
PHYSICAL REVIEW A 101, 062302 (2020)

Symmetries and entanglement of stabilizer states

Matthias Englbrecht and Barbara Kraus
Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria

(Received 21 February 2020; accepted 4 May 2020; published 1 June 2020)

Stabilizer states constitute a set of pure states which plays a dominant role in quantum error correction,
measurement-based quantum computation, and quantum communication. Central in these applications are the
local symmetries of these states. We characterize all local, invertible (unitary and nonunitary) symmetries of
arbitrary stabilizer states and provide an algorithm which determines them. We demonstrate the usefulness
of these results by showing that the additional local symmetries find applications in entanglement theory
and quantum error correction. More precisely, we study a central problem in entanglement theory, which is
concerned with the existence of transformations via local operations among pure states. We demonstrate that the
identified symmetries enable additional transformations from a stabilizer state to some other multipartite pure
state. Furthermore, we demonstrate how the identified symmetries can be used to construct stabilizer codes with
diagonal transversal gates.
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I. INTRODUCTION

Entanglement has been identified as a crucial property
to investigate, describe, and leverage applications in several
areas of science [1,2]. It is essential for quantum computation
[3] as well as certain quantum communication schemes [4].
Moreover, in the last decade, concepts developed in entan-
glement theory have been utilized in other fields of research
[1]. Hence, an enormous effort has been made to qualify and
quantify entanglement [2]. Despite extensive investigations in
the context of quantum information theory, its detailed char-
acterization and quantifications remain, however, as major
challenges.

A set of states which is key in the aforementioned ap-
plications within quantum information theory is the set of
stabilizer states [5]. An n-qubit stabilizer state is defined as
the unique simultaneous eigenvector of a maximal set of
commuting operators in the Pauli group, which is defined as
the tensor product of either a Pauli operator or the identity
operator. These states, which can be highly entangled, are
used in quantum error correction [6,7], in measurement-based
quantum computation [3], and in self-testing [8], to just name
a few applications. Some of the entanglement properties of
stabilizer states have been investigated [5,9]. Furthermore,
purification protocols have been developed [10]. Stabilizer
states also found applications in proving a separation between
universal quantum computation and computations which are
classically efficiently simulable [11]. Given that all these
applications stem from the rich entanglement capability and
from the local symmetries of these states, the further inves-
tigation of both the entanglement properties and the local
symmetries of stabilizer states is indispensable. Arguably, a
deep understanding of those characteristics will allow one to
identify new applications of multipartite entanglement.

Entanglement theory is a resource theory, where the free
operations are local operations assisted by classical commu-
nication (LOCC). LOCC arose as a natural and operationally

motivated choice of free operations, as entanglement is con-
sidered as a resource shared by different, possibly spatially
separated, parties. Those parties can act locally on their share
of the state and can communicate any classical information to
the other parties (LOCC), who then manipulate their system
accordingly. LOCC extends local unitary (LU) transforma-
tions, where no communication is allowed and the transfor-
mations are restricted to be unitary and, hence, reversible, so
that they do not alter entanglement. As LOCC cannot generate
entanglement, it holds that, whenever a pure state |�〉 can
be transformed deterministically into some other state |�〉,
then the entanglement of the latter is at most as large as the
one of the former. Important to note here is that this holds
true for any entanglement measure. Stated differently, an
entanglement measure is a functional which is nonincreasing
under LOCC. Hence, the study of LOCC transformations
allows to order the set of entangled states. Despite the fact that
LOCC transformations constitute an intricate set of operations
[12], it was recently shown that fully entangled pure states
describing n qudits (homogeneous system) can generically
not be (deterministically) transformed into any other LU-
inequivalent fully entangled pure state [13,14]. Hence, the
partial order which is obtained from the study of possible
LOCC transformations is generically trivial for homogeneous
systems. That is, in stark contrast to the bipartite case [15],
almost all states are isolated; they can neither be reached
from, nor can they be transformed into, another pure LU-
inequivalent state. However, those sets of states which play
a major role in physics, such as tensor network states [16–19]
and the here studied stabilizer states, are always of measure
zero, which implies that the results for generic states might not
be applicable. In fact, the results mentioned above are a conse-
quence of a more general result, which states that pure states
describing n-qudit systems do generically not possess any
local symmetry (other than the identity). As mentioned above,
stabilizer states do not only possess local symmetries, but are
actually defined by their local symmetries. These symmetries
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ensure that stabilizer states can indeed be transformed into
some other LU-inequivalent state via LOCC (see also below).
Apart from the relevance of those local symmetries in entan-
glement theory, they also play an important role in universal
measurement-based quantum computation as recently shown
in [20]. Furthermore, symmetries beyond the Pauli group are
useful in fault-tolerant quantum computing [6,7,21] (see also
Sec. V A). Hence, the identification of additional symmetries
has already been subject to several other works [22–24]. Here,
we go beyond these investigations by providing a complete
characterization of all local symmetries of stabilizer states.
As mentioned before, these additional symmetries are not
only relevant to identify new error correcting codes for which
transversal gates exist, but can also be used to shine light
on entanglement theory. In fact, as we will show, the addi-
tional symmetries can be used to identify previously unknown
transformations which are possible via LOCC, hence, leading
to a nontrivial order of entanglement. Furthermore, these
additional symmetries have been used in [25] to demonstrate
a difference between pure state transformations via separable
maps, which utilize singular matrices and those which do
not. Here, a completely positive map is called separable if it
possesses a decomposition such that all Kraus operators are
local operators. Despite the fact that this is a very abstract
result, it has far-reaching consequences, as it shows that some
of the previous investigations concerning LOCC have to be
revised [25].

The outline of the remaining paper is the following. First,
we introduce our notation and review some relevant results
in the theory of stabilizer states. The aim of Sec. III is to
characterize all possible invertible local symmetries of stabi-
lizer states. As we will see, one can restrict this investigation
to local unitary symmetries, as all other symmetries will be
determined by them. We will first show that a stabilizer state
possessing infinitely many symmetries has to correspond to a
graph which possesses a leaf (see also [23,24]). This refers to
a particular structure of the underlying graph, which can be
easily identified by considering the two-qubit reduced states.
All other states only possess finitely many local symmetries.
We will then show that any additional symmetry implies
the existence of a symmetry which is a local Clifford gate.
In Sec. III B we will then derive necessary and sufficient
conditions for the existence of local Clifford symmetries. An
algorithm to determine then all local (invertible) symmetries
of an arbitrary stabilizer state is presented in Sec. III D. In
Sec. IV we provide examples of states possessing nontriv-
ial symmetries. We illustrate the usefulness of these results
by utilizing them in various contexts in Sec. V. First, we
demonstrate that the additional symmetries can be employed
to identify error-correcting codes, which possess transver-
sal gates [21]. In the context of entanglement theory, the
characterization of the local symmetries of stabilizer states
presented here will be used to provide a general construction
for separable maps among pure states which are more general
than what was previously considered. The consequences of
this result within entanglement theory are explained in [25].
As a final application, we will show that states with additional
symmetry are indeed more powerful in the sense that they
can reach more states via LOCC (where we consider real-
istic LOCC protocols which utilize finitely many rounds of

classical communication). In Sec. VI we conclude and discuss
future research directions.

II. NOTATION AND PRELIMINARIES

First, let us introduce the notation and recall some results
concerning stabilizer states and their symmetries.

A. Notation

In the following, we denote the Pauli operators by X,Y, Z
and the identity operator by 1. Whenever we consider a state
of n qubits the usage of a single subscript for an operator
denotes the system the operator is acting on unless stated
otherwise. If an operator acting on a qubit has two indices O j

k ,
k ∈ N, then the superscript j denotes the qubit the operator is
acting on and the subscript k labels different operators acting
on qubit j. Furthermore, if O is a local operator acting on n
qubits we denote by supp(O) the support of O = O1 ⊗ · · · ⊗
On, i.e., the subset of qubits j for which Oj �∝ 1.

In this paper we determine the local symmetry group of
a general stabilizer state |ψ〉 ∈ (C2)⊗n. We will denote this
group by

Gψ = {G = G1 ⊗ · · · ⊗ Gn ∈ GL(2)⊗n | G|ψ〉 ∝ |ψ〉}. (1)

A subgroup of this local symmetry group consists of the local
unitary symmetries of |ψ〉 which we will refer to as

Uψ = {U = U1 ⊗ · · · ⊗ Un ∈ U (2)⊗n | U |ψ〉 ∝ |ψ〉}. (2)

We will see that in order to determine Gψ for a stabilizer state
it is sufficient to restrict to graph states [5], a special type
of stabilizer state defined by a mathematical graph G(V, E ).
Here, V is the set of vertices of the graph and E ⊆ V × V is
the set of edges. In the following, we consider only simple,
undirected graphs, i.e., graphs without self-loops and double
edges and direction of the edges. Such a graph is in one-to-
one correspondence with a symmetric binary matrix called
adjacency matrix. For a graph G = (V, E ) the adjacency ma-
trix θ ∈ {0, 1}|V |×|V | is defined by θi j = 1 for {i, j} ∈ E and
0 otherwise. For a simple graph, this matrix is symmetric
and has zeros on the diagonal. Let us now introduce some
graph-theoretic terms which will become relevant later on.

Definition 1 (Neighborhood). Let G = (V, E ) be a graph.
Then the neighborhood of vertex j ∈ V , Nj , is the set of
vertices adjacent to j, i.e.,

Nj = {k ∈ V |{ j, k} ∈ E}. (3)

Three graph structures will become important below, leaf
and parent, twin vertices, and connected twin vertices. A
vertex l ∈ V is called leaf if it is connected exactly to one
other vertex, i.e., |Nl | = 1. The vertex it is connected to p ∈ Nl

is called its parent. Moreover, two vertices s, t ∈ V are called
twins if they have the same neighborhood, i.e., Ns = Nt . They
are called connected twins if they share all neighbors and are
connected, i.e., Ns\{t} = Nt\{s} and s ∈ Nt .

Furthermore, we make use of two groups in the following:
the Pauli group and the local Clifford group [7]. We denote by
P1 = 〈X,Y, Z〉 the one-qubit Pauli group. The n-qubit Pauli
group Pn is given by

Pn = 〈{σ1 ⊗ · · · ⊗ σn|σ1, . . . , σn ∈ P1}〉. (4)
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The (local) Clifford group for one qubit is defined as

C1 = {U ∈ U (2)| ∀ σ ∈ P : UσU † ∈ P} (5)

and the n-qubit local Clifford group Cn is defined as the group
generated by the n-fold tensor products of elements of C1, i.e.,

Cn = 〈{c1 ⊗ · · · ⊗ cn|c1, . . . , cn ∈ C1}〉. (6)

The group C1 has 24 elements (up to phases).1 The factor
group C1/P1 has 6 elements and is isomorphic to the symmet-
ric group of 3 elements. The elements of C1 are of the form

σ1eiασ2 , α ∈
{

0,±π

4

}
, (7)

σ1eiβσ2 eiγ σ3 , β, γ ∈
{
±π

4

}
, (8)

where σ1 ∈ {1, X,Y, Z}, σ2, σ3 ∈ {X,Y, Z} with σ2 �= σ3. We
mention the specific form of the elements since it is related
to the order of the element. The order of a group element
c is defined as the smallest integer k ∈ N such that ck =
1. Elements of the form in Eq. (7) have order 1, 2, or 4
and elements of the form in Eq. (8) have order 3. As the
latter subset plays an important role in the following, we
will use the notation C3

1 = {U ∈ C1 \ 1|U 3 = 1}. Furthermore,
we abbreviate local Clifford operators, i.e., operators in Cn,
by LC.

B. Graph states and stabilizer states

A stabilizer state is defined as follows. Let Sψ =
〈g1, . . . , gn〉 ⊂ Pn be an Abelian subgroup of the n-qubit Pauli
group, generated by n-independent elements g1, . . . , gn ∈ Pn

with −1 �∈ Sψ . The state |ψ〉, which is the unique eigenstate
for all elements of Sψ to eigenvalue +1, is called stabilizer
state and Sψ is called its stabilizer. Clearly, we have Sψ ⊆
Uψ ⊆ Gψ .

Every stabilizer state is LC equivalent to a graph state
[5,26]. A graph state is defined via a mathematical graph. For a
graph G = (V, E ) we denote by |G〉 ∈ (C2)⊗n the correspond-
ing graph state defined as

|G〉 =
∏

{i, j}∈E

(Ucz )i j |+〉⊗n. (9)

Here, Ucz denotes the controlled phase gate. The state defined
this way is a stabilizer state and its stabilizer SG is generated
by the operators S( j) = Xj

⊗
k∈Nj

Zk , j ∈ {1, . . . , n} (canoni-
cal generators). Without loss of generality, we consider only
fully entangled stabilizer states in the following, i.e., states
which correspond to fully connected graphs.

Local complementation

There exists a close connection between the local Clifford
group and an operation on graphs called local complementa-
tion which we briefly review here [26]. Given a graph G =
(V, E ), local complementation at a vertex v ∈ V yields a new
graph G′ = (V ′, E ′) with V ′ = V and E ′ = E ⊕ {{a, b}|a, b ∈
Nv, a �= b} where ⊕ is the exclusive OR for sets, i.e., it

1We do not need to consider these phases as we do identify all
symmetries in GL [see Eqs. (1) and (2)].

contains only those edges which are elements of exactly one
of the sets. In other words, local complementation at vertex v

complements the subgraph spanned by the neighborhood of v.
The corresponding graph states |G〉 and |G′〉 are related by an
LC operation [26] as follows:

|G′〉 = e−i π
4 Xv ⊗

⊗
j∈Nv

ei π
4 Z j |G〉. (10)

One can show that a graph state |G1〉 is LC equivalent
to another graph state |G2〉, i.e., there exists a C ∈ Cn such
that |G1〉 = C|G2〉, iff G1 is equivalent to G2 up to a se-
quence of local complementations [26]. As we will show
in the following, a leaf in a graph is associated with an
additional symmetry of the corresponding graph state. Clearly,
any graph obtained by local complementation also possesses
an additional symmetry. As was shown in [27], using local
complementation one can switch the role of leaf and parent,
turn leaf and parent into twin vertices or into connected twin
vertices. Note that this is the whole orbit of a leaf parent pair
under local complementation.

Before we study the additional symmetries of graph
states, let us make some simple observations. First note that
eiαS|G〉 ∝ |G〉 holds for any α ∈ R and S ∈ SG. However,
it can be easily seen that such an operator is never lo-
cal. Next, we have that exp(iαXj )|G〉 = exp(iα

⊗
k∈Nj

Zk )|G〉
for any qubit j where the operator exp(iα

⊗
k∈Nj

Zk ) is in
general (unless |Nj | = 1, i.e., vertex j is a leaf) nonlo-
cal. Let us remark here that using local complementation
one can see that for α = π/4 we have exp(iαXj )|G〉 =⊗

k∈Nj
exp(iαZk )

∏
m �=n∈Nj

(Ucz )mn|G〉 [see Eq. (10)].

C. Additional symmetries of stabilizer states

We investigate here all symmetries of stabilizer states.
That is, we characterize the group Gψ for a general stabilizer
state |ψ〉 ∈ (C2)⊗n. This characterization is simplified by the
following two observations. First, as mentioned above, every
stabilizer state is LC equivalent to a graph state [26]. Hence,
we can restrict the considerations to graph states. Second, any
graph state is critical, i.e., all single-qubit reduced states are
proportional to the identity. For these states local invertible
symmetries result from local unitary ones [28]. Hence, it is
sufficient to characterize local unitary symmetries to deter-
mine the whole local symmetry group in GL⊗n. Thus, the
question we have to answer is as follows: What is the form
of UG for a general graph state |G〉 ∈ (C2)⊗n?

Let us also mention here that the fact that there always
exists only one critical state in an SLOCC class (up to LUs)
and the fact that stabilizer states are critical imply that no pair
of stabilizer states is SLOCC equivalent unless it is LU equiv-
alent [29]. Here, SLOCC denotes stochastic local operations
assisted by classical communication (LOCC). Mathematically
speaking, two states |ψ〉 and |φ〉 are SLOCC equivalent, i.e.,
they belong to the same SLOCC class, iff there exists a local
invertible operator h = h1 ⊗ · · · ⊗ hn such that |ψ〉 = h|φ〉.

The problem of LU equivalence of stabilizer states has
been extensively studied in the literature [30–32]. Here, we
recall some results, which are needed subsequently. Let us
begin by recalling the definition of semi-Clifford operators.
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Definition 2 (Semi-Clifford). An operator O ∈ U (2) is
called semi-Clifford if there exists σ ∈ {X,Y, Z} such that
UσU † ∈ P1.

Hence, in contrast to Clifford operators, which leave the
whole Pauli group invariant, a semi-Clifford operator only
maps at least one Pauli operator back to the Pauli group. A
local operator O = O1 ⊗ · · · ⊗ On ∈ U (2)⊗n is called a local
semi-Clifford operator if Oj is a semi-Clifford operator for all
j ∈ {1, . . . , n}. It is straightforward to show (see Appendix A)
that U is a semi-Clifford operator iff it can be written as

U ∝ Ceiασ , (11)

where C ∈ C1, α ∈ R, and σ ∈ {X,Y, Z}. Thus, up to local
Clifford operators, a semi-Clifford operator is diagonal [32],
i.e., U = C exp(iασ ) = CE exp(iαZ )E† where E ∈ C1 is the
Clifford operator mapping σ to Z . It was shown in [32] that
LU operators relating stabilizer states have to be local semi-
Clifford operators as stated in the following theorem.

Theorem 1 (Reference [32]). Let |ψ〉 and |ψ ′〉 be fully
entangled, LU-equivalent stabilizer states on n � 3 qubits and
let U = U1 ⊗ · · · ⊗ Un ∈ U (2)⊗n be such that U |ψ〉 = |ψ ′〉.
Then, U is a local semi-Clifford operator.

Let us also make the following simple observations regard-
ing the local symmetries of a stabilizer state.

Observation 1. Let |ψ〉 be a stabilizer state and let P ∈ Pn

be a symmetry, i.e., P ∈ Uψ . Then, there exists a λ ∈ {±1,±i}
such that λP ∈ Sψ .

This can be easily seen by observing that P has to commute
with all elements of Sψ . In order to verify this, suppose
that P|ψ〉 = α|ψ〉 with α ∈ C. If P does not commute with
all elements of Sψ there would exist a S ∈ Sψ such that
SP|ψ〉 = −PS|ψ〉 = −α|ψ〉 and SP|ψ〉 = α|ψ〉 which leads
to a contradiction. As Sψ is a maximal set of commuting Pauli
operators, we conclude that α−1P ∈ Sψ .

Observation 2. There exists no local symmetry of a (fully
entangled) stabilizer state which acts nontrivially only on one
qubit.

This observation can be easily proven by noting that |ψ〉 =
|0〉|ψ0〉 + |1〉|ψ1〉, where 〈ψ1|ψ0〉 = 0. Hence, U1 ⊗ 1|ψ〉 ∝
|ψ〉 iff U1 is proportional to the identity.

III. SYMMETRIES OF STABILIZER STATES

Using Theorem 1 we first derive necessary conditions on
the local symmetries of an arbitrary stabilizer state. More
precisely, we show that any Uj being part of a symmetry of
a stabilizer state has to be either an LC operator of order 3,
or of some other particular form. We will then study these
two cases separately and will derive necessary conditions for
the existence of these symmetries. As we will see, unless the
graph state contains a leaf, only discrete symmetries exist.
Note that this was already shown in [23,24]. Furthermore, we
will show that all other symmetries can be derived by char-
acterizing the local Clifford symmetries of graph states, for
which we present necessary and sufficient, easily computable,
conditions. Finally, we will present an algorithm which deter-
mines all symmetries of an arbitrary graph (stabilizer) state.

Let us start out by characterizing the local unitary symme-
tries for an arbitrary graph state. As shown in the following

theorem, these symmetries can be constrained to a very spe-
cial form.

Theorem 2. Let |ψ〉 ∈ (C2)⊗n be a fully entangled stabi-
lizer state and let U ∈ Uψ be a local symmetry of |ψ〉. Then,

Uj ∝
{

Cj,

σ
j

1 eiα jσ
j

2
(12)

with Cj ∈ C3
1 , α j ∈ R, σ

j
1 ∈ {1, X,Y, Z}, and σ

j
2 ∈ {X,Y, Z}

for all j ∈ {1, . . . , n}.
Hence, any unitary which could potentially occur as a

tensor factor of a local symmetry of a stabilizer state must
be either a local Clifford operator of order 3, or of the form
σ

j
1 exp(iα jσ

j
2 ). Note that the latter form includes all other

Clifford operators. To show Theorem 2 we make use of
Theorem 1 which implies that any symmetry U ∈ UG has to
be a local semi-Clifford operator. As UG forms a group, the
same has to hold for U 2 ∈ UG. Using this it is straightforward
to derive Theorem 2. For a detailed proof, we refer the reader
to Appendix B.

In the subsequent sections we will derive necessary con-
ditions on the existence of those symmetries. To this end, we
will first consider graph states for which all U ∈ UG are such
that all Uj ∝ σ

j
1 exp(iα jσ

j
2 ). Let us denote this set of graph

states by

T = {|G〉| ∀ U ∈ UG,U = ⊗kUk, where Uk /∈ C3
1 ∀ k

}
.

(13)

Note that T also contains all graph states with no additional
symmetries (SG = UG). It will become clear later on that the
set of all graph states can be divided into T and a set of graph
states with LC symmetries of order 3. The reason for that is
that as soon as one of the tensor factors Uj in a local symmetry
U is a Clifford operator of order 3, then all other Uk must
also be elements of C3

1 (see Lemma 1), i.e., the graph state
has a local symmetry in which every tensor factor is an LC
of order 3. Furthermore, combining this with Theorem 2 and
the group properties of the local symmetry group we find that
graph states not in T can only have LC symmetries. While
graph states in T can have LC symmetries as well (however,
only of order 4), more general local symmetries are possible
for these states.

A. Symmetries for graph states in T

Let us first investigate under which conditions a graph state
|G〉 ∈ T can have additional symmetries. Recall that for these
graph states any U ∈ UG is such that Uj ∝ σ

j
1 exp(iα jσ

j
2 )

for any j. Note that for a given graph state |G〉 ∈ T , there
exists only one σ

j
2 ∈ {X,Y, Z} for all U ∈ UG with Uj ∝

σ
j

1 exp(iα jσ
j

2 ) and α j �= π/2 + kπ , k ∈ Z. This is again a
consequence of Theorem 2 and the group properties of UG.

We will show that either the graph contains a leaf (up to
local complementation), or the phases α j can only take values
πm/2n for some m, n ∈ N (without loss of generality) we
assume that m < 2n. As we will see later on (Sec. V A) this
statement also follows from [33]. Let us first show that α j can
be different from πm/2n only if qubit j is a leaf (up to local
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complementation), as stated in the following theorem. Note
that here and in the following we consider the respective graph
state up to permutations of the qubits. Hence, if we consider a
single qubit, we can choose qubit 1.

Theorem 3. Let |G〉 ∈ T be a graph state on n qubits and
let U ∈ UG with U1 ∝ σ 1

1 exp(iα1σ
1
2 ) be such that α1 �= m1π

2n1

for any m1, n1 ∈ N. Then, the vertex 1 is a leaf up to local
complementation.

Proof. Let U ∈ UG be such that U1 ∝ σ 1
1 exp(iα1σ

1
2 ) and

α1 �= m1π
2n1

for any m1, n1 ∈ N. Since |G〉 ∈ T , also Uj ∝
σ

j
1 exp(iα jσ

j
2 ) for j ∈ {2, . . . , n}. Note that for any V ∈ UG

it holds that SV ∈ UG for any S ∈ SG, and that V 2,V † ∈ UG.
We use these properties to construct out of U a new local
symmetry of |G〉 (or of a graph state that is LC equivalent
to |G〉). This symmetry acts nontrivially only on qubit 1
unless vertex 1 is a leaf up to local complementation. Due to
Observation 2, we conclude that vertex 1 is a leaf up to local
complementation.

Without loss of generality, we have σ
j

1 �= σ
j

2 for all j ∈
{1, . . . , n}. Moreover, if σ 1

1 �∝ 1 we consider SU instead of
U where S ∈ SG is chosen such that S1 = σ 1

1 . This is always
possible as we consider fully connected graphs. Furthermore,
let us show that it is sufficient to restrict ourselves to the case
where σ 1

2 = Z . This follows from that fact that any other σ 1
2

can be transformed into Z via local complementation. To be
more precise, in case σ 1

2 = X local complementation at any
qubit in N1 followed by local complementation at qubit 1 leads
to a new graph state for which the symmetry corresponding to
U satisfies σ

j
2 = Z . In case σ 1

2 = Y , this is achieved by local
complementation on qubit 1. The symmetry of the new graph
is related to U by conjugation with LC operators. Note that
this does not change the phases α j . Hence, without loss of
generality we consider the case σ 1

2 = Z .2

Thus, it remains to show the following. If U1 = exp(iα1Z )
with α1 �= m1π

2n1
for any m1, n1 ∈ N is a local tensor factor

of a unitary symmetry U of a graph state, then vertex 1
is a leaf (up to local complementation). To show this, let
us consider the new local symmetry of this graph state
A = U 2S(1)((U )2)†S(1) ∈ UG, where S(1) ∈ SG is the canonical
generator corresponding to qubit 1. Observe that for σk, σ j ∈
{X,Y, Z} we have that [σk exp(iασ j )]2 = 1 if σk �= σ j and
[σk exp(iασ j )]2 = exp(i2ασ j ) if σk = σ j . Thus, the symmetry
A satisfies supp(A) ⊆ N1 ∪ {1} and A1 = e4iα1Z �∝ 1 as α1 �=
mπ/2n. Furthermore, Aj ∝ exp(iβ jσ

j
2 ) with β j = 0 if σ

j
2 = Z

or σ
j

1 �∝ 1 and β j = 4α j if σ
j

2 ∈ {X,Y } and σ
j

1 ∝ 1 for all
j ∈ N1. Let B denote the symmetry we obtain by multiplying
A with S( j) and squaring the result subsequently for every
qubit j ∈ N1 with β j �= 0 and σ

j
2 = Y . Note that (S( j) )1 = Z

for all j ∈ N1 and, hence, B1 �∝ 1. Note further that supp(B) ⊆
N1 ∪ {1} and that if Bj �∝ 1, then σ

j
2 = X must hold. For any

qubit j ∈ N1 which has a neighbor k ∈ Nj different from qubit
1 and for which Bj is nontrivial, we multiply B with S(k) and
square the result. Since k �= 1 we have (S(k) )1 = 1 or Z . Let

2If instead we do not use local complementation and consider
the three cases σ 1

2 = X,Y, Z separately we identify the structures
corresponding to a leaf under local complementation, i.e., twin
vertices and connected twins.

B′ be the symmetry obtained in this process. By construction,
(B′)1 �∝ 1 and (B′) j ∝ 1 ∀ j : Nj\{1} �= ∅. Due to Observation
2 we conclude that there has to exist at least one qubit j ∈ N1

such that Nj = {1}. Hence, performing local complementation
at qubit 1 followed by a qubit j with Nj = {1} turns qubit 1
into a leaf, which implies the assertion. �

Applying the reasoning of this proof to a vertex j which
is not a leaf (under local complementation) we can derive
bounds on nj where α j = mjπ/2n j , as shown in the following.

Corollary 1. Let |G〉 ∈ T be a graph state on n qubits and
let U ∈ UG be such that U1 ∝ σ 1

1 exp(iα1σ
1
2 ). Then, if vertex

1 is not a leaf under local complementation it holds that α1 =
m1π/2n1 with m1, n1 ∈ N and n1 � |N1| + 2 if σ 1

2 ∈ {Z,Y }
and n1 � min j∈N1 |Nj | + 2 if σ 1

2 = X (for |m1| < 2n1 ).
Proof. If vertex 1 is not a leaf under local complementation

then by Theorem 3 we have U1 ∝ σ 1
1 exp(iα1σ

1
2 ) with α1 =

mπ/2n1 and m1, n1 ∈ N. Let us again construct the symmetry
B′ from the proof to Theorem 3 for vertex 1. Since vertex 1 is
not a leaf under local complementation we have that (B′) j ∝
1 for all j �= 1. Using again Observation 2 we conclude that
(B′)1 ∝ 1. Counting the number of times we had to square
U1 (and U †

1 ) in the worst case to get B′ leads to the stated
bounds. �

Theorem 3 shows that symmetries with phases α �= mπ/2n

can only exist in case the graph possesses (up to local com-
plementation) a leaf. In this case, the phase can indeed be
arbitrary, as stated in the following observation.

Observation 3. Let |G〉 be a graph state on n � 3 qubits.
Let qubits 1 and 2 be a leaf parent pair. Then,

U = eiαX ⊗ e−iαZ ⊗ 1 α ∈ R (14)

is in UG. Moreover, there exists no other unitary symmetry of
the form U1 ⊗ U2 ⊗ 1 ∈ UG.

Whereas this result has already been derived in several
other works (see [23,24]), we present a different proof in
Appendix D. If qubits 1 and 2 are a leaf parent pair only
up to local complementation, it was shown in [27] that the
only possible structures are twin vertices or connected twins.
It is easy to see that if the qubits are twin vertices, then
U = exp(iαX ) ⊗ exp(−iαX ) ⊗ 1, if they are connected twins
U = exp(iαY ) ⊗ exp(−iαY ) ⊗ 1, which are of course LC
equivalent.

We call the unitary symmetry group resulting from the ex-
istence of leaf in the following leaf symmetry and denote the
group generated by all leaf symmetries of a graph by LG. Let
us now investigate those symmetries which do not stem from
a leaf symmetry. To this end, we consider the factor group
UG/LG. Note that this is possible as LG is a normal subgroup
of UG. For a subgroup to be normal it has to be invariant
under conjugation by all group elements (UG) [34]. For LG

this property can be shown as follows. For any leaf parent pair
( j, k), the subgroup L( j,k)

G = {exp(iαXj ) ⊗ exp(−iαZk )|α ∈
R} generated by the respective leaf symmetry is normal. This
holds as the conjugation of any element of L( j,k)

G by a U ∈ UG

does not change the support of the respective element. Thus,
according to Observation 3, the resulting symmetry has to
come from the leaf symmetry corresponding to the leaf parent
pair ( j, k) and thus is again an element of L( j,k)

G . Since the
group generated by the union of normal subgroups is again a
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normal subgroup, we conclude that LG is a normal subgroup
of UG. Let us now show that any symmetry is, up to leaf
symmetries, of the form as given in Theorem 3 as stated in
the following corollary.

Corollary 2. Let |G〉 ∈ T be a graph state on n qubits with
U ∈ UG and U �∈ SG. Then, for every element W ∈ UG/LG

there exists an element V ∈ W with Vj = σ
j

1 exp(iα jσ
j

2 ) such
that α j = mjπ/2n j with mj, n j ∈ N.

Proof. Choose an element A ∈ W . Suppose that A1 =
σ 1

1 exp(iα1σ
1
2 ) with α1 �= m1π/2n1 for m1, n1 ∈ N.3 Then, by

Theorem 3 we know that vertex 1 is a leaf up to local comple-
mentation. Using the same arguments as in the proof of Theo-
rem 3 we can assume without loss of generality that σ 1

2 = Z .4

Let M1 = { j ∈ N1|Nj = {1}} be the set of all leaves connected
to 1. For every leaf j ∈ M1, the corresponding graph state has
the symmetry exp(iαZ1) ⊗ exp(−iαXj ), α ∈ R (Observation
3). Combining this with the fact that any symmetry of a
graph state has to be of the form stated in Theorem 2 and
the group properties of UG we conclude that for all Aj with
j ∈ M1 we have that σ

j
2 = X unless α j = π/2 + kπ , k ∈ Z.

Let M ′
1 denote the set of j ∈ M1 for which α j �= π/2 + kπ .

Then, for every pair (1, j) where j ∈ M ′
1 multiply A with

the corresponding leaf symmetry exp(iα1Z1) ⊗ exp(−iα jXj )
from the right obtaining

A′ ∝ Re
i(α1+

∑
j∈M′

1
α j )Z ⊗ 1 j∈Pl ⊗ · · · , (15)

where R ∈ Pn contains all Pauli operators appearing in all
tensor factors and the other local tensor factors are the same
as in A (except for multiplication by R). By construction we
have that A′ ∈ W . Computing again the symmetry B′ as in the
proof of Theorem 3 starting from A′ with respect to vertex 1
we obtain that

B′ ∝ e
i2N (α1+

∑
j∈P′

1
α j )Z ⊗ 1, (16)

where N ∈ N is the number of times we squared A′ during
this process. By Observation 2 we know that

α1 +
∑
j∈P′

1

α j = 2πk

2N
k ∈ Z (17)

has to hold. Repeating this argument for all j �∈ N1 ∪ {1} with
α j �= mjπ/2n j we obtain a representative V ∈ W with the
desired properties. �

Due to Corollary 2 and Observation 3 we have that any
stabilizer state, which is LC equivalent to a graph state in T ,
possesses a continuous symmetry group and, hence, nonuni-
tary regular local symmetries [28], iff the corresponding graph
state contains a leaf. Combining this with the fact that any
graph state not in T can have only LC symmetries this
statement holds true for arbitrary stabilizer states.

Theorem 3 together with Corollary 2 characterizes the
form of all symmetries which are non-Clifford, again for

3As mentioned before, we consider the graph states up to permuta-
tions.

4In contrast to the proof of Theorem 3, one would need to apply the
inverse LC operation afterward as we consider here one particular
graph state, not only a state up to local complementation. However,
this does not alter the subsequent argument.

arbitrary graph states since if |G〉 �∈ T it can only have LC
symmetries (see Lemma 1 below). We will show now that
such a symmetry can only exist in case there exists a (nontriv-
ial) Clifford symmetry of order 4. In the subsequent section,
we will then derive necessary and sufficient conditions for all
Clifford symmetries.

Corollary 3. Let |G〉 ∈ T be a graph state on n qubits with
SG � UG. Then, |G〉 has a local Clifford symmetry of order 4.
Moreover, for any W ∈ UG/LG, which does not correspond to
an element of SG, there exists l ∈ N, S ∈ SG, and V ∈ W such
that (SV )l ∈ UG is an LC symmetry of order 4 and (SV )l �∈
〈SG ∪ LG〉.

Proof. Since |G〉 ∈ T and SG � UG, we know from The-
orem 3 that G either contains a leaf (up to local com-
plementation) or there exists a U ∈ UG, U �∈ SG such that
Uj ∝ σ

j
1 exp(iα jσ

j
2 ) with α j = mjπ/2n j , mj, n j ∈ N for all

j ∈ {1, . . . , n}. Let us first consider the case where G does
not contain a leaf and enumerate the qubits without loss of
generality such that n1 � n2 � · · · � nn. Since U �∈ SG we
know that n1 � 2. If σ 1

1 �∝ 1 we multiply U with a suitable S ∈
SG such that (SU )1 ∝ exp(iα1σ

1
2 ). By squaring the resulting

symmetry n1 − 2 times we obtain a new symmetry U ′ =
(SU )l with l = 2n1−2. By construction, U ′ ∈ Cn, (U ′)2 �∝ 1
and (U ′)4 = 1. Hence, U ′ is an LC symmetry of order 4
for |G〉.

If G contains one or more leafs (up to local complemen-
tation), then for every leaf l with parent p we know by
Observation 3 that in particular exp(iπ/4Xl ) ⊗ exp(−iπ/4Zp)
is a symmetry of |G〉. Thus, |G〉 has an LC symmetry of
order 4.

In order to prove the last statement in Corollary 3, let us
suppose there exists a W ∈ UG/LG which does not correspond
to an element of SG, i.e., |G〉 has more nontrivial symmetries
than what is generated by leaf symmetries and its stabilizer.
We consider again the representative V from the proof to
Corollary 2. Applying the same reasoning to V as above to
the symmetry U , we obtain a symmetry V ′ which again is an
LC of order 4 for |G〉. Considering the construction of V (and
V ′), it is easy to see that V ′ �∈ 〈SG ∪ LG〉. �

Corollary 3 implies that any local, non-Clifford symmetry
for a graph state |G〉 ∈ T up to multiplication with leaf sym-
metries and an element of the stabilizer is a root of an LC
symmetry of order 4. Since graph states not in T only allow
for LC symmetries (Lemma 1) we conclude that this statement
holds for all graph states.

B. Clifford symmetries

In this section we first show that it is reasonable to separate
graph states in T from those which are not in T . The reason
for that is that the latter only admit LC symmetries. In com-
bination with Corollary 3, we have that in order to identify
all graph states with additional symmetries it is sufficient
to characterize those with LC symmetries. We then present
necessary and sufficient conditions on the adjacency matrix
of the corresponding graph to identify these symmetries.

Recall that any graph state not in T has a symmetry U ∈
UG such that Uj ∈ C3

1 for at least one j ∈ {1, . . . , n}. In the
following lemma, we show that such graph states can only
have LC symmetries.
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Lemma 1. Let |G〉 be a graph state on n qubits and let U ∈
UG be such that U1 ∈ C3

1 . Then, Uj ∈ C3
1 for all j ∈ {1, . . . , n}.

Moreover, any other symmetry of the graph state is a local
Clifford operator, i.e., UG ⊆ Cn.

A proof for this lemma is provided in Appendix C. This
lemma implies that any graph state not in T only allows for
LC symmetries. Furthermore, there is no mixing between LC
factors of order 3 and order 4 within a single symmetry. Note,
however, that there are graph states for which an LC symmetry
of order 3 is a product of two different LC symmetries of order
4 [Fig. 3(a)].

According to Corollary 3 any graph state in T with an
additional symmetry (SG � UG) also has an LC symmetry of
order 4. Combining this with Lemma 1 we see that in order to
find all graphs with additional symmetries we have to identify
which graph states admit LC symmetries of order 3 and 4.
Let us now derive necessary and sufficient conditions for the
existence of these symmetries. As we will see, they lead to
different conditions on the adjacency matrix of the graph
depending on whether the graph state possesses symmetries
of order 3 or 4. In [35] the following theorem, which is crucial
for the characterization of LC symmetries, has been shown.

Theorem 4 (Reference [35]). Two graph states |G〉 and |G′〉
on n qubits defined by adjacency matrices θ and θ ′ are related
via a local Clifford operation iff there exist diagonal binary
matrices A, B,C, D ∈ Mn×n satisfying

AD + BC = 1 (18)

such that

0 = θ ′Cθ + Aθ + θ ′D + B. (19)

All computations are carried out over Z2. To show this
theorem, the authors make use of the fact that the stabilizer
formalism has a representation in terms of binary matrices
[6,26]. In this representation, a Pauli operator p ∈ P1 corre-
sponds to the following 2 × 1 matrices, which we denote by
b(p):

b(1) =
(

0
0

)
, b(X ) =

(
0
1

)
,

b(Y ) =
(

1
1

)
, b(Z ) =

(
1
0

)
.

(20)

Analogously, an element p ∈ Pn is represented by a 2n × 1
matrix b(p) which is defined as follows:

b(p)i,1 = b(pi )1,1, (21)

b(p)i+n,1 = b(pi )2,1, (22)

for i ∈ {1, . . . , n}. Note that this representation does not con-
tain information about additional phases. Furthermore, in this
representation a graph state can be associated to a 2n × 2n
matrix where the columns represent a set of generators for its
stabilizer. Using the canonical set of generators, this matrix is
(θ, 1) where θ is the adjacency matrix of the corresponding
graph.

In this representation the action of a local Clifford operator
on a graph state corresponds to the multiplication of (θ, 1)

TABLE I. Local Clifford operations of order 3 (last two) and 4 in
the binary and standard representation.

b(C)
(

1 0
0 1

) (
1 1
0 1

) (
0 1
1 0

) (
1 0
1 1

) (
0 1
1 1

) (
1 1
1 0

)
C 1 ei π

4 Z ei π
4 Y ei π

4 X ei π
4 Z ei π

4 Y ei π
4 X ei π

4 Y

(from the left) with a 2n × 2n matrix

Q =
(

A B
C D

)
, (23)

where A, B,C, D are n × n diagonal matrices. The Clifford
operation applied to qubit j is given by the submatrix Qj =
((Aj j, Bj j ), (Cj j, Dj j )) and, as it is invertible, it has to satisfy
det Qj = 1. As mentioned before, phases are not represented
in this picture, that is, for instance, X and ZXZ = −X have
the same representation. This implies that Clifford operators
which are related to each other via local Pauli operators are
mapped to the same matrix Q. As |C1\P1| = 6, a single-qubit
Clifford operator is mapped to one out of six different matrices
Q by this representation. Table I shows the matrix Q together
with a representative of the corresponding equivalence class
in C1\P1.

We utilize now Theorem 4 together with the binary repre-
sentation explained above to determine the LC symmetries of
an arbitrary graph state. For our purpose we consider θ = θ ′.
As we will see, solving Eq. (19) leads to two possible cases.
The first characterizes all LC symmetries of order 3 and the
second characterizes LC symmetries of order 4, as stated in
the subsequent theorems.

As explained above, the binary representation of the sta-
bilizer does not allow to determine local Pauli operators (as
they only change the sign of elements of the stabilizer under
conjugation). However, note that for any U with U |G〉 ∝ P|G〉
it holds that Z �kU |G〉 ∝ |G〉, where �k is such that P|G〉 ∝
Z �k|G〉 [5]. Thus, to determine the local symmetry including
local Pauli operators we choose a representative of U found
as explained below and check whether Z �kU is a symmetry
for some �k. Note that for any U there exists a unique �k such
that Z �kU ∈ UG. Otherwise, there would exist an element of SG

that is just a tensor product of Z operators and 1 (which is not
possible as can be easily verified considering the canonical
generators). Let us now state the theorem which identifies
graph states with LC symmetries of order 3.

Theorem 5. Let |G〉 be a graph state on n qubits and let θ be
the adjacency matrix of the corresponding graph. Then, there
exists some U ∈ UG with Uj ∈ C3

1 (for some j ∈ {1, . . . , n})
iff there exists d � n and an ordering of the vertices such that

θ2 =
(

θ00 + 1 0
0 θ11 + 1

)
, (24)

where θ = ((θ00, θ01), (θ10, θ11)), θ00 ∈ Md×d , and θ11 ∈
M(n−d )×(n−d ). Furthermore, the solutions to Eq. (24) corre-
spond uniquely to LC symmetries of order 3 of |G〉 [up to
multiplication (from left and right) by elements of the stabi-
lizer]. More precisely, given an ordering for which a solution
exists, the symmetry is given by V ⊗d ⊗ W ⊗n−d , where V =
e±iπ/4X e±iπ/4Y and W = e±iπ/4Z e±iπ/4Y , for some choice of
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signs of the phases (independently on each qubit). Moreover,
it holds that (−1)k1Y ⊗n, (−1)k2 X ⊗d ⊗ Z⊗n−d ∈ SG for some
k1, k2 ∈ {0, 1} and that d �= 0, n.

According to Theorem 5, any LC symmetry of order 3 of a
graph state has to be a product of square roots of two elements
of the stabilizer (up to local Pauli operators), which up to
permutations of the qubits are of the form Y ⊗n, X ⊗d ⊗ Z⊗n−d .
Note that, as mentioned before, using the binary represen-
tation of the stabilizer state, the symmetries can only be
determined up to local Pauli operators. However, as stated in
the theorem, these Pauli operators do not need to be computed,
as it can be shown that their effect can be compensated by
choosing the phases properly. More precisely, it can be shown
that if PV ⊗d ⊗ W ⊗n−d ∈ UG, then, there exists an assignment
of the phases in the exponent of the LC operations of order 3,
such that the resulting LC operator of order 3 is a symmetry
with no additional Pauli operator (see proof of Theorem 5).
Hence, the local Pauli operators are not required in this case.
Before proving this theorem, let us state the necessary and
sufficient conditions for the existence of a LC symmetry of
order 4.

Theorem 6. Let |G〉 be a graph state on n qubits and let
θ be the adjacency matrix of the corresponding graph. Then,
there exists U ∈ UG such that U ∈ Cn, U �∈ SG, and U 4 = 1
iff there exists d � n and an ordering of the vertices such that

(θ00 + X )2 = 0, (25)

(θ00 + X )θ01 = 0, (26)

θT
01θ01 + Y = 0, (27)

where X and Y are diagonal matrices with Xii = ∑
j�d θi j ,

Yii = ∑
j�d θi+d, j , θ = ((θ00, θ01), (θ10, θ11)), θ00 ∈ Md×d ,

and θ11 ∈ M(n−d )×(n−d ). Furthermore, the solutions to
Eqs. (25)–(27) correspond uniquely to a symmetry U
(up to local Pauli operators). Moreover, if

⊗
j eiπ/4σ j ⊗ 1 is

an LC symmetry of |G〉 (up to local Pauli operators), then
(−1)k

⊗
j σ j ∈ SG for some k ∈ {0, 1}.

We use Theorem 4 to prove Theorems 5 and 6.5 As we will
see, we have to consider two cases, where one corresponds to
the proof of Theorem 5 and the other to the proof of Theorem
6. Using θ = θ ′ in Eq. (19) leads to

0 = θCθ + Aθ + θD + B. (28)

As θ is symmetric we also have

0 = θCθ + θA + Dθ + B. (29)

Adding both equations (modulo 2) leads to

[θ, A + D] = 0. (30)

As θ corresponds to a connected graph, i.e., in each column
and each row there exists at least one nonvanishing entry,
the last equation is fulfilled iff A + D = 0, 1. We treat case
(i), where A = D + 1, which corresponds to LC of order 3
(Theorem 5) and case (ii), where A = D, which corresponds
to LC of order 4 (Theorem 6), separately (see also Table I).

5Note that for the symmetries in Theorem 5 we require that only
one of the tensor factors is a Clifford of order 3. However, Lemma 1
implies that then all the other factors are in C3

1 as well.

Proof of Theorem 5. Let us first consider case (i), i.e.,
A = D + 1. Inserting this in Eq. (18) leads to BC = 1 or
equivalently to B = C = 1. Hence, the Clifford operator (of
order 3) applied to |G〉 is of the form

Q =
(

A 1
1 A + 1

)
. (31)

As can be easily seen (see Table I), this implies that there
exists an LC of order 3 iff all parts of the symmetry are LCs of
order 3. This provides an alternative proof to the fact that LC
symmetries, which contain factors of order 3, have a Clifford
operator of order 3 on every qubit (see Lemma 1). Using these
findings in Eq. (28) we get

0 = θ2 + Aθ + θA + θ + 1. (32)

Choosing now an ordering of the vertices in the graph such
that A = ((1d×d , 0), (0, 0)) we find

0 =
(

θ00 θ01

θT
01 θ11

)2

+
(

θ00 θ01

0 0

)

+
(

θ00 0

θT
01 0

)
+

(
θ00 θ01

θT
01 θ11

)
+ 1. (33)

As the addition is modulo 2, we obtain the necessary and
sufficient condition stated in Theorem 5. Up to local Pauli
operators the operator V ⊗d ⊗ W ⊗n−d with V = eiπ/4X eiπ/4Y

and W = eiπ/4Z eiπ/4Y is the operator corresponding to Q (see
Table I). As mentioned above, for any U such that U |G〉 ∝
P|G〉 the Pauli operator P is unique up to multiplication with
elements of the stabilizer. Thus, we conclude that Q uniquely
corresponds to an LC symmetry of order 3 up to multiplication
with elements of the stabilizer. Next, we show that there
exists a choice for the signs in the exponent of the symmetry
such that P can be chosen to be the identity. Let P(V ⊗d ⊗
W ⊗n−d ) ∈ UG. Every local factor of this symmetry is of the
form Pj exp[i(−1)k j

1 π/4σ
j

1 ] exp[i(−1)k2
j π/4σ

j
2 ], k j

1 = k j
2 = 0

for all j. Using the fact that exp(iπ/4σ ) = iσ exp(−iπ/4σ )
for σ ∈ {X,Y, Z} and by choosing appropriate values for the
variables k j

1 and k j
2 it is clear that one can obtain the additional

factor Pj . Using this for every qubit the claim follows.
Next, we show that Y ⊗n, X ⊗d ⊗ Z⊗n−d ∈ SG. Observe

that the only operators in Eq. (32) with nonzero entries
on the diagonal are 1 and θ2. Thus, for every qubit j it
has to hold that

∑
k θ jkθ jk = ∑

k θ jk = 1 which is equiva-
lent to the statement that every qubit has an odd number
of neighbors. Thus, the product of all canonical genera-
tors yields

∏
j S( j) ∝ Y ⊗n and, consequently, (−1)k1Y ⊗n ∈

SG for some k1 ∈ {0, 1}. To show that X ⊗d ⊗ Z⊗n−d ∈
SG, let us write the operator corresponding to the sym-
metry Q as PC1C2 where P ∈ Pn, C1 = [exp(iπ/4X )]⊗d ⊗
[exp(iπ/4Z )]⊗(n−d ) and C2 = [exp(iπ/4Y )]⊗n. Here, P is
chosen such that the sign of the exponent of all tensor
factors is positive. Since (−1)k1Y ⊗n ∈ SG and [Y ⊗n,C2] = 0
also (−1)k1 PC1Y ⊗nC2 ∈ UG and PC1Y ⊗nC2(PC1C2)†Y ⊗n =
PC1Y ⊗nC†

1 P†Y ⊗n = ±C2
1 ∈ UG where the last equation holds

as ±C2
1 ∈ Pn. Thus, ±C2

1 |G〉 = |G〉. Due to Observation 1 we
have that C2

1 ∈ SG. Using the canonical generators we find that
±C2

1 = (−1)k2 X ⊗d Z⊗(n−d ) = ∏
j�d S( j) for k2 ∈ {0, 1} has to

hold. Thus, we have shown that (−1)k2 X ⊗d ⊗ Z⊗n−d ∈ SG.
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Finally, it remains to show that we can only find solutions
for d �= 0, n. If d = 0, then (−1)k2 Z⊗n ∈ SG which is not
possible as the canonical generators are of the form S( j) =
Xj ⊗ ⊗

k∈Nj
Z j . Similarly, if d = n, then (−1)k2 X ⊗n ∈ SG

and (−1)k1Y ⊗n ∈ SG and thus again (−1)k1+k2 (i)nZ⊗n ∈ SG.
Thus, we conclude that d �= 0, n. �

Let us now consider the remaining case [case(ii)] to prove
Theorem 6.

Proof of Theorem 6. Using that A + D = 0 and exploiting
the fact that A and D are diagonal matrices in Eq. (18), we get
A2 + BC = A + BC = 1 and, thus, the form of the Clifford
operator applied to G is

Q =
(

BC + 1 B

C BC + 1

)
. (34)

From Table I we see that all these symmetries correspond to
LCs of order 4 (up to multiplication by local Pauli operators).
Using these findings in Eq. (28) we get

0 = θCθ + BCθ + θBC + B. (35)

The only two summands with nonvanishing diagonal are B
and θCθ and thus we find Bii = ∑

j θi jCj j . Choosing an
ordering such that C = ((1, 0), (0, 0)) we find

0 =
(

θ2
00 θ00θ01

θT
01θ00 θT

01θ01

)
+

(
X 0

0 0

)(
θ00 θ01

θT
01 θ11

)

+
(

θ00 θ01

θT
01 θ11

)(
X 0

0 0

)
+

(
X 0

0 Y

)
, (36)

where we defined B = ((X, 0), (0,Y )) according to the order-
ing defined by choosing C = ((1, 0), (0, 0)). It is straightfor-
ward to see that the equations above are equivalent to the
ones given in Theorem 6. As mentioned above, for any U
such that U |G〉 ∝ P|G〉 the Pauli operator P is unique up
to multiplication with elements of the stabilizer. Thus, we
conclude that Q uniquely corresponds to an LC symmetry of
order 4 up to multiplication with elements of the stabilizer.

It remains to show that if
⊗

j exp(iπ/4σ j ) ⊗ 1 is the sym-
metry corresponding to Q (up to local Pauli operators), then
(−1)k

⊗
j σ j ∈ SG for some k ∈ {0, 1}. To see this, consider

an ordering of the vertices such that C = diag(1, 1, 0, 0) and
B = diag(0, 1, 1, 0). We denote by D1, D2, D3, and D4 the
set of qubits corresponding to the respective blocks. Note that
some of these sets may be empty. Furthermore, let us denote
the corresponding blocks of θ by t jk where j, k ∈ {0, 1, 2, 3}
and note that tT

jk = tk j as θ is symmetric. Using this block
structure in Eq. (35), the equations on the diagonal read as

t2
00 + t01t10 = 0, (37)

1 + t10t01 + t2
11 = 0, (38)

1 + t20t02 + t21t12 = 0, (39)

t30t03 + t31t13 = 0. (40)

Note that for any qubit j ∈ D1, the corresponding operator in
the symmetry is σ j = X , for j ∈ D2 it is σ j = Y , for j ∈ D3 it
is σ j = Z , and for j ∈ D4 the symmetry acts trivially.

general form of symmetries (Theorem 2)

Uj ∝ Cj

σj
1eiαjσ

j
2

{|G

|G ¬T (Eq. 13)|G T (Eq. 13)

discrete
symmetries
αj =

mjπ

2
nj

(Theorem
3, Corollary

3.2)

con tinuous
symmetry:

leaf
(Corollary
3.2, Obser-
vation 3)
→ GL

symmetries

|G with
UG ⊆ Cn

(Lemma 1)

|G with
UG Cn

excluded
(Lemma 1)

LC symmetries (Theorem 5 and Theorem 6)

Corollary 3.3

FIG. 1. Summary of the main steps of the characterization of the
local invertible symmetry group UG for arbitrary graph states. Boxes
with rounded corners denote sets of graph states and boxes with sharp
corners contain results on the local symmetries of these states.

Let us consider Eq. (37). The matrix element (t2
00) j j is

nonzero if qubit j has an odd number of neighbors in D1.
The term t01t10 has a nonzero entry on the diagonal if the
corresponding qubit j has an odd number of neighbors in D2.
Thus, for Eq. (37) to hold, every qubit j with σ j = X has to
have an even number of neighbors in D1 and D2 (summed up).
Analyzing the other equations in the same way we find that
Eq. (38) implies that every qubit j with σ j = Y has to have
an odd number of neighbors in D1 and D2, Eq. (39) implies
that every qubit j with σ j = Z has to have an odd number
of neighbors in D1 and D2 and Eq. (40) implies that every
qubit j on which the symmetry acts trivial has to have an
even number of neighbors in D1 and D2. Let us now consider
the product of the canonical generators

∏
j∈D1∪D2

S( j) corre-
sponding to the qubits in D1 and D2. As S( j) = Xj

⊗
k∈Nj

Zk

the number of Z operators acting on qubit j in this product
is determined by the number of neighbors of qubit j in D1

and D2. Combining this with the considerations from above,
we conclude that

∏
j∈D1∪D2

S( j) = (−1)k
⊗

j σ j ⊗ 1 for some
k ∈ {0, 1} and thus (−1)k

⊗
j σ j ⊗ 1 ∈ SG. �

Let us summarize the results of the previous sections (see
also Fig. 1). Any local unitary symmetry of a graph state |G〉
has to be of the form specified in Theorem 2. Combining this
with Lemma 1 we find that there are two types of graph states,
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those which do not have LC symmetries of order 3, forming
the set T [Eq. (13)], and those which do have LC symmetries
of order 3 (¬T ).

The set T contains all graph states with no additional
symmetries, i.e., with UG = SG. Furthermore, graph states
in T can have additional continuous symmetries iff the cor-
responding graph has a leaf up to local complementation
(Theorem 3, Observation 3, Corollary 2). Note that this con-
tinuous symmetry also includes some Clifford symmetries.
Up to multiplication by leaf symmetries, any other local
symmetry of a graph state in T which is not an element of
the stabilizer is (up to multiplication by elements of SG) a
2kth root of an LC symmetry of order 4 of the state up to
local Pauli operators (Theorem 3, Corollary 2, and Corollary
3). Corollary 1 shows that there can be only finitely many of
these additional symmetries for any graph state. Their form is
characterized by Theorem 3.

Any graph state in ¬T has an LC symmetry of order 3.
According to Lemma 1, any graph state with this property can
only have LC symmetries. Combining this with the fact that
for any symmetry of a graph state in T there exists an LC
symmetry of order 4 of the corresponding graph (Corollary
3), we conclude that in order to find all graph states with
additional symmetries we have to find those which admit
nontrivial LC symmetries. In Theorems 5 and 6 we present
sets of equations for the adjacency matrix of a graph to find all
LC symmetries of orders 3 and 4 (up to local Pauli operators)
of the corresponding graph state. Let us remark that it is
possible that for some specific graph states an LC symmetry
of order 3 is a product of two LC symmetries of order 4 of
the same graph. Furthermore, Theorems 5 and 6 show that in
order to find all LC symmetries of a graph state, it is sufficient
to check square roots of elements of the stabilizer up to signs
(or products of them in the case of LC symmetries of order 3).
In case of LC symmetries of order 3 there exists a choice of the
signs in the exponent such that no additional Pauli operators
are needed. In case of LC symmetries of order 4, additional
Pauli operators have to be taken into account.

The results presented here lead to an algorithm to find all
local (unitary) symmetries of a graph state. We present this
algorithm in Sec. III D.

C. Nonunitary symmetries

First note that there only exist symmetries in GL iff there is
a (at least) one-parameter family of local unitary symmetries,
as demonstrated in [28]. As shown above, this is only the case
if the graph contains a leaf up to local complementation. In
case vertex l is a leaf and vertex p is its parent, the local
symmetries in GL are given by exp(iαZp) ⊗ exp(−iαXl ) ⊗ 1
with α ∈ C. The symmetries for twin vertices and connected
twins follow analogously.

Let us stress here that not only invertible local symmetries
play a role in the study of separable maps transforming one
state into the other. Indeed, one also needs to consider local
projectors, that annihilate the initial state [25,36]. In the
following we present a general recipe to construct some of
these projectors for stabilizer states.

Lemma 2. Let |ψ〉 be a stabilizer state and let S ∈ SG with
S = S1 ⊗ S2 ⊗ · · · ⊗ Sk ⊗ 1 and S j �∝ 1 for all j ∈ {1, . . . k}

be an element of the stabilizer. Then, for

Q f
S =

k⊗
j=1

[1 + (−1) f ( j)S j] (41)

it holds that

Q f
S |G〉 = 0 (42)

for all f : {1, . . . , k} → {0, 1} such that
∑k

j=1 f ( j) is odd.
Proof. Let f be an arbitrary function f : {1, . . . , k} →

{0, 1} with
∑k

j=1 f ( j) odd. First, observe that
⊗k

j=1(1 +
(−1) f ( j)S j ) ∝ U | f (1), . . . , f (k)〉〈 f (1), . . . , f (k)|U † where
U = ⊗

j Uj is such that S j = Uj (|0〉〈0| − |1〉〈1|)U †
j for all

j ∈ {1, . . . , k}. To show the claim, it is sufficient to show
that U | f (1), . . . , f (n)〉 for f chosen as above is in the kernel
of ρ = |G〉〈G|. We use that ρ ∝ ∏n

i=1(1 + gi ) where {gi}n
i=1

is a set of generators for SG. We choose this set such that
g1 = S. As the operators 1 + gi commute, we find that the
kernel of ρ is given by span{ker(1 + gi )}i. Observe that
ker(1 + g1) = span[{U | f (1), . . . , f (k)〉| f : {1, . . . , k} →
{0, 1},∑k

j=1 f ( j) odd}]. This shows the claim. �

D. Algorithm to determine all symmetries of a graph state

We present here an algorithm to find all local invertible
symmetries of a graph state (see also Fig. 2). To this end, we
construct an algorithm to find all local unitary symmetries
of a graph state. Together with the findings in [28], which
show how local invertible symmetries of critical states result
from local unitary ones, we obtain an algorithm to find all
local invertible symmetries of a graph state. As pointed out
in Sec. III C, in the case of graph states, nonunitary invertible
symmetries result from the complexification of leaf symme-
tries.

Let |G〉 be a graph state and let θ be the corresponding
adjacency matrix. The first step of the algorithm is to de-
termine all LC symmetries of |G〉 [step (1) in Fig. 2]. Use
Theorems 5 and 6 to determine the symmetries up to local
Pauli operators. Recall that for any P ∈ Pn we have that
P|G〉 ∝ Z �k|G〉. Thus, to determine the exact expression for
an LC symmetry U( j), i.e., to determine the additional Pauli

operators, find the vector �k( j) such that Z �k( j)U( j)|G〉 ∝ |G〉
by going through all possibilities. All LC symmetries of the
graph are then given by the group ULC = 〈{Z �k( j)U( j)} ∪ SG〉.

If ULC contains an LC of order 3, then we know by Lemma
1 that |G〉 only has LC symmetries and thus UG = ULC [step
(2) in Fig. 2]. In case the graph state does not possess an LC
symmetry of order 3, i.e., |G〉 ∈ T , we again distinguish two
cases [step (3) in Fig. 2]. If |G〉 does not have an LC symmetry
of order 4, then Corollary 3 implies that UG = SG and the state
does not have any additional symmetries. In case the state has
LC symmetries of order 4, check if all of these LC symmetries
are generated by leaf symmetries [step (4) in Fig. 2]. To do
so, find all leafs, parents, twins, and connected twins of the
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Algortihm to determine all local
unitary symmetries of graph states

(1)
determine

all LC
symmetries

(2) LC
symmetry
of order 3

found?

UG ⊂ Cn

(3) LC
symmetry
of order 4

found?

SG = UG

(4) all LC
symme-

tries from
leaves?

UG =
〈SG ∪ LG〉

(5) check
for possible

non-LC
symmetries

yes

no

no

yes

yes
no

FIG. 2. Algorithm to determine all local unitary symmetries of
graph states. The details of how to determine the symmetries in step
(5) are provided in the main text. Any symmetry of this type has to
be a 2mth root of an LC symmetry of order 4 (up to multiplication by
an element of SG).

graph using the adjacency matrix θ .6 If all LC symmetries
of the graph stem from leaf symmetries, then the graph has
no other additional symmetries except for the leaf symmetries
(Corollary 3).

Conversely, if not all LC symmetries of order 4 of the state
|G〉 stem from leaf symmetries, the state can have additional
non-LC symmetries [step (5) in Fig. 2]. These are of the form
σ

j
1 exp(iα jσ

j
2 ) with α j = mjπ/2n j for mj, n j ∈ N and wlog

|mj | � 2n j (Corollary 3). To identify those symmetries, we de-
termine for the equivalence class W ∈ UG/LG of each of those
symmetries the representative V ∈ W constructed in the proof
of Corollary 2. This representative V with Vj ∝ σ

j
1 exp(iα jσ

j
2 )

for all j ∈ {1, . . . , n} has several important properties. For all
qubits j we have that α j = mjπ/2n j for mj, n j ∈ N and wlog
|mj | � 2n j . By Corollary 1 for any qubit j not equivalent to
a leaf under local complementation the number of possible
values for n j and thus for mj is finite. Furthermore, it follows
from the considerations in the proof of Corollary 2 that even if

6Equivalently, one could compute all two-qubit reduced states ρi j

for |G〉. It holds that ρi j �∝ 1 iff i and j are leaf and parent up to local
complementation.

qubit j is a leaf under local complementation, for this specific
representative V the variable n j also satisfies the bounds
specified in Corollary 1.

Thus, in order to find the representative V of any equiv-
alence class W , we only have to check a finite number
of possible configurations. A systematic way to go through
all possibilities is the following. Let us define the set K ⊆
{1, . . . , n} such that for every group of leafs and parent (under
local complementation) the set K contains exactly one of
these qubits. Furthermore, K contains all qubits that do not
correspond to a leaf under local complementation. Recall that
due to |G〉 ∈ T we have that for any qubit j there can only
exist one operator σ

j
2 such that Uj ∝ σ

j
1 exp(iα jσ

j
2 ) is a tensor

factor of a symmetry (see Sec. III). Furthermore, as we have
already determined the LC symmetries of |G〉, some of the
operators σ

j
2 are already fixed. Thus, any representative V can

be written as

V = Z �k ⊗
j∈K

eiα jσ
j

2 , (43)

where σ
j

2 ∈ {X,Y, Z} and for some j these operators are
fixed by an LC symmetry of |G〉 and α j = mjπ/2n j with
mj, n j ∈ N for all j ∈ K . Furthermore, n j satisfies the bounds
from Corollary 1 for all j with α j �= kπ/2, k ∈ Z, and
wlog |mj | < 2n j .

Let us mention two observations which can be used to
compute the symmetries more efficiently than applying each
candidate V of Eq. (43) to |G〉. First, for sufficiently large
l the operator V l [and any operator (SV )l where S ∈ SG] is
an LC symmetry of |G〉 which were already determined at
the beginning of the algorithm. All V which do not satisfy
this condition can be excluded. Second, there is a systematic
way to determine σ

j
2 (including 1) for any qubit j. Let D ⊂

{1, . . . , n} be the subset of qubits for which σ
j

2 has already
been determined. We choose one qubit l ∈ D and use local
complementation as outlined in the proof of Theorem 3 to
transform σ l

2 into Z . Hence, the resulting symmetry equation
reads as

Z �k
(

eiαl Zl ⊗
⊗

m∈D\{l}
eiαmσ m

2 ⊗
⊗
m �∈D

eiαmσ m
2 |G′〉

)
∝ |G′〉, (44)

where we used the fact that P|G〉 ∝ Z �k|G〉 for some �k and
any P ∈ Pn and |G′〉 denotes the graph state after local
complementation. Projecting now qubit l onto the state |0〉
reduces Eq. (44) to a similar equation for n − 1 qubits. This
is due to the fact that any graph state can be written as
|G〉 = |0〉l |G̃〉 + ⊗

k∈Nl
Zk|1〉l |G̃〉, where |G̃〉 is a graph state

of n − 1 qubits. Repeating this step for each of the qubits in D
leads to the equation

Z �k′ ⊗
m �∈D

eiαmσ m
2 |G′′〉 ∝ |G′′〉 (45)

for some graph state |G′′〉. Note that the symmetries of |G′′〉
coincide with the previously undetermined part of the poten-
tial symmetries of |G〉 up to LC operators which resulted
from the local complementation (and are known). As local
complementation preserves the order of LC operators of order
4, it only remains to determine the LC symmetries of order 4
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FIG. 3. Examples of graphs corresponding to graph states with
additional discrete symmetries (see main text and Table II). Note that
graph (f) also has an additional continuous symmetry on the twin
vertices 2 and 3.

of |G′′〉 which leads to some σ m
2 for some m �∈ D. In case the

operator σ m
2 is determined for all m, the whole symmetry can

be easily computed. Otherwise, the last step in the algorithm
is repeated.

IV. EXAMPLES

In this section we present some examples for graph states
with additional symmetries, i.e., with SG � UG. These ex-
amples illustrate the variety of possible symmetries and are
meant to give an overview of the structures local unitary
symmetries can take. We focus here on discrete symmetries
as leaves and the structures related to leaves under local
complementation have already be discussed in Sec. II. Table II
in Appendix E gives a set of generators for the additional
discrete symmetries of the respective graph state.

The graph state in Fig. 3(a) has an LC symmetry of order
3 which is a product of its LC symmetries of order 4. In
contrast to that, the graph state in Fig. 3(b) only allows for LC

symmetries of order 3. Thus, the existence of LC symmetries
of order 3 does not imply the existence of LC symmetries of
order 4. The graphs states in Figs 3(c) and 3(d) are logical
states of two instances of the quantum Reed-Muller codes
[37]. These codes admit a nontrivial diagonal transversal gate
(see Sec. V A). The graph states corresponding to the logical
|0〉L (and |1〉L) of these codes have an additional discrete
symmetry, a transversal T gate. Note that the graph state
in Fig. 3(d) admits, in addition to several LC symmetries
of order 4, a local symmetry U (root of one of the LC
symmetries of order 4) that is no LC symmetry and the graph
does not contain a leaf under local complementation. For this
symmetry we have that α j = π/8 for all j ∈ {1, . . . , n} in
agreement with Theorem 3. Furthermore, observe that for the
graph states in Figs. 3(c) and 3(d) we have that σ

j
2 ∈ {X, Z}

for all j. However, it is also possible to have symmetries
where σ

j
2 = X holds for all j. Examples for this case are the

graph states in Figs. 3(e) and 3(f). As pointed out by [38], any
graph consisting of two copies of a complete graph of an even
number of vertices with edges between corresponding vertices
gives an example for such a state. Note that in the graph state
in Fig. 3(f) vertices 2 and 3 are twins and thus the graph also
has a leaf symmetry. It is also possible to have σ

j
2 = Y for all j

and the graph state in Fig. 3(a) is an example for that. Finally,
let us mention, that Z⊗n can never be an element of SG for any
graph G. Hence, there exists no symmetry with σ

j
2 = Z for all

j (Theorem 6).

V. APPLICATIONS

In this section we discuss several applications of the addi-
tional symmetries of stabilizers’ states. We first show that they
find applications in fault-tolerant quantum computing [6,21]
and then study their relevance in entanglement theory.

A. Local symmetries and transversal gates

The goal of quantum error correction is to protect a logical
qubit from errors by introducing redundancy and storing it
using several physical qubits. To use the logical qubits for
computations, one needs to be able to perform gates on
the logical level. For any nontrivial quantum error-correcting
code, any logical gate will act on at least two physical qubits
nontrivially. If such a logical gate acts nonlocally, it can cause
the errors to spread on the physical qubits and thus eventually
cause a logical error. Thus, it is desirable to have codes that
admit at least some number of logical gates that are local op-
erations on the physical level [21]. In the context of quantum
error correction and fault-tolerant quantum computing such
gates are called transversal gates. Note that it has been shown
that there exists no nontrivial code that admits a complete set
of transversal gates [39,40].

There is a close connection between transversal gates for
stabilizer codes and local symmetries of stabilizer states. In
particular, if a stabilizer code encoding one logical qubit has
a diagonal traversal gate T , i.e., T |0〉L ∝ |0〉L and T |1〉L ∝
|1〉L, then T is a local symmetry of |0〉L. In turn, if we start
from a graph state |G〉 with an additional symmetry U ∈ UG,
U �∈ SG, U �∈ C3

n , then we can construct a stabilizer code with
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a transversal diagonal gate U as we show in what follows.7

Let us consider a symmetry of |G〉 such that

U |G〉 =
⊗

j

σ
j

1 eiα jσ
j

2 |G〉 = eiα0 |G〉 (46)

with α0 �= m0π , m0 ∈ Z. The stabilizer code then consists
of the logical states |0〉L = |G〉 and |1〉L = P|G〉, where
P ∈ Pn is chosen as follows. For those k ∈ {1, . . . n} for
which σ k

1 = 1 we choose Pk such that [Pk, σ
k
2 ] �= 0.8 Note

that this condition is fulfilled by two Pauli operators for
any party k and thus we can ensure that 〈0|1〉L = 0. This
is due to the fact that 〈G|P|G〉 = 0 for any P not pro-
portional to an element of SG. For those k ∈ {1, . . . n} for
which σ k

1 �= 1 we choose Pk = 1. As U |1〉L = ±PU †|0〉L =
± exp(−iα0)P|0〉L = ± exp(−iα0)|1〉L we have

U |0〉L = eiα0 |0〉L, (47)

U |1〉L = ±e−iα0 |1〉L. (48)

Thus, U is a transversal gate for the constructed stabilizer
code. Using this relation between local symmetries of stabi-
lizer states and transversal gates of stabilizer codes, we see
that Theorem 3 also follows from the results on transversal
gates of stabilizer codes in [33].

One can easily construct new stabilizer codes with
transversal gates from known ones as follows. Let |G〉 be the
graph state presented in Fig. 3(d). Attaching the qubit n + 1
to any qubit with σ

j
2 = Z leads to a new graph state with the

same symmetry on the original subgraph (the first n qubits).
Defining the stabilizer code as explained above leads to a
code with a transversal gate of the form U ⊗ 1. Note that this
construction does not work for a qubit j with σ

j
2 = X,Y .

B. Separable transformations

As mentioned in the Introduction, entanglement is a re-
source under local operations and classical communication
(LOCC). If a state |ψ〉 can be deterministically transformed
into a state |φ〉 via LOCC, then |ψ〉 is at least as entangled as
|φ〉 with respect to any entanglement measure. Thus, LOCC
introduces a partial order on the Hilbert space, and character-
izing possible LOCC transformations is crucial for identifying
states with useful entanglement properties. However, due to
the intricate structure of LOCC with possibly infinitely many
rounds of classical communication, sometimes the larger
set of separable transformations is considered, which has a
simpler mathematical description. In [25] we showed that in
order to decide whether a separable transformation among two
fully entangled pure states is possible, it is not sufficient to
consider local invertible Kraus operators. We call the latter
set of operations SEP1 in the following [25,29]. In [25] we
used the results presented here to construct the first example
of a state transformation which is possible via SEP, but not via

7In case α0 = m0π the operator U is the logical identity for the
stabilizer code constructed in the following.

8Note that we always find such a party if we consider instead of U
a symmetry SU for a suitable S ∈ SG.

SEP1. In the following, we present a general construction how
to find examples of transformations among fully entangled
pure states which are possible via SEP but not via SEP1.

Consider a graph state |G〉 with no additional symmetries,
i.e., UG = SG. Note that any state which does not solve
Eq. (24) or Eqs. (25)–(27) has this property. In [29] it was
shown that a state g|ψ〉 can be transformed into a state
h|ψ〉 via SEP1 with g = g1 ⊗ · · · ⊗ gn and h = h1 ⊗ · · · ⊗ hn

invertible if and only if there exist symmetries U(k) ∈ Uψ and
probabilities pk � 0,

∑
k pk = 1 such that∑

k

pk (U(k) )
†HU(k) = ||g|ψ〉||

||h|ψ〉||G, (49)

where H = h†h and G = g†g. We consider a transformation
from |G〉 to a state h|G〉, i.e., G = 1. Using that SG is Abelian,
we find that Eq. (49) is fulfilled only if tr(HS) = 0 for any
S ∈ SG \ {1} [41]. Thus, choosing H = 1 ⊗ ⊗

k∈supp(S( j) )[1 +
a(S( j) )k] for some a ∈ (0, 1) and some canonical generator
S( j) the transformation is not possible as tr(HS( j) ) �= 0.

Let us now construct a SEP transformation to transform
|G〉 into h|G〉. Recall that in Lemma 2 we construct for a given
stabilizer state local operators Q f

S , based on elements S of its
stabilizer, that annihilate the state. Note that f has to satisfy∑

m∈supp(S) f (m) mod 2 = 1 and thus there are 2|supp(S)|−1 dif-

ferent functions f which we label by fk . Using projectors Q fk
S( j)

and n j = |supp(S( j) )|, the Kraus operators for the separable
map are

Mk =
√

anj /22n j−1

(1 + anj )(1 + a)qk (1 − a)n j−qk
hQ fk

S( j)
(50)

for k ∈ {1, . . . , 2n j−1}, where qk = |{ j| fk ( j) = 0}|, and

Mk = 1√
2n j−1(1 + anj )

hP(k) (51)

for k ∈ {2n j−1 + 1, . . . , 2n j }, where P(k) denotes all elements
from the group 〈{S(l )|l ∈ Nj}〉 for all k and S( j) is the canon-
ical generator corresponding to qubit j. Note that, since the
stabilizer is Abelian, the subgroup 〈{S(l )|l ∈ Nj}〉 has exactly
2n j−1 different elements. It is straightforward to verify the
completeness relations

∑
k M†

k Mk = 1 and that the separable
map corresponding to these Kraus operators {Mk} implements
indeed the transformation.

C. LOCCN transformations

In this section we show that additional local symmetries for
graph states, i.e., those not contained in the stabilizer, allow
for finite round LOCC transformations (LOCCN) which are
not possible if only stabilizer symmetries are utilized.

Let us first recall the necessary and sufficient condition for
reachability of a state via LOCCN [42]. Let |ψ〉 be a state
with a finite, unitary symmetry group Uψ . Then, a state h|ψ〉
in its SLOCC class is reachable via LOCCN iff there exists a
U ∈ Uψ such that (up to permutations of the qubits)

[H1,U1] �= 0, (52)

[Hj,Uj] = 0 ∀ j ∈ {2, . . . , n}. (53)
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The states from which h|ψ〉 is reachable are given by g|ψ〉,
where G = g†g is such that G1 = pH1 + (1 − p)U †

1 H1U1 for
some p ∈ (0, 1) and Gj = Hj for all j � 2. Hence, we see that
if a stabilizer state has a local symmetry which is diagonal
in a different basis than any of the elements of its stabilizer
new states are reachable. Moreover, if this local symmetry
is diagonal in the same basis as an element of the stabilizer,
the reachable states stay the same but more transformations
become possible. Suppose a graph state has an LC symmetry
of order 3 which, up to conjugation by local Cliffords, is
of the form exp(iπ/4X ) exp(iπ/4Y ) on every qubit. Then,
for instance, any state h|G〉 with H1 not diagonal in the
eigenbasis of exp(iπ/4X ) exp(iπ/4Y ) and Hj diagonal in this
basis for j � 2 is reachable as Eqs. (52) and (53) are satisfied
by this additional symmetry. However, there does not exist
any Pauli operator in SG which is diagonal in the eigenbasis
of exp(iπ/4X ) exp(iπ/4Y ) for all but one qubit.9 A similar
construction also works for the case of LC symmetries of
order 4. However, the tensor product of the operators in the
exponent of each factor is an element of the stabilizer for these
symmetries (Theorem 6). Thus, if every local operator of the
symmetry is of the form Uj ∝ exp(±iπ/4σ

j
2 ) this symmetry

has the same commutation properties as the corresponding
stabilizer and by itself does not allow to reach more states
than the stabilizer. Nevertheless, since U is not an element
of the stabilizer, new transformations are possible, as there
exist more states g|ψ〉 which can reach h|ψ〉 by LOCCN .
Furthermore, in this case new reachable states can be found
when considering products of the LC symmetry of order 4 and
elements of the stabilizer. We conclude that graph states (and
thus stabilizer states) with additional (discrete) symmetries
can be more powerful regarding LOCCN transformations than
graph states with SG = UG.10

The volume of the set of states reachable by an initial
state via LOCC is an entanglement measure, called accessible
entanglement [43]. To compute this entanglement measure for
a state one has to determine all states reachable from this state
by LOCC (not just LOOCN as considered above). A common
approach to this problem is to use SEP convertibility as a
necessary condition in order to gain insights on the LOCC
convertibility of a state. However, as Eq. (49) is not necessary
for SEP convertibility and graph states were used to show
this (see discussion above and [25]), new methods to deter-
mine all possible LOCC transformations might need to be
developed.

VI. CONCLUSION AND OUTLOOK

In this work we have investigated the local (invertible and
noninvertible) symmetries of fully entangled stabilizer states.
We have characterized all local invertible symmetries of stabi-

9This holds as we only consider fully connected graphs and thus
there exists no stabilizer element which acts nontrivially on only one
qubit. Furthermore, conjugation by local Clifford operators does not
change the support of an operator.

10This is decided by the specific form of the additional symmetries.
The statement holds for any example presented in Sec. IV.

lizer states and have provided an algorithm which determines
them. To this end, we have used the fact that stabilizer states
are critical states and, thus, local nonunitary symmetries are
determined by the local unitary ones. Furthermore, every
stabilizer state is LC equivalent to a graph state and, thus, in
order to determine all LC symmetries of stabilizer states, it is
sufficient to consider graph states.

We have shown that there are two different types of graph
states, those which possess an LC symmetry of order 3 and
those which do not have such a symmetry. The symmetry
group UG of the first type of graph state has to be a subgroup of
the local Clifford group Cn and is therefore discrete and finite.
Graph states of the second type have a continuous unitary
symmetry if and only if the corresponding graph has a leaf
(up to local complementation). Note that this is the only case
in which a graph state also has a symmetry in GL. Any other
symmetry a graph state of the second type can have is of the
form Uj ∝ σ

j
1 exp(iα jσ

j
2 ) where α = mjπ/2n j , mj, n j ∈ N,

σ
j

1 ∈ P1, and σ
j

2 ∈ {X,Y, Z} for all j. Moreover, the number
n j is bounded by the number of neighbors of qubit j (or a
neighbor of qubit j) and thus a graph state can only have
finitely many additional discrete symmetries. We have shown
that any of these additional discrete symmetries is the 2kth
root of a LC symmetry of order 4 (up to multiplication with
an element of SG). Combining this with the results on graph
states with LC symmetries of order 3 we have concluded that
any graph state with an additional local symmetry has an
LC symmetry. Furthermore, we have provided necessary and
sufficient conditions on the adjacency matrix of a graph for
the existence of LC symmetries.

We have discussed applications of the results in fault-
tolerant quantum computing and entanglement theory. In
particular, we have provided a general construction for
SEP transformations among pure states that are not possi-
ble with solely Kraus operators of full rank. Furthermore,
the relevance of these additional symmetries for transfor-
mations using LOCCN has been demonstrated. In the fu-
ture, it will be interesting to identify new, more practi-
cal applications of stabilizer states, which are based on
the additional symmetries [20]. Similar investigations of
more general states such as LME (locally maximally en-
tanglable) states [44] and, in particular, hypergraph states
[45] and higher-dimensional stabilizer states might shine
new light on their entanglement properties and applications
thereof.
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APPENDIX A: SEMI-CLIFFORD OPERATORS

As mentioned in the main text, a unitary operator U is
called semi-Clifford operator if it maps at least one Pauli
operator to a Pauli operator (up to a phase). Let us show that
any such operator is of the form

U ∝ Ceiασ , (A1)

where C ∈ C1, α ∈ R and σ ∈ {X,Y, Z}.
Proof. There exists a pair of Pauli operators σk, σl such that

UσkU
† ∝ σl . (A2)

Since U is unitary, we can write it in its Euler decom-
position. If σk = σl we parametrize the operator as U ∝
exp(iασk ) exp(iβσ j ) exp(iγ σk ) where j �= k and α, β, γ ∈
R. Using this decomposition in Eq. (A2) together with
the commutation relations of the Pauli operators we find
that exp(2iβσ j ) ∝ 1 and thus 2β = nπ , n ∈ Z. Then, U ∝
±iσ j exp(i(γ − α)σk ) and, thus, U is of the form claimed
above. If instead σk �= σl we parametrize the operator as U ∝
exp(iασk ) exp(iβσl ) exp(iγ σk ) where α, β, γ ∈ R. Using this
decomposition again in Eq. (A2) we find exp(2iβσl )σk ∝
exp(−2iασk )σl . Multiplying this equation with σk (σl ) and
computing the trace we find that 2α = π

2 + nπ and 2β =
π
2 + mπ with m, n ∈ Z. Hence, U is again of the form claimed
above. �

APPENDIX B: PROOF OF THEOREM 2

Here, we prove Theorem 2 of the main text. It restricts
the general form a local unitary symmetry of a stabilizer
state. In order to improve readability, let us restate the
theorem.

Theorem 2. Let |ψ〉 ∈ (C2)⊗n be a fully entangled stabi-
lizer state and let U ∈ Uψ be a local symmetry of |ψ〉. Then,

Uj ∝
{

Cj,

σ
j

1 eiα jσ
j

2
(B1)

with Cj ∈ C3
1 , α j ∈ R, σ

j
1 ∈ {1, X,Y, Z}, and σ

j
2 ∈ {X,Y, Z}

for all j ∈ {1, . . . , n}.
Proof. Let |ψ〉 ∈ (C2)⊗n be a stabilizer state and U ∈ Uψ

be a local symmetry of |ψ〉. By Theorem 1 each local factor
Uj , j ∈ {1, . . . , n}, is a semi-Clifford operator and thus by
Eq. (11) it is of the form Uj ∝ C exp(iασa) for some C ∈ C1.
Note that the local operators can be different. However, as the
proof holds for any local factor, we will not write the index
whenever it does not lead to any confusion. As Uψ forms a
group also U 2 ∈ Uψ has to be a symmetry of |ψ〉 and thus
also U 2

j has to be a semi-Clifford operator. We have

U 2
j ∝ CeiασaCeiασa = C2e±iασbeiασa , (B2)

where we have used the fact that C is a Clifford operator
and C†σaC = ±σb. Thus, U 2

j is a semi-Clifford operator iff
exp(±iασb) exp(iασa) is a semi-Clifford, i.e., iff there are
Pauli operators σc, σd ∈ {X,Y, Z} such that

e±iασbeiασaσc(e±iασbeiασa )† = ±σd . (B3)

Let us now analyze all possibilities for the Pauli operators
occurring in this equation. If σa = σc = σb, then C†σaC =

±σa and thus C = σe exp(iβσa), where σe ∈ {X,Y, Z} and
β ∈ {0,±π/4}. Then, Uj is of the form claimed in the the-
orem. If σa = σc �= σb, then we find exp(±2iασb)σc = ±σd

and thus α = kπ/4, k ∈ Z. This implies that Uj ∈ C1. Finally,
let us consider the case σa �= σc. If additionally σd = σb, we
have exp(2iασa)σc = ±σd and thus α = kπ/4, k ∈ Z. In case
σd �= σb we have e2iασaσc = ± exp(∓2iασb)σd . Multiplying
both sides of the latter equation by σc and computing the trace
we find that if 2α �= kπ/4, then σc = σd and consequently
σa = σb has to hold. If 2α = kπ/2, we have that Uj ∈ C1.
If 2α = π/4 + kπ/2, we again multiply both sides of the
equation by σc and compute the trace. The resulting equation
allows for two different solutions. The first one is that σc = σd

and thus σa = σb. The other possibility is that σc ∝ σbσd

and, consequently, σaσc ∝ σd . However, this implies that σc ∝
σaσbσc and thus σa = σb. Thus, in all of these cases we find
Uj ∈ C1 (by the same argument as above), which completes
the proof. �

APPENDIX C: PROOF OF LEMMA 1

We provide here a proof of Lemma 1. In order to improve
readability, let us restate the lemma.

Lemma 1. Let |G〉 be a graph state on n qubits and let
U ∈ UG be such that U1 ∈ C3

1 . Then, Uj ∈ C3
1 for all j ∈

{1, . . . , n} and any other symmetry of the graph is a local
Clifford UG ⊂ Cn.

Proof. We prove the statement by contradiction. Let U ∈
UG be such that U1 ∈ C3

1 . Suppose there exists a p ∈ {2, . . . , n}
such that Up �∈ C3

1 . We first show that this implies that there
exists a symmetry V ∈ UG such that Vp ∝ 1 and V1 ∈ C3

1
which, as we shown then, leads to a contradiction. For any
j ∈ {2, . . . , n} for which Uj �∈ C3

1 we know due to Theorem
2 that Uj ∝ σ

j
1 exp(iα jσ

j
2 ). Without loss of generality, let the

qubits be ordered such that Uj ∈ C3
1 for j � k + 1 for some

k ∈ {1, . . . , n − 1}. Let us recursively define symmetries of
|G〉 by V (m + 1) = (P(m)V (m))2, V (1) = U , and m ∈ N,
m � k, where P(m) ∈ SG is chosen such that V (m + 1)m ∝ 1.
Note that since the graph state is fully connected we can
always find such a P(m). By construction, V (k + 1) j ∝ 1 for
all j � k. Now observe that for any element C ∈ C3

1 also
σC ∈ C3

1 for all σ ∈ P1 and C2 ∈ C3
1 . Thus, V (k + 1) j ∈ C3

1
for all j > k and we choose V = V (k + 1). Hence, V is a
symmetry where each tensor factor is either in C3

1 or trivial.
Next let us show that V has to act nontrivial on all qubits.

Note that this already follows from Eq. (30) which implies
that for a fully entangled graph state any LC symmetry of
order 3 is of the form Q = ((A, 1), (1, A + 1)) in the binary
representation and thus acts nontrivial on every qubit. Recall
that A is a diagonal matrix and the operator acting on qubit j
is given by Qj = ((Aj j, 1), (1, Aj j + 1)).

In the following, however, we provide a different proof
which makes use of the fact that a conjugation of an ele-
ment of SG with V has to give an element of the stabilizer
again. The idea is to show that no qubit j with Vj ∈ C3

1
can have a neighbor l ∈ Nj with Vl ∝ 1. Since the graph
G is fully connected, this implies that Vj ∈ C3

1 for all j ∈
{1, . . . , n}. We show the claim again by contradiction. So
suppose Vj ∈ C3

1 and there exists an l ∈ Nj with Vl ∝ 1.
Without loss of generality, let us again order the qubits such
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that j = 1 and l = 2. Since V is a local Clifford operator
and V ∈ UG it has to map stabilizer operators to stabilizer
operators under conjugation. Thus, we can decompose the
image of a stabilizer operator under this conjugation into
the canonical generators. By assumption V1 ∈ C3

1 and thus V1

is a cyclic permutation of Pauli operators. The two options
are V1ZV †

1 ∝ X and V1ZV †
1 ∝ Y . In the first case the sta-

bilizer S(2) = Z ⊗ X ⊗ · · · is mapped to S′
(2) = U1S(2)U

†
1 =

X ⊗ X ⊗ · · · . Thus, the decomposition S′
(2) = ∏

j S
k j

( j), where
k j ∈ {0, 1} for all j, must contain the factor S(1). Note that
supp(S′

(2) ) = N2 ∪ {2} and thus all neighbors of qubit 1 have
to be shared with qubit 2 or be connected to neighbors
of qubit 2 (or both). Since qubits 1 and 2 are connected,
we need S′

(2) to contain the canonical generators of an odd
number of shared neighbors to get X on qubit 1 (and not Y ).
Since neighbors of 1 not shared with 2 are not in supp(S′

(2) )
the operator S′

(2) cannot contain contributions from their
corresponding generators. Now, consider S(1) = X ⊗ Z ⊗ · · ·
which is mapped to S′

(1) = U1S(1)U
†
1 = Y ⊗ Z ⊗ · · · . We have

supp(S′
(1) ) = N1 ∪ {1} and thus the only neighbors of 2 it

contains are the ones which are shared with qubit 1. Now, we
count the number of Z operators contributed by the contained
generators on qubit 2. By the above considerations we get
an odd number of Z operators from the shared neighbors
and one Z since S(1) is contained in S′

(1) and thus (S′
(1) )2 =

Z2k = 1, k ∈ N, which is a contradiction to the form of
S′

(1). This concludes the first case. In the second case, we

have U1ZU †
1 ∝ Y and we obtain a contradiction by similar

arguments.
Finally, it remains to show that UG ⊂ Cn. This follows

from Theorem 2 and the fact that V ∈ UG, as can be seen
as follows. Suppose there was a V ′ ∈ UG and V ′ �∈ Cn.
Since V ′ �∈ Cn there exists a p ∈ {1, . . . , n} such that V ′

p ∝
σ

p
1 exp(iαpσ

p
2 ) and αp �= mπ/4. Furthermore, also V ′V ∈ UG

but (VV ′) j is not of the form stated in Theorem 2 which is a
contradiction. �

APPENDIX D: PROOF OF OBSERVATION 3

As stated in the main text, we prove here Observation 3
which we restate here.

Observation 3. Let |G〉 be a graph state on n � 3 qubits.
Let qubits 1 and 2 be a leaf parent pair. Then,

U = eiαX ⊗ e−iαZ ⊗ 1, α ∈ R (D1)

is in UG. Moreover, there exists no other unitary symmetry of
the form U1 ⊗ U2 ⊗ 1 ∈ UG.

Proof. Let |G〉 be a graph state and let qubits 1 and 2 be a
leaf parent pair. Then, we find that

eiαX1 |G〉 = (cos α11 + i sin αX1)|G〉 (D2)

= [cos α1 + i sin αX1(X1 ⊗ Z2)]|G〉 (D3)

= eiαZ2 |G〉 (D4)

holds for any α ∈ R as X1 ⊗ Z2 ∈ SG. Hence, any oper-
ator exp(iαX1) ⊗ exp(−iαZ1) is a local unitary symmetry
of |G〉 which shows the first part of the claim. It re-
mains to show that there exists no other local unitary
symmetry that acts nontrivially only on qubits 1 and 2.
Using Theorem 2, the fact that UG is a group and that
exp(iαX1) ⊗ exp(−iαZ1) is a symmetry of |G〉 for any α ∈ R
we conclude that any symmetry of this type has to be of
the form

σ 1
1 eiα1X1 ⊗ σ 2

1 eiα2Z2 , (D5)

where α1, α2 ∈ R. Let us multiply this symmetry from the
right with the leaf symmetry exp(−iα1X1) ⊗ exp(iα1Z1). If
σ 2

1 �∝ 1, we also multiply from the left with a S ∈ SG such
that S2 = σ 2

2 . Squaring the result we obtain a new symmetry
of |G〉 which is nontrivial only on qubit 2. Observation 2
then implies that the symmetry has to be proportional to the
identity and thus α1 + α2 = kπ/2 for some k ∈ Z. Hence,
we conclude that any symmetry other than the leaf symmetry
acting nontrivially only on qubits 1 and 2 has to be a 2-qubit
Pauli operator and thus by Observation 1 an element of the sta-
bilizer. Using that the stabilizer is Abelian and X1 ⊗ Z2 ∈ SG

we conclude that the only possibilities for additional symme-
tries are Z1 ⊗ X2 and Y1 ⊗ Y2 up to phases. Let us decompose
both operators with respect to the canonical generators which
gives S(2) and S(1)S(2), respectively. However, as n � 3 and
we consider connected graphs, qubit 2 has to have a neighbor
different from qubit 1 and, thus, both operators act nontrivially
on more qubits than just qubits 1 and 2. This completes the
proof. �

APPENDIX E: ADDITIONAL SYMMETRIES OF THE
GRAPH STATES PRESENTED IN FIG. 3

Table II contains a (not necessarily independent) set of
generators for the additional symmetries of the graph states
presented in Fig. 3.

TABLE II. Additional generators needed to generate the full LU symmetry group of the graph states presented in Fig. 3.

State LC symmetries of order 3 LC symmetries of order 4 and 2nth roots

(a) (ei π
4 Z ei π

4 Y )⊗4 ⊗ (ei π
4 X e−i π

4 Y )⊗4 (ei π
4 Z )⊗4 ⊗ (ei π

4 X )⊗4, (ei π
4 Y )⊗4 ⊗ (e−i π

4 Y )⊗4

(b) (e−i π
4 Z e−i π

4 Y )⊗9 ⊗ (ei π
4 X e−i π

4 Y )⊗9 None

(c) None (ei π
4 Z )⊗3 ⊗ (ei π

4 X )⊗4

(d) None (ei π
8 Z )⊗4 ⊗ (ei π

8 X )⊗11

(e) None (ei π
4 X )⊗4 ⊗ (e−i π

4 X )⊗4

(f) None 12,3 ⊗ ⊗
j∈{1,4,5,7,9} ei π

4 Xj ⊗ ⊗
j∈{6,8} e−i π

4 Xj
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