composed of two domains. When mul-

iple copies of the same protein chain was present in the same PDB

tructure, we only kept one of those copies to limit redundancies.

inally, all proteins were required to have at least one orthologous

rotein, and classes with less than 10 members were discarded. 

Ground truth generation The ground truth was generated us-

ng the resulting SCOPe tree of two-domains proteins. Only the

iggest domain (highest number of amino-acid residues) was used

o define two ground truth classifications, namely the protein and

pecies levels, which reproduce the SCOPe tree classifications at the

rotein and species levels, respectively. These classifications were

ot provided to the track participants. By using this protocol, 588

rotein chains were retrieved, from 26 orthologs (proteins having

he same activity in different organisms such as the human and

urine haemoglobin proteins) and 7 proteins (see Table 1 ). The

olvent-excluded surfaces [2] were computed for all the entries us-

ng EDTSurf [7] (non-protein atoms were discarded) after protona-

ion of the struture using propka [8,9] , and only the correspond-

ng.off files were provided to the participants on the track web-

ite ( http://shrec2020.drugdesign.fr ). At the end of the track, the

round truths were published online as well. As the participants

ere not provided some important details about the dataset cre-

tion (two-domains proteins only, protonation and SES calculation

arameters,...), the reverse engineering of the memberships from

he surfaces (.off files) would require to compare all the PDB en-

ries of the SCOPe database to the dataset. While feasible in prin-

iple, this approach in practice would be difficult to carry out. 

Compared to other known protein shapes datasets, this dataset

s exclusively composed by two-domains proteins while only one-

omain proteins were included in [10,11] . As multi-domain pro-

eins are commonplace at the cellular level, the impact of ad-

itional domains on the protein shape retrieval performances

eed to be evaluated. Recently, another dataset of protein sur-

ace patches was published [12] , encompassing both geometric and

hemical features of proteins surfaces. That dataset gathers par-

ially overlapping patches rather than complete proteins surfaces,

nd is currently limited to structures that display specific function-

lities, namely the ability to bind selected small molecules or to

orm a protein-protein complex. 

. Evaluation 

Analyses were performed with scikit-learn [13] and numpy [14] ,

nd Figs. 4 and 5 were produced using matplotlib [15] . 

Nearest Neighbor, First-tier and Second-tier These retrieval met-

ics measure the ratio of models that belong to the same class

s the query. For Nearest Neighbor (NN), the first match only is

onsidered (the identity is not considered), while the | C| − 1 and

 ∗ (| C| − 1) first matches, where | C | denotes the size of the query’s

lass, are considered for First-tier (T1) and Second-tier (T2); the

aximum value for the Second-tier is therefore 0.5. 

Precision-Recall plot Precision P refers to the ratio of results that

re relevant and is computed as the number of models from class

 retrieved within all objects attributed to class C , while Recall R

epresents the number of results correctly classified and is com-

http://shrec2020.drugdesign.fr
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Table 2 

Running times in seconds of each stage of the CODSEQ framework 

for one protein. 

3D mesh size of one protein 247,650 facets 

2D views extraction 9 × (312 × 312) 6.75 

2D descriptor (9 × 512) 4 

Compact 3D descriptor (1024) 2.46 

Distance to all proteins dataset (588 proteins) 0.007 

Table 3 

Training times in seconds using GPU for the used CNN-based models. 

CNN-based model Training data size Epochs Training time 

(s) 

Inception ResNet [16] 12,798 images 5 1260 

LSTM-RNN [17] 1422 sequences 40 13 
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uted as the number of models from class C retrieved compared

o the size | C | of the class C . 

Mean Average Precision Given a query, its average precision is

he average of all precision values computed when each relevant

bject is found. Given several queries, the mean average precision

MAP) is the mean of average precision of each query. It then gives

n a single value the overall retrieval performance of an algorithm.

All metrics were macro-averaged at the protein and species lev-

ls, as defined in the SCOPe database. 

. Participants & methods 

Six groups from five different countries registered for the track

nd submitted 15 dissimilarity matrices in the requested time (8

eeks) along with the description of their protocol. To ease the

eading, we have assigned each group a short name for referencing

n the following text. 

1. CODSEQ by Halim Benhabiles, Karim Hammoudi, Adnane Ca-

bani, Feryal Windal, Mahmoud Melkemi ( Section 4.1 ), 

2. 3DZ by Tunde Aderinwale, Genki Terashi, Charles Christoffer,

Daisuke Kihara ( Section 4.2 ), 

3. WKS/SGWS by Yuxu Peng, Yu-Kun Lai, Paul L. Rosin

( Section 4.3 ), 

4. HAPT by Andrea Giachetti ( Section 4.4 ), 

5. GraphCNN by Stelios Mylonas, Apostolos Axenopoulos, Petros

Daras ( Section 4.5 ), 

6. HAPPS by Ekpo Otu, Reyer Zwiggelaar, David Hunter, Yonghuai

Liu ( Section 4.6 ). 

.1. 3D Characterization of prOteins by Deep analysis of 2D view 

EQuence (CODSEQ) — Halim Benhabiles, Karim Hammoudi, Adnane 

abani, Feryal Windal & Mahmoud Melkemi 

The CODSEQ method is a deep learning based framework for in-

exing proteins. The approach consists of capturing surface details

f the 3D proteins under the form of a set of 2D views. To this

nd, a classification architecture was tailored by exploiting a trans-

er learning strategy to extract relevant features from the consid-

red views of proteins. The SHREC 2018 dataset [10] was exploited

or the training stage as these protein surfaces share similar sil-

ouettes with the protein surfaces proposed in the current con-

est (connected stretched shapes). The protein surfaces from SHREC

019 dataset have not been exploited since their shapes visually

eemed too different (com pact shapes). Only protein classes repre-

ented by at least 19 (18 train and 1 test) different proteins (dom-

nant classes) were considered, resulting in selecting 79 classes

mong 107 classes of the SHREC 2018 dataset. Noteworthy, the

raining stage has only been performed at the protein level since

he SHREC 2018 dataset does not include the species level. The

rain/test methodology has been adopted thanks to the availabil-

ty of the ground-truths. 

Descriptors calculation 

Extraction of protein 2D views. In this stage, 3D meshes rep-

esenting protein surfaces are simplified using the Quadric Er-

or Metric Decimation [18] . By this way, the number of facets of

ach 3D mesh has been reduced to 20,0 0 0 facets (about 10% of

he original surface) while maintaining the surface details. In the

onsidered coordinate system related to the processing, each 3D

esh has its own position and size. These singular parameters are

ainly due to the devices and conditions of acquisition that can

ary from one protein to another. For normalizing the set of simpli-

ed 3D meshes of protein, each of them is recentered and rescaled

ith a sphere having a center of 0 and a radius of 1 as explained

n [19] . This allows to obtain protein surfaces invariant to geomet-

ic affine transformations considering scale and translation. A se-

uence of 2D views (312 × 312 RGB images) is then extracted using
 set of virtual cameras uniformly positioned around the bounding

phere of each protein. 9 views are enough for covering the whole

urface of the protein. 

Protein characterization based on a single 2D view (2D descriptor).

he goal of this stage is to extract a feature descriptor from each

D view using a transfer learning strategy. More precisely, an In-

eption ResNet architecture [16] pre-trained on ImageNet dataset

as been fine-tuned and trained on SHREC2018 dataset [10] in or-

er to learn 79 protein classes. The trained model is used to return

 512-dimensional feature vector for each 2D view by getting the

utput of a penultimate layer (the one before the classes output). 

Protein characterization based on a sequence of 2D views

Compact 3D descriptor). A bidirectional LSTM-RNN architec-

ure [17] was trained on the SHREC2018 dataset to learn, as in the

revious stage, 79 classes. The architecture has been fed with se-

uences of feature vectors obtained in the previous stage; each se-

uence is composed of 9 feature vectors associated to 9 views of

 given protein. One of the strengths of RNN-based models is their

bility to analyze data sequences (sequences of views in the cur-

ent case) while keeping the most significant views to characterize

rotein classes. Indeed, a classification accuracy rate of 96% on the

est data derived from SHREC2018 dataset [10] was reached using

his trained bidirectional LSTM-RNN model. This model was used

o extract a 1024-dimensional feature vector for each protein of

he present contest. 

Dissimilarity distance calculation & runtimes 

Dissimilarity matrices were generated by calculating the Eu-

lidean distance between each pair of proteins using their asso-

iated 1024-dimensional feature vectors. Two matrices have been

enerated based on two training runs performed in the previous

tage, namely CODSEQ1 with 0.96 and 0.18 of accuracy and loss,

espectively, and CODSEQ2 with 0.94 and 0.14 of accuracy and loss,

espectively. 

This framework has been developed in Python 3.7.6 using

pen3D 0.8.0.0, OpenCV 4.2.0 and Keras 2.2.4-tf on a TensorFlow-

PU 2.1.0 backend. The experiments have been conducted on an

ntel Core i7-6700HQ CPU@2.60 GHz with 32 GB of memory and

VIDIA GeForce GTX 1070 GPU with 24 GB of memory. The run-

ing times in seconds of each stage performed on CPU are reported

n Table 2 for one protein. Table 2 , shows the training times of the

sed CNN-based models trained on GPU. 

.2. Network trained with encoded 3DZD and 3DZM (3DZ) — Tunde 

derinwale, Genki Terashi, Charles Christoffer & Daisuke Kihara 

Three dissimilarity matrices of target protein surfaces were

enerated unsing three methods based on the 3D Zernike De-

criptor (3DZD) or the 3D Zernike Moment (3DZM). 3DZM are the

oefficients for representing a 3D shape function in terms of 3D
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Zernike-Canterakis polynomials [20] . 3DZD is the rotation-invariant

shape descriptor derived from the 3DZM [21] . 

Descriptors calculation 

Using the 3DZD or 3DZM as the feature of protein shape, a

neural network was trained to output a score that measures the

(dis)similarity between a pair of protein shapes. The framework is

the same with the one in the SHREC2019 protein shape retrieval

contest (see Section 4.3 in [11] ). The network has an encoder, a

feed-forward fully-connected neural network with an input layer

and three hidden layers with a ReLU activation function. The

network takes 3DZD or 3DZM of a protein shape as input. The

three hidden layers have 250, 200, and 150 neurons, respectively,

which are used for the encoding of an input 3DZD (or 3DZM). The

encoder is connected to the feature comparator, a fully-connected

network, which takes the 3DZD (or the 3DZM) of the two pro-

teins, and the encodings from the three hidden layers, and four

metrics that compare two vectors, the Euclidean distance, the

cosine distance, the element-wise absolute difference, and the

element-wise product, and the two features of the two protein

shapes (the difference in the number of vertices and faces). In

total, the number of the input features of the feature comparator is

2 ∗ 121 (or 1771 for 3DZM) + 2 ∗ (250 + 200 + 150) + 2 ∗ 4 + 2 = 

1452 features (4752 features for 3DZM). The first term is the

3DZDs of order 20 (n = 20), which is a 121 element vector, of the

two protein shapes. The third term, 2 ∗ 4 comes from the four

comparison metrics applied to two representations of the two

proteins, the original 3DZDs (or 3DZMs) and encodings, which

concatenate the output of the input layer and the three intermedi-

ate layers of the encoder. The feature comparator outputs a score

between 0 and 1 using a sigmoid activation function, which is

the probability that the two proteins are in the same protein level

classification in the SCOPe database [3] . The feature comparator

network has an input layer of a 1452-dimensional feature vector,

two intermediate layer of 100 and 50 neurons respectively, and

one output neuron. 

The network was trained on a dataset of 247,521 protein struc-

tures from the SCOPe 2.07 database. Proteins in Class I (Arti-

facts) were not included. To augment data for training the net-

work for 3DZM, which is not rotation invariant, each protein

was rotated with different random orientations. For each pro-

tein,EDTSurf [7] was used to generate the solvent excluded surface,

which was then fed into the EM-Surfer pipeline [22] to compute

3DZM and 3DZD. The network was trained to correctly distinguish

proteins in the same protein level category in SCOPe from the rest.

Dissimilarity distance calculation & runtimes 

The first dissimilarity matrix submitted was computed with the

network trained with 3DZDs. The second matrix was computed

with the network trained on a vector of a size 1771, which was

the absolute values of complex numbers in 3DZM. The distances in

the third matrix were the average between the Euclidean distance

of 3DZDs, and the distances in the first and the second matrices.

Generating 3DZD and 3DZM takes ∼ 8.00 s on average for each

protein on an Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30 GHz. The

3DZD model took ∼ 0.22 s on average to predict the dissimilarity

between two proteins using TitanX GPU, while the 3DZM model

took ∼ 0.5 s on the same GPU. The Euclidean model took ∼ 0.17 s

on average per prediction and the averaging of the three matrices

was almost instant and was negligible. 

4.3. Wave Kernel Signature and SGWS based Shape Descriptor for 

Protein Retrieval (WKS/SGWS) — Yuxu Peng, Yu-Kun Lai & 

Paul L. Rosin 

To reach robust and improved performance, a hybrid spectral

feature descriptor is used which combines the benefits of features

of wave kernel signature (WKS) [23] and spectral graph wavelet
ransform (SGWS) [24] . WKS is an isometric invariant descriptor

hat has been found to be effective for deformable 3D shape re-

rieval such as those of the dataset; in contrast to HKS, it focusses

n the high-frequency information. SGWS is a generalisation of

K S and WK S, and provides a multiresolution local descriptor that

s compact, easy to compute and combines the advantages of both

and-pass and low-pass filters. 

Data pre-processing Meshes were simplified to reduce the num-

er of faces to approximately 60 0 0 using Qslim [18] which pro-

ides an effective compromise between the fastest algorithms and

he highest-quality algorithms to reduce computing time. Then the

esh is fixed using the open source software meshfix [25] to con-

ert a raw digitized polygon mesh to a clean mesh where all the

ccurrences of a specific set of “defects” are corrected. Holes, self-

ntersections, degenerate and non-manifold elements are all re-

laced with valid configurations. 

WKS descriptor calculation The WKS feature vectors are com-

uted from the eigenvalues and the eigenvectors of each protein

esh. Then the vocabulary is calculated using an improved vector-

ased k-means over 10% feature vectors of all proteins [26] . Finally,

he WKS descriptor is normalized for the bag-of-features (BoF) for

ach protein using hard vector quantization. The lengths of the

KS feature vector and the descriptor are 50 and 10 0 0 respec-

ively. 

SGWS descriptor calculation The process of the SGWS descriptor

s similar to that of the WKS descriptor. The SGWS feature vectors

ere computed first, and then the vocabulary and bag of feature

ere obtained. The lengths of the SGWS feature vector and the de-

criptor are 5 and 10 0 0 respectively. 

Hybrid spectral descriptor (WKS + SGWS) The hybrid spectral de-

criptor combines the normalized BoF of WKS and SGWS to form

 long vector which is 20 0 0-dimensional. 

Dissimilarity matrices computation & runtimes The procedure for

odel comparison consists of computing bags of features and mea-

uring distances between shapes. For the similarity measure, the

1 distance ‖ X − Y ‖ 1 is used. The estimation of the descriptors

akes 37 s on average, running on a laptop with an i5-5200U CPU,

AM 4 GB, running Windows 10. The descriptor comparison time

as negligible. 

.4. Histogram of Area Projection Transform (HAPT) — Andrea 

iachetti 

The method characterizes protein shapes with the Histograms

f Area Projection Transform (HAPT) [27] . This descriptor, well

uited for non-rigid shape retrieval, is based on a spatial map

Multiscale Area Projection Transform) [27] that encodes the likeli-

ood of the 3D points inside the shape of being centres of spheri-

al symmetry. This map is obtained by computing, for each radius

f interest, the value: 

P T ( � x , S, R, σ ) = Area (T −1 
R (k σ ( � x ) ⊂ T R (S, � n ))) (1)

here S is the surface of the object (see Fig. 1 ), T R (S, � n ) , is the

arallel surface of S shifted along the normal vector � n (only in the

nner direction) and k σ ( � x ) ; is a sphere of radius σ centred in the

eneric 3D point � x where the map is computed. Values at different

adii are normalized in order to have a scale-invariant behaviour,

reating the Multiscale APT (MAPT): 

AP T (x, y, z, R, S) = α(R ) AP T (x, y, z, S, R, σ (R )) (2)

here α(R ) = 1 / 4 πR 2 and σ (R ) = c · R (0 < c < 1) . 

Descriptors calculation 

A discrete MAPT is easily computed, for selected values of R, on

 voxelized grid including the surface mesh, with the procedure

escribed in [27] . The map is computed in a grid of voxels with

ide s on a set of corresponding sampled radius values. For the
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Fig. 1. APT measures the area of the part of the input surface that, projected along 

the normal at a selected distance, is included in a circular neigborhood of the point 

of interest (see Section 4.4 ). 
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roposed task, discrete MAPT maps were quantized in 12 bins and

istograms computed at the selected scales (radii) were concate-

ated creating a unique descriptor. Voxel side and sampled radii

ere fixed for each run and chosen to represent the approximate

adii of the spherical symmetries visible in the models. 

Three different options were tested for the algorithm’s param-

ters. In HAPT1, s = 0 . 3 , the MAPT histograms were computed for

2 increasing radii starting from R 1 = 0 . 3 iteratively adding a fixed

tep of 0.3 for the remaining values, and c was set to 0.5. In HAPT2,

 = 0 . 3 , the MAPT histograms were computed for 8 increasing radii

tarting from R 1 = 0 . 3 iteratively adding a fixed step of 0.3 for the

emaining values, and c was set to 0.5. In HAPT3, s = 0 . 4 , 8 in-

reasing radii (from R 1 = 0 . 8 and a fixed step of 0.4 for the re-

aining values) were used to compute the MAPT histograms, and

 was set to 0.5. 

Dissimilarity matrices computation & runtimes 

The procedure for model comparison consists in concatenating

he MAPT histograms computed at the different scales and mea-

uring distances between shapes by evaluating the Jeffrey diver-

ence [28] of the corresponding concatenated vectors. The estima-

ion of the descriptors took 112 s on average for the run HAPT1,

7 s on average for the run HAPT2, and 17 s on average for the run

APT3 on a laptop with an Intel CoreTM i7-9750H CPU running

buntu Linux 18.04. The descriptor comparison time was negligi-

le. 

.5. Graph-based CNN (GraphCNN) for 3D shape retrieval — Stelios 

ylonas, Apostolos Axenopoulos & Petros Daras 

Following the recent tendency of addressing many scientific

asks by exploiting the existing vast amount of data, a data-driven

pproach was applied for the problem of 3D protein shape re-

rieval. Based on the fact that the provided input proteins are in

he form of triangulated meshes, a transfer learning approach was

pplied. A method originally designed for the task of 3D point

loud classification and segmentation was adapted to the needs of

he protein shape retrieval task, and trained on a relevant dataset

f protein 3D point clouds in order to learn appropriate features

descriptors) for the representation of 3D molecular shapes. 

Descriptors calculation 

SPH3D-GCN [29] , a graph-based CNN method equipped with

 novel spherical convolution kernel, was employed as it has

chieved state-of-the-art results on numerous computer vision

asks. The detailed architecture of the applied network is depicted

n Table 4 . From each triangulated protein surface, a number of

0,0 0 0 points is uniformly sampled, since the network requires a

onstant number of input points. After transforming the input 3D

oordinates to a higher dimensional space of 32 features with a

ultilayer perceptron (MLP), four encoder blocks are applied. Each
ncoder operates on a specific spatial range, which is denoted by

. Parameter ρ controls the radius of the applied spherical ker-

els and determines the spatial extent of the applied convolutions.

PH3D( α, β , γ ) represents a separable spherical convolution that

akes as input α channels, performs a depth-wise convolution with

 multiplier γ and subsequently a point-wise convolution to gen-

rate the output β channels. At the end of each decoder, a pooling

peration is applied, which reduces gradually the number of con-

idered points. In Encoder4, a modified spherical convolution is ap-

lied in order to obtain a global representation of the whole point

loud. Finally, the output features of all the four encoders are con-

atenated and imported to a sequence of three fully connected (FC)

ayers. The proposed scheme was trained on the dataset from last

ears competition (SHREC2019 [11] ), which comprises 5298 struc-

ures from 17 protein classes. The network was trained on a classi-

cation task aiming to assign each structure to each corresponding

rotein class. During the feature extraction step, the FC layers were

ropped and the concatenated output of the four encoders were

sed as descriptors. Therefore, for each previously unseen input, a

eature vector of 832 values is extracted. 

Dissimilarity matrices computation & runtimes 

After the completion of the feature extraction, the Euclidean

istance metric is used to measure the dissimilarity between two

nput models. Small distance values indicate that the correspond-

ng feature vectors represent members of the same class. Among

he three GraphCNN submissions, various sets of radius ρ were

xperimented. Specifically, the first one (GraphCNN1) corresponds

o ( ρ1 , ρ2 , ρ3 ) = (0.05, 0.1, 0.2), the second one (GraphCNN2) to

0.05, 0.15, 0.45) and the third (GraphCNN3) to (0.1, 0.2, 0.4). The

alculation of descriptors took on average 45 ms per mesh sample

n a GeForce GTX1070 GPU, while the training time is about 1 h

n the same GPU. The average comparison time between two de-

criptors is negligible (0.001 ms on an Intel Core i7- 6700 K CPU). 

.6. Hybrid Augmented Point Pair Signatures (HAPPS) — Ekpo Otu, 

eyer Zwiggelaar, David Hunter & Yonghuai Liu 

Descriptors can be categorised into two main groups: local

nd global . Combining two or more descriptors (e.g., local - local ,

ocal - global , or global - global ) yields a third category, the hybrid

escriptor - aimed at improving the resultant performance of

he combined descriptors. The Hybrid Augmented Point Pair Sig-

ature (HAPPS) is a 3D shape descriptor in the third category,

omputed from a combination of two separate descriptors: local

ugmented Point Pair Feature Descriptor (APPFD), and global

istogram of Global Distances (HoGD) or Multi-view 2D Projection

M2DP) [30] descriptors, each of which are computed using hand-

rafted features extracted from 3D surface. Details of APPFD, HoGD,

nd M2DP descriptors are provided in the following sections. 

HAPPS is an improvement over the APPFD, aimed at achiev-

ng better retrieval performances. Although the latter is capable

f robustly representing 3D shapes, a closer inspection of protein

hapes for this retrieval challenge reveals identical local surface

haracteristics and somewhat uniqueness in global appearances

etween the Protein shapes, hence the need to extend the capabil-

ty of the APPFD and effectively capture both local and global char-

cteristics of the Protein shapes. Therefore, two global 3D descrip-

ors were separately combined: The Histogram of Global Distances

HoGD) and Multi-view 2D Projection (M2DP) with APPFD to de-

ive two variants of hybrid descriptor: the Hybrid Augmented Point

air Signatures (HAPPS), referred to as HAPPS-1 and HAPPS-2, i.e.,

ybrid descriptors formed by combining local APPFD with global

oGD and M2DP, respectively. Alongside the APPFD, the HAPPS al-

orithm was first introduced in [31] and recorded very high perfor-

ance scores across several 3D benchmark datasets. Fig. 2 presents

n overview of the HAPPS algorithms. 



194 F. Langenfeld, Y. Peng and Y.-K. Lai et al. / Computers & Graphics 91 (2020) 189–198 

Table 4 

GraphCNN’s network configuration. 

Input MLP Encoder1 ( ρ1 ) Encoder2 ( ρ2 ) Encoder3 ( ρ3 ) Encoder4 Output 

3D points (10K, 3) MLP (3, 32) SPH3D(64, 64, 2) 

SPH3D(64, 64, 1) 

Pool(10K, 2500) 

SPH3D(64, 64, 1) 

SPH3D(64, 128, 2) 

Pool(2500, 625) 

SPH3D(128, 128, 1) 

SPH3D(128, 128, 1) 

Pool(625, 156) 

G-SPH3D (128, 

512) 

FC(832, 512) 

FC(512, 256) 

FC(256, C ) 

Fig. 2. Overview of HAPPS algorithm. 
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Augmented Point Pair Feature Descriptor (APPFD) 

The Augmented Point Pair Feature Descriptor (APPFD) is a 3D

shape descriptor, which describes the local geometry around a

point, p = [ p x , p y , p z ] or vertex, v = [ v x , v y , v z ] for 3D pointcloud

or mesh datasets, respectively. Here, the pointcloud shape repre-

sentation for this task was used, instead. Computing this descrip-

tor involves the following stages: (i) pointcloud sampling and nor-

mals estimation, (ii) keypoint, p k i determination, (iii) local surface

region (i.e., LSP), P i selection, (iv) Augmented Point Pair Feature

(APPF) extraction per LSP, and (v) final descriptor computation. The

algorithms for stages (iv) and (v) are described in this section, and

the reader is referred to the literature in [31] for more details on

the other stages. 

Feature extraction 

The first step of APPFD is to compute keypoints, p k i , i = 1 , 2 , . . . ,

and locally extract four-dimensional Point Pair Feature (PPF), f 1 =
(α, β, γ , δ) as in [32] from r -nearest neighbourhood, { P i , i = 1 : K}
of each keypoint { p k i , i = 1 : K} , where K is the number of key-

points for a given 3D shape. For every pair of points, p i , p j and

their estimated normals, n i , n j i.e., oriented points, [( p i , n i ), ( p j ,

n j )] ( i � = j ), in P i where p i is the origin w.r.t. the constraint in

Eq. (3) holding True , a transformation-independent Darboux frame

U , V , W is defined as: U = n i , V = U × ((p j − p i ) /δ) , W = U × V . 

| n i · (p j − p i ) | ≤ | n j · (p j − p i ) | (3)

Alternatively, p j becomes the origin (i.e., point with the larger an-

gle between its associated normal and the line connecting the two

points) if the constraint in (3) is False , and the variables in (3) are
eversed. f 1 is then derived for the source point as follows: 

= arctan (W · n j , U · n j ) , α ∈ 

[ 
−π

2 

, 
π

2 

] 
(4)

= V · n j , β ∈ [ −1 , 1] (5)

= U · p j − p i 

‖ p j − p i ‖ 

, γ ∈ [ −1 , 1] (6)

= ‖ p j − p i ‖ (7)

Secondly, f 2 (p i , p j ) = (φ, θ ) is extracted for every possible

ombination of points pair, p i , p j in P i , because f 1 is not robust

nough to capture the entire geometric information for a given LSP.

n addition, the PPF approach opens up possibilities for additional

eature space. Therefore, as illustrated in Fig. 3 , φ is the angle of

he projection of the vector 
−→ 

S onto the unit vector 
−→ 

V 2 , while θ is

eometrically the angle of the projection of the vector, 
−→ 

S onto the

nit vector 
−→ 

V 1 , where 
−→ 

V 1 = p i − p c , 
−→ 

V 2 = p i − l, and 

−→ 

S = p i − p j ,

ith p c = 

1 
n i 

∑ n i 
i =1 

p k i (i.e., LSP centroid), and l = (p j − p c ) , the vec-

or location of p k i w.r.t. its LSP. Note that p i , p j , p c , and l are all

oints in R 

3 space, although l is a vector. 

Basically, α, β , γ are the angular variations between ( n i , n j ),

hile δ is the spatial distance between p i and p j . In Euclidean

eometry, each of the projections φ and θ is considered angle

etween two vectors. For example ∠ 〈 −→ 

S , 
−→ 

V 〉 and ∠ 〈 −→ 

S , 
−→ 

V 〉 are
1 1 2 2 
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Fig. 3. Local Surface Patch (LSP), P i with pairwise points ( p i , p j ) as part of a surflet- 

pair relation for ( p i , n i ) and ( p j , n j ), with p i being the origin. θ and φ are the an- 

gles of vectors projection about the origin, p i . θ is the projection angle from vector 

〈 p i − p j 〉 to vector 〈 p i − p c 〉 while φ is the projection angle from vector 〈 p i − p j 〉 to 
vector 〈 p i − l〉 . The LSP centre is given by p c , keypoint is given as p k i where i = 2 . 

Finally, l is the vector position of p k i − p c . 
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Table 5 

HAPPS settings for experimental runs 1, 2 and 3. 

Parameter Settings 

Expts. Algorithms P r v s bins appfd bins hogd 

run-1 HAPPS-1 4200 0.40 0.20 7 65 

run-2 HAPPS-1 3500 0.50 0.20 7 65 

run-3 HAPPS-2 3500 0.50 0.20 7 - 
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quivalent to θ and φ respectively. These angles are derived

y taking the scalar products of ( 
−→ 

S · −→ 

V 1 ) for � 1 , and ( 
−→ 

S · −→ 

V 2 )

or � 2 about a point p i in a given LSP. Mathematically, scalar

roducts defined in this manner are homogeneous (i.e., invari-

nt) under scaling [33] and rotation [34] . For this reason, the

wo-dimensional local geometric features, φ and θ , are consid-

red rotation and scale invariant for 3D shapes under rigid and

on-rigid affine transformations. 

Local APPF Descriptor 

Lastly, for every possible combination, q of oriented point

air, p i , p j = [(p i , n i ) , (p j , n j )] in an LSP, ( P i , N i ), q (q − 1) / 2

ix-dimensional APPF: f 3 = ( f 2 + f 1 ) are locally obtained thus:

f 3 (p i , p j ) = ( f 2 (p i , p j ) , f 1 (p i , p j )) = (φ, θ, α, β, γ , δ) , then verti-

ally stacked together and discretized into a multi-dimensional

istogram with bins = 7 in each feature-dimension, flattened and

ormalized to give 7 6 = 117649-dimensional single local descriptor

APPFD) per 3D shape. 

In computing APPFD for this task, points and their normals, ( P ,

 ), where | P | = 350 0 and 420 0, were sampled from each 3D shape

nd K keypoints were computed, { p k i , i = 1 : K} ), around which

SPs, { P i , i = 1 : K} ) and their corresponding normals, { N i , i = 1 :

} ) were extracted, within a specified radius, r = 0 . 40 − 0 . 50 for

ach p k i . 

Histogram of Global Distances (HoGD) 

Considering that a shape is represented by a discrete set of

oints, P on its surface which forms the external and internal con-

our of the shape, a set of normalized vectors δi = ‖ p c − p i ‖ was

enoted between the centroid p c of a given 3D shape to all other

oints on its surface, where p i ∈ P . Such normalized vectors δi are

egarded as global features whose distribution (histogram) is ca-

able of expressing the configuration of the entire shape relative

o its centroid, and is a rich description of the global structure of

he shape. These global features were discretized into a histogram

ith 

√ | P | ≈ 65 bins, normalized to give HoGD, which is very fast

nd straightforward to compute - with | P | = 350 0 and 420 0, as

n APPFD. Finally, HoGD is combined with APPFD to give HAPPS-

, with 117649 + 65 = 117714 -dimensional final feature vector, FV .

ee Fig. 2 for an overview of the HAPPS algorithm. 

Multi-view 2D Projection (M2DP) 

The M2DP is a global descriptor for 3D point cloud applied

or loop closure detection in [30] . It involves the projection of

D cloud to multiple 2D planes from which density signature of

oints in each plane is computed and combined to produce 196-

imensional FV . This descriptor was adopted for HAPPS-2 due

o its success and computational efficiency, and refer the reader

o the literature in [30] for more details on M2DP. Again, using
 P | = 3500 and 4200 as in previous cases, HAPPS-2 is a 117649 +
96 = 117845 -dimensional FV .See Fig. 2 for an overview of the

APPS algorithm. 

Shape Similarity Measurement 

Overall, the L 2 or cosine distance metric between FV s are ex-

ected to give good approximations of the similarity between

hapes in the SHREC2020 Protein dataset. The cosine metric was

dpted in Eq. (8) , due to a slightly more improvement over the L 2 
etric. 

os ( FV 1 , FV 2 ) = 

FV 1 · FV 2 

‖ FV 1 ‖‖ FV 2 ‖ 

= 

∑ n 
i =1 FV 1 i FV 2 i √ ∑ n 

i =1 ( FV 1 i ) 2 
√ ∑ n 

i =1 ( FV 2 i ) 2 

(8) 

Dissimilarity matrices computation & runtimes 

Two parameters of APPFD, r and v s (i.e., voxel-size , a parame-

er that determines how big or small an occupied voxel grid can

e, during pointcloud down-sampling to yield keypoints [35] ), in-

uence the overall performances of the HAPPS retrieval algorithms.

 is directly proportional to LSP size while v s is inversely propor-

ional to the number of sub-sampled points (keypoints), which im-

lies that increasing the values of r and v s increases the size of

SP and reduces the number of keypoints, and vice versa. Compu-

ational time and memory are affected by them, hence the config-

rations summarized in Table 5 were carefully selected for experi-

ental run1, run2, and run3. 

The HAPPS algorithms were implemented in Python 3.6.0 and

ll experiments were carried out under Windows 7 desktop PC

ith Intel Core i7-4790 CPU @ 3.60 GHz, 32 GB RAM. On aver-

ge, it took 23 s and 45 s to compute HAPPS-1 and HAPPS-2, re-

pectively, about 1 s to extract ( P , N ), and roughly 0.3 s each, to

ompute HoGD and M2DP per 3D shape. 

. Results & discussion 

In this section, we assess quantitatively the performance of

ach method described in Section 4 . We analyzed the performance

t the protein ( Fig. 4 and Table 6 ) and the species ( Fig. 5 and

able 7 ) levels as described in Section 3 . 

Protein level 

At the protein level, the 588 shapes were gathered into 7 classes

f multi-domain orthologous proteins; among each class, all mem-

ers share at least one common domain while the other domains

re different. 

This feature allows the methods for having nearest-neighbor

NN) over the whole dataset ranging from 66.6 up to 98.5%, mean-

ng that for a given query, the shape comparison algorithms were

ble to retrieve a query of the same class in at least two thirds

f the cases. The performances vary largely between methods, as

hree methods (3DZM/D, WKS/SGWS and HAPPS1-3) achieve suc-

essful nearest-neighbor retrieval in more than 97.5% of the cases.

or all the methods, the performances decrease as we consider

urther results, but the performance drops are different for each

ethod, as illustrated by the differences in the precision-recall (PR)

urves profiles ( Fig. 4 ) and the First-tier (T1) and Second-tier (T2)

alues ( Table 6 ). This results in a wide range of MAP values (from

.301 to 0.840). 
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Fig. 4. Precision-recall curves at the protein level. 

Table 6 

Evaluation metrics at the protein level. NN = Nearest Neighbor, 

T1 = First-tier, T2 = Second-tier, MAP = Mean Average Preci- 

sion. For each metric, the highest value is in bold. 

Method NN T1 T2 MAP 

CODSEQ1 0.697 0.350 0.266 0.358 

CODSEQ2 0.666 0.345 0.264 0.356 

3DZD 0.978 0.753 0.428 0.797 

3DZM 0.975 0.719 0.422 0.766 

3DZD/3DZM average 0.980 0.789 0.436 0.823 

WKS/SGWS 0.985 0.818 0.438 0.840 

HAPT1 0.898 0.617 0.407 0.658 

HAPT2 0.875 0.602 0.402 0.646 

HAPT3 0.892 0.620 0.406 0.659 

GraphCNN1 0.773 0.278 0.218 0.301 

GraphCNN2 0.734 0.295 0.235 0.317 

GraphCNN3 0.770 0.310 0.243 0.339 

HAPPS-1 0.982 0.738 0.416 0.774 

HAPPS-2 0.983 0.746 0.420 0.779 

HAPPS-3 0.983 0.746 0.420 0.779 

 

 

 

 

Fig. 5. Precision-recall curves at the species level. 

Table 7 

Evaluation metrics at the species level. NN = Nearest Neighbor, 

T1 = First-tier, T2 = Second-tier, MAP = Mean Average Preci- 

sion. For each metric, the highest value is in bold. 

Method NN T1 T2 MAP 

CODSEQ1 0.438 0.173 0.125 0.180 

CODSEQ2 0.447 0.172 0.124 0.179 

3DZD 0.783 0.391 0.262 0.435 

3DZM 0.722 0.369 0.256 0.402 

3DZD/3DZM average 0.825 0.419 0.277 0.470 

WKS/SGWS 0.844 0.460 0.298 0.508 

HAPT1 0.595 0.286 0.209 0.313 

HAPT2 0.572 0.264 0.200 0.289 

HAPT3 0.608 0.286 0.209 0.313 

GraphCNN1 0.513 0.177 0.117 0.178 

GraphCNN2 0.533 0.175 0.120 0.186 

GraphCNN3 0.499 0.181 0.122 0.186 

HAPPS-1 0.757 0.407 0.272 0.432 

HAPPS-2 0.772 0.400 0.269 0.430 

HAPPS-3 0.768 0.400 0.269 0.430 

d  

t

 

s  

m  

t  
Species level 

At the species level, the dataset contains 26 classes. Within each

protein class, the species classes were evolutionary-related proteins.

For instance, the protein class “T-cell antigen receptor” has two

species child classes, the human and the murine orthologs, which
isplay 71.5% of amino-acid sequence identity and a strong struc-

ural similarity. 

Therefore, and similarly to the last two SHREC tracks on protein

hape retrieval [10,11] , the performances of the shape comparison

ethods are significantly lowered at the species level compared to

he protein level. The NN values range from 43.8 to 84.4%, while no
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Table 8 

For each method, running times of descriptor computation for one protein, descrip- 

tors comparison and, when applicable, training times. Descriptors computation and 

comparison times are expressed in seconds, training time units are specified. The 

type of hardware (CPU = Central Processing Unit, GPU = Graphics Processing Unit) 

used is indicated in parenthesis. N/A = Not Applicable. 

Method Descriptor calculation Descriptor comparison Training time 

CODSEQ 13.21 (CPU) 0.007 (CPU) 2 h (GPU) 

3DZ 8.0 (CPU) 0.17–0.5 (GPU) 1 week 

WKS/SGWS 37 (CPU) negligible (CPU) N/A 

HAPT 17-112 (CPU) negligible (CPU) N/A 

GraphCNN 0.045 (GPU) negligible (CPU) 1 h (GPU) 

HAPPS 23-45 (CPU) 1.6 (CPU) N/A 
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ethod displays a T1 value greater than 0.46. The PR curve profiles

re characterized by steepest slopes indicating lower precision val-

es at the same recall values when compared to the protein level. 

Machine learning approaches have recently been applied to

rotein surface patches [12] . In the present track, three of the

ix methods make use of learning approaches in their work-

ows. Their performances are comparable to the performances

f the other methods, showing no improvement in the retrieval

esults. Interestingly, the two learning-based methods trained

n SHREC2018 and SHREC2019 tracks on protein shape retrieval

CODSEQ and GraphCNN, respectively) were outperformed by the

earning-based method trained on the whole SCOPe dataset (3DZ).

his latter training dataset encompasses multi-domains protein

hapes while datasets from the last two SHREC tracks on protein

hape retrieval only encompass one-domain protein shapes. Par-

icularly, the CODSEQ method showed lower performances on the

HREC2020 multi-domain protein dataset compared to their train-

ng dataset (see Section 4.1 ) for which the CODSEQ approach shows

elatively high performance. This may originate from the speci-

cites of these two sets (one-domain versus multi-domain proteins

hapes); besides, the CODSEQ was only trained at the protein level.

hese remarks also stand for the GraphCNN method, which used

he dataset from the SHREC2019 track on protein shape retrieval,

nother one-domain protein shapes dataset, to train their network.

Performance / Computation cost trade-off

The Protein Data Bank (PDB) is the most populated database for

he protein structures. As of May 2020, more than 160,0 0 0 struc-

ures have been deposited and more than 11,0 0 0 new structures

re deposited every year. Furthermore, the size of the proteins

eposited is growing as the performance of experimental protein

tructure resolution methods are improving, and the number of

ulti-domain proteins follows this trend. The ability to screen such

 large database in a reasonable time and with acceptable perfor-

ances is therefore a challenge. 

The two main steps of the shape comparison are the computa-

ion of a descriptor for each object, and the comparison between

wo descriptors. Depending on the algorithm, the descriptor com-

utation times are ranging from 8 (3DZ) to 112 (HAPT1) seconds

or descriptors computed on a CPU, and 45 ms for the descriptors

omputed on a GPU (GraphCNN). The comparison between two de-

criptors are in the order of millisecond or below, except for the

DZD and 3DZM descriptor comparisons which are in the range of

.22–0.5 s on a GPU. Regarding the learning-based methods, the

omputation times are ranging from 20 min to 1 week. Carefully

ssessing the performance / computational cost ratio is therefore

equired if one aims to screen a large database as the computation

ost may prove prohibitive for large-scale screening projects. 

. Conclusion 

In the present work, we have presented a dataset of shapes

rom multi-domain proteins. Six groups, among which three used
achine learning approaches in their respective work-flows, sub-

itted 15 sets of results. The performances were assessed at the

rotein and species levels of the SCOPe database. 

Shape retrieval methods displayed high-quality results at the

rotein level. We observed a significant decrease in the perfor-

ances of all the methods at the species level. These results indi-

ate that comparing multi-domains proteins based on their shapes

nly remains challenging, especially for closely related proteins. It

ould be of interest to compare shape-retrieval methods to the ref-

rence methods used in the structural biology community. 

Protein structures in the PDB are highly heterogeneous; miss-

ng (i.e., not solved by the experiment) atoms or residues at the

urface of a protein is a very common phenomenon in PDB struc-

ures and can be considered as a noisy signal for the protein shape

omparison. Their impact on the performances in retieval should

e carefully evaluated. 

It is common in drug design processes to compare proteins in

rder to find out a protein-specific feature against which to design

 new, specific drug and limit drug adverse effects. In the upcom-

ng years, we might propose similar tracks by adding other surfi-

ial properties such as the electrostatic potential to help determine

hether combined methods (shape + surficial properties) improve

he predictive power of the shape-only methods. It may also stim-

late the development of new dedicated, protein-dedicated meth-

ds. 
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