
A hierarchical control scheme for optimal secondary frequency regulation
with on-off loads in power networks

Andreas Kasis, Stelios Timotheou and Marios Polycarpou

Abstract— Load side participation can provide support to the
power network by appropriately adapting the demand when re-
quired. In addition, it may allow for an economically improved
power allocation. In this study, we consider the problem of
providing an optimal power allocation among generation and
on-off loads within the secondary frequency control timeframe.
In particular, we consider a mixed integer optimization problem
which ensures that secondary frequency control objectives,
i.e. generation-demand balance and frequency attaining its
nominal value at steady state, are satisfied. We present analytic
conditions on generation and on-off load profiles such that an ε-
optimality interpretation of the steady state power allocation is
obtained, providing a non-conservative bound for ε. Moreover,
we develop a hierarchical control scheme that provides on-off
load values that satisfy the proposed conditions. Furthermore,
we study the interaction of the proposed control scheme with
the physical dynamics of the power network and provide
analytic stability guarantees. Our results are verified with
numerical simulations on the Northeast Power Coordinating
Council (NPCC) 140-bus system, where it is demonstrated that
the proposed algorithm enables an optimality interpretation of
the steady state power allocation.

I. INTRODUCTION

Motivation and literature review: The penetration of
renewable sources of generation in power networks is ex-
pected to grow over the next years, driven by technological
advances and environmental concerns [1], [2]. This will make
generation more intermittent, resulting in more frequent
generation-demand imbalances that may harm power quality
and even cause blackouts. Hence, additional challenges are
introduced to enable the safe operation of power networks,
motivating the analytical study of their stability properties.

Demand side participation is considered by many to be a
key way to address the above problem, due to the ability
of loads to provide a fast response when required. This
motivated many studies to consider controllable loads as a
means of supporting existing primary [3], [4], [5], [6], [7],
and secondary [8], [9], [10], frequency control mechanisms.
Moreover, an issue of fairness in the power allocation, also
interpreted as a problem of economic optimality, is raised
if loads are used for frequency control. Attempts to address
this issue [5], [9], [10], [11], [12], [13] involved constructing
appropriate optimization problems that enable an econom-
ically optimal power allocation and ensuring that systems
equilibria coincide with the solutions to these problems. In
addition to reduced costs, such allocations may prevent the
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power system from reaching its safety limits, thus enhancing
its stability properties.

On many occasions, loads are described by on and off
states and hence a continuous representation cannot accu-
rately characterize their behavior. The possible switching of
loads has been studied in [14], [15], which consider the
problem of using on-off loads to provide ancillary services in
power networks and demonstrate stability for arbitrary net-
work topologies within the primary and secondary frequency
control timeframes respectively. In addition, [14] provides an
optimality interpretation of the resulting equilibria by means
of a centralized information structure. Moreover, [16] consid-
ers loads that switch into different modes of operation, corre-
sponding to nominal and urgent circumstances respectively.
Furthermore, several studies [17], [18], [19], consider the
temperature-dependent, on-off behavior of loads, proposing
various control schemes for improved performance. Hence,
considering on-off load behavior is of high importance in the
study of power networks.

Contribution: This study considers the stability and op-
timality properties of the power network when controllable
on-off loads are incorporated within the secondary frequency
control timeframe. The discontinuous nature of on-off loads
introduces several challenges, requiring tools from switching
system analysis, and makes the problem of obtaining an
optimal power allocation combinatorial.

In particular, we consider a mixed integer optimization
problem that associates the cost of generation and on-off
controllable loads such that the secondary frequency control
objectives are attained, i.e. generation-demand balance is
achieved and frequency takes its nominal value at steady
state. We propose equilibrium conditions that, when satisfied,
ensure that the steady state power allocation cost is no greater
than ε to the global minimum and provide a non-conservative
value for ε. Moreover, we propose a hierarchical control
policy that enables an equilibrium allocation that satisfies
these conditions, by determining the on-off load values. The
interaction of the proposed hierarchical scheme with the
power network renders their combination a switching system.
For the combined system, we explain that no chattering
behavior should be expected and provide asymptotic stability
guarantees. In particular, our results ensure the convergence
of solutions to an equilibrium that satisfies the secondary fre-
quency control objectives and is ε-optimal to the considered
optimization problem.

Our analytic results are verified with numerical simula-
tions on the NPCC 140-bus system, that demonstrate the
stability and optimality properties of the proposed algo-
rithm in a realistic setting. In particular, the simulation
results demonstrate that the proposed scheme enables an ε-
optimality interpretation of the steady state power allocation.

Paper structure: In Section II we present the considered



model for the power network and the problem formulation.
In Section III we present our optimality analysis and the
proposed hierarchical control scheme to solve the considered
optimization problem. In Section IV we study the interaction
of the proposed scheme with the physical network and
present our main stability and optimality results. Our ana-
lytical results are demonstrated with numerical simulations
in Section V. Finally, conclusions are drawn in Section VI.
The proofs of the results have been omitted due to page
constraints and will be included in an extended version of
this work.

Notation: Real and integer numbers are denoted by R and
Z respectively. The set of n-dimensional vectors with real and
integer entries are denoted by Rn and Zn respectively. The
sets of positive and non-negative real numbers are denoted
by R>0 and R≥0 respectively. We use 0n and 1n to denote
n-dimensional vectors with all elements equal to 0 and 1
respectively. The image of a vector x is denoted by Im(x).
The cardinality of a discrete set Σ is denoted by |Σ|. The
convex closure of a set A is denoted by Ā. Finally, a
function f : R → R is said to be monotonically increasing
(respectively decreasing) if for all x and y such that x ≤ y
it holds that f(x) ≤ f(y) (respectively f(x) ≥ f(y)).

II. PROBLEM FORMULATION

A. Network model

We describe the power network by a connected graph
(N , E) where N = {1, 2, . . . , |N |} is the set of buses
and E ⊆ N × N the set of transmission lines connecting
the buses. Furthermore, we use (i, j) to denote the link
connecting buses i and j and assume that the graph (N , E)
is directed with an arbitrary orientation, so that if (i, j) ∈ E
then (j, i) /∈ E . For each j ∈ N , we use i : i → j and
k : j → k to denote the sets of buses that are predecessors
and successors of bus j respectively. It is important to note
that the form of the dynamics in (1)–(2) below is unaltered
by any change in the graph ordering, and all of our results
are independent of the choice of direction. The following
assumptions are made for the network:
1) Bus voltage magnitudes are |Vj | = 1 p.u. for all j ∈ N .
2) Lines (i, j) ∈ E are lossless and characterized by the
magnitudes of their susceptances Bij = Bji > 0.
3) Reactive power flows do not affect bus voltage phase
angles and frequencies.
4) Relative phase angles are sufficiently small such that the
approximation sin ηij = ηij is valid.

The first three conditions have been widely used in the
literature [5], [10], [12], in studies associated with frequency
regulation. The fourth condition is justified from the fact that
the relative phase angles among buses are small in nominal
operating conditions.

We use swing equations to describe the rate of change of
frequency at each bus. This motivates the following system
dynamics (e.g. [20]),

η̇ij = ωi − ωj , (i, j) ∈ E , (1a)

Mjω̇j =−pLj +pMj −duj−
∑
i∈Nj

dci,j−
∑
k:j→k

pjk+
∑
i:i→j

pij , j ∈ N ,

(1b)
pij = Bijηij , (i, j) ∈ E . (1c)

In system (1) the time-dependent variables pMj and ωj
represent, respectively, the mechanical power injection and
the deviation from the nominal value1 of the frequency at bus
j. The time-dependent variable dci,j represents the demand
of controllable load i at bus j. The set of controllable loads
at bus j is denoted by Nj . Furthermore, we define the
set Ñ := {(i, j) : i ∈ Nj , j ∈ N}, such that all pairs
i ∈ Nj , j ∈ N satisfy (i, j) ∈ Ñ . The quantity duj is also
a time-dependent variable that represents the uncontrollable
frequency-dependent load and generation damping present
at bus j. Furthermore, the quantities ηij and pij are time-
dependent variables that represent, respectively, the power
angle difference, and the power transmitted from bus i to bus
j. The constant Mj > 0 denotes the generator inertia. More-
over, the constant pLj denotes the frequency-independent load
at bus j, and ` = 1T|N |p

L its aggregate value throughout the
network. Within the rest of the manuscript, we let x∗ denote
the equilibrium value of state x.

We consider generation and frequency dependent-
uncontrollable demand and frequency damping dynamics
described by

τj ṗ
M
j = −(pMj + κjωj − κjpcj), j ∈ N , (2a)

duj = Ajωj , j ∈ N , (2b)
where τj > 0, j ∈ N , are time constants, pcj is a local
power command variable available for design (see Section
III-A), and Aj > 0 and κj > 0, j ∈ N , are damping and
droop coefficients respectively. Note that the analysis carried
in this paper is valid for more general generation and demand
dynamics, including cases of nonlinear and higher order
dynamics, provided certain input-output conditions hold, as
shown in [4], [5], [10], [15]. In this paper, we consider
the simple first order generation and static uncontrollable
demand dynamics for simplicity and to avoid a shift in the
focus of the paper from on-off loads.

B. On-off controllable loads
Controllable on-off loads may enable an improved power

allocation in power networks. Their behavior is described by
dci,j = di,jσi,j , (i, j) ∈ Ñ , (3)

where di,j ∈ R+ denotes the magnitude of load (i, j) ∈ Ñ .
The time dependent variable σi,j ∈ P = {0, 1} denotes the
switching state of the ith load at bus j. The dynamics of σ
are discussed in Sections III and IV. Furthermore, we define
the constants ρi,j ∈ P , which denote the desired switching
state set for each load (i, j) ∈ Ñ , selected by its user.

C. Optimal generation and on-off load control
In this section we consider how generation and on-off

controllable loads should be adjusted such that their joint
cost is minimized while at the same time the generation
and demand are balanced. In particular, we let 1

2qj(p
M
j )2 be

the cost incurred when the generation is pMj . Furthermore,
we let a cost ci,j be incurred when the switching state σi,j
is different than the desired state ρi,j at some on-off load
(i, j) ∈ Ñ . The cost function for on-off loads is given by

Cdi,j(σi,j , ρi,j) =

{
ci,j , when σi,j 6= ρi,j ,

0, when σi,j = ρi,j .
(i, j) ∈ Ñ .

1We define the nominal value as an equilibrium of (1) with frequency
equal to 50Hz (or 60Hz).



We then consider the following optimization problem,
called the hybrid optimal supply control problem (H-OSC),

H-OSC: min
pM ,σ

∑
j∈N

[
1

2
qj(p

M
j )2 +

∑
i∈Nj

Cdi,j(σi,j , ρi,j)],

subject to
∑
j∈N

pMj =
∑
j∈N

(pLj +
∑
i∈Nj

di,jσi,j), (4)

σi,j ∈ {0, 1}, (i, j) ∈ Ñ .
The equality constraint in (4) requires all the frequency-

independent loads to be matched by the total generation and
on-off controllable demand. This ensures that when system
(1) is at equilibrium, the frequency will be at its nominal
value. The latter follows by summing (1b) at steady state
over all j ∈ N and noting the equality constraint in (4),
which using (2b) results to

∑
j∈N d

u,∗
j =

∑
j∈N Ajω

∗
j = 0

and hence to ω∗ = 0|N | from (1a) at steady state. The second
constraint reflects that controllable loads take discrete values.
The latter makes (4) a mixed integer optimization problem.

D. Problem statement
Below we state the main problem we aim to solve.
Problem 1: Design a control scheme for generation and

on-off loads, described by (2a) and (3), that:
(i) Requires no recalibration when on-off loads are added

or removed from the network.
(ii) Enables decentralized stability guarantees.

(iii) Is independent of (connected) network topology.
(iv) Ensures that the frequency attains its nominal value at

steady state.
(v) Provides an optimality interpretation of the steady state

power allocation.
The first condition requires a control scheme that does

not need to be modified when on-off loads are added or
removed from the network, something that is expected to
frequently occur due to their large numbers. The second
and third conditions require that the control scheme enables
locally verifiable and network independent stability guar-
antees. Objective (iv) is the main objective of secondary
frequency control, i.e. to ensure that the frequency takes its
nominal value at equilibrium. The last condition requires an
optimality interpretation of the steady state power allocation,
ensuring that the incurred cost is close to the global minimum
of the H-OSC problem (4).

III. OPTIMAL ALLOCATION AMONG ON-OFF LOADS

A. Power Command Dynamics
In this section we consider the design of the dynamics

for power command variables, used as inputs to (2a). We
adopt a suitably adapted version of a scheme that has been
widely used in the literature for distributed optimal secondary
frequency regulation [8], [10], [13], known as the Primal-
Dual scheme. In particular, we consider a communication
network described by a connected graph (N , Ẽ), where Ẽ
represents the set of communication lines among the buses.
We consider the following dynamics for the power command
signal pcj ,

γijψ̇ij = pci − pcj , (i, j) ∈ Ẽ , (5a)

γj ṗ
c
j = −pMj +pLj +

∑
i∈Nj

dci,j −
∑
k:j→k

ψjk +
∑
i:i→j

ψij , j ∈ N ,

(5b)

where γj and γij are positive constants, pci and pcj are
variables shared between communicating buses i and j, and
the variable ψij is a state of the controller that integrates the
power command difference of communicating buses i and j.
We note that the set of communication lines Ẽ and power
lines E can be the same or different.

The dynamics in (5) are frequently used in the literature as
they achieve both the synchronization of the communicated
variable pc, something that can be exploited to guarantee
optimality of the equilibrium point reached, and also that
frequency attains its nominal value at steady state. These are
analytically shown in Lemma 1 below.

Lemma 1: All equilibria of (1), (2), (3), (5) satisfy ω∗ =
0|N | and pc,∗ ∈ Im(1|N |).

B. Optimality analysis

In this section we consider the H-OSC problem (4) which
aims to optimize the power allocation between generation
and on-off loads. The considered problem is combinatorial
and hence difficult to analytically solve when a large number
of on-off loads is considered. Hence, an aim of this paper is
to enable a steady state power allocation cost that is close to
the global minimum of the H-OSC problem (4). Below, we
define the notion of an ε-optimal point that is used throughout
the rest of this manuscript.

Definition 1: Given a cost function Cf : Rn × Zm → R
where n,m > 0, a vector x̄ ∈ Rn × Zm is called ε-optimal
for Cf , for some ε ∈ R>0, if it holds that

Cf (x̄) ≤ min
x∈Rn×Zm

Cf (x) + ε.

Below, we provide conditions that, when satisfied, enable
an optimality interpretation of the steady state power alloca-
tion among generation and on-off loads. Within the following
proposition we let β = max(i,j)∈Ñ di,j be the largest on-
off load and K =

∑
j∈N kj the aggregate power command

droop respectively within the power network.
Proposition 1: Consider an equilibrium of (1), (2), (3),

(5). If kj = q−1j , j ∈ N holds and there exists ζ ∈ R such
that

pc,∗ − β

K
≤ ζ ≤ pc,∗ (6a)

σ∗i,j ∈



{0}, if ζ > ci,j
di,j

,

{0, ρi,j}, if ζ =
ci,j
di,j

,

{ρi,j}, if |ζ| < ci,j
di,j

,

{ρi,j , 1}, if ζ = − ci,j
di,j

,

{1}, if ζ < − ci,j
di,j

,

(i, j) ∈ Ñ , (6b)

then the considered equilibrium is ε-optimal to (4), with ε =
3β2/2K.

Proposition 1 provides a condition on the droop gains and
equilibrium values which guarantees that the cost at steady
state is ε-close to the global minimum of (4), providing a
non-conservative value for ε. The parameter ζ associates the
equilibrium values of power command variables, pc,∗, and
the load costs per unit demand ci,j/di,j . The structure of
(6a) ensures that an equilibrium that satisfies (6) is always
feasible, as shown in the following lemma.

Lemma 2: There exists an equilibrium to (1), (2), (3), (5)
such that (6) is satisfied.



C. Hierarchical control scheme for on-off loads
In this section we present a hierarchical control scheme

which aims to obtain a vector σ∗ such that (6) is satisfied and
hence an ε-optimality interpretation of the resulting equilibria
is allowed, in accordance to Proposition 1. The scheme is de-
scribed by Algorithm 1 and a schematic representation of its
information flow is depicted in Figure 1. Below, we provide
additional explanations and intuition on its implementation.

Algorithm 1: Hierarchical optimality scheme.

Inputs: pL,K, d, c.
Output: σ(k), k ≥ 1.
Initialization: pcmin(0) = `

K ,
pcmax(0) = 1

K (`+ 1T|Ñ |d), µ ∈ (0, 1), k = 0,

σ̂(0) = ρ, p̂c(0) = 0, pcset(0) = 0, φ(0) = 0.
while φ(k) = 0, do

k = k + 1,

pcset(k) = µpcmax(k − 1) + (1− µ)pcmin(k − 1),
(A.1)

σ̂i,j(k) =


0, if pcset(k) >

ci,j
di,j

,

1, if pcset(k) < − ci,j
di,j

,

ρi,j , otherwise,

(i, j) ∈ Ñ ,

(A.2)

p̂c(k) =
1

K
(`+ d

T
σ̂(k)), (A.3)

pcmin(k) =

{
pcset(k), if pcset(k) < p̂c(k)− β

K ,

pcmin(k − 1), otherwise,
(A.4)

pcmax(k) =

{
pcset(k), if pcset(k) > p̂c(k),

pcmax(k − 1), otherwise,
(A.5)

φ(k) =


1, if pcmax(k)− pcmin(k) =

pcmax(k − 1)− pcmin(k − 1),

0, otherwise,
(A.6)

σi,j(k)=


σ̂i,k(k), if φ(k) = 1,

1, if pcmax(k)<−ci,j
di,j
− β
K , φ(k)=0,

0, if pcmin(k) >
ci,j
di,j

+ β
K , φ(k) = 0,

ρi,j , otherwise,
(A.7)

(i, j) ∈ Ñ .

Inputs, states, output and information flow: The pro-
posed scheme uses knowledge of parameters K at the central
controller, pL at each bus and di,j , ci,j at each load (i, j) ∈
Ñ , which can be regarded as its inputs. Furthermore, it is
assumed that the value β/K is globally known2. It produces
local values of σi,j , (i, j) ∈ Ñ at each iteration, used to
locally update σ as explained in Section IV. The aim of

2The results in this paper are extendable to the case where β/K is
replaced by a known upper bound, i.e. knowledge of its exact value is
not necessary. This extension is omitted for brevity in presentation.

Fig. 1. Schematic representation of the information flows in Algorithm
1, where Z = |N |, u(k) = [pcmin(k), p

c
max(k), p

c
set(k), φ(k)], yi(k) =

pLi +
∑

j∈Ni
dj,iσ̂j,i(k) and yi,j(k) = di,j σ̂i,j(k).

Algorithm 1 is to obtain a vector σ ∈ P |Ñ |, such that (6) is
satisfied when σ∗ = σ. To achieve this, it introduces global
auxiliary variables pcmin, p

c
max, p̂

c, pcset ∈ R and φ ∈ P and
local auxiliary variables σ̂i,j ∈ P, (i, j) ∈ Ñ . Note that, as
also follows from Fig. 1, (A.2), (A.7) are implemented at
each load while the rest at the central controller.

Intuition: Algorithm 1 aims to obtain values of pcset and
p̂c such that the termination condition p̂c(k) − β/K ≤
pcset(k) ≤ p̂c(k), as follows by (A.4)–(A.6), is satisfied at
some finite iteration k. We show in Theorem 1 below that
the termination condition suffices for (6) to hold at steady
state when σ∗ = σ. Variable pcset(k) corresponds to some
price used to update σ̂i,j(k). Its terminal value corresponds
to ζ in (6). The update rule for σ̂ is intuitive, allowing σ̂
to be different than ρ only if the magnitude of its local
cost per unit demand, given by ci,j/di,j , is less than pcset.
Moreover, p̂c(k) provides an estimate of the equilibrium
value for pc,∗ when σ∗ = σ̂(k). The variables pcmin(k) and
pcmax(k) respectively provide a lower and an upper bound
to the value of pcset(l),∀l ≥ k. Their values update based
on the values of pcset and p̂c according to (A.4)–(A.5). Their
update rules are intuitive, since when pcset is increasing then
p̂c is non-increasing and vice-verca. Finally, the value of σ
when φ = 1 from (A.7), is such that when σ∗ = σ = σ̂
then (6) holds with ζ = pcset, as demonstrated in Theorem
1 below. The intermediate values of σ are also important,
since they provide an estimate of its terminal value, e.g.
since pcmin(k) is non-decreasing then if σ̂i,j(k) = 0 due to
the third case in (A.7), then σ̂i,j(l) = 0,∀l ≥ k. The latter
enables a smoother response compared to the case where all
on-off loads simultaneously switch when φ = 1.

Initialization: The initialization of pcmin and pcmax is
important since their initial range needs to be sufficiently
broad to include any possible terminal value of pcset. Note
that, although their initialization requires knowledge of `, d
and K, any lower and upper bounds to pcmin(0) and pcmax(0)
are sufficient for all properties of Algorithm 1 to hold. Hence,
the initialization of Algorithm 1 is robust to parametric
uncertainty. The initialization of variables σ̂, p̂c and pcset is
only made for completeness in presentation. Furthermore,
φ(0) = 0 is required to initiate the algorithm. Finally,
µ ∈ (0, 1) is a parameter of Algorithm 1, used in (A.1).

Implementation: In Algorithm 1, the intermediate vari-
able pcset, updated according to (A.1), takes a value that lies
strictly within [pcmin, p

c
max]. The local updates of the vari-

ables σ̂ make use of pcset as well as the local costs and mag-
nitudes of on-off loads, following (A.2). Furthermore, p̂c up-
dates based on the transmitted values of pLj +

∑
i∈Nj

di,j σ̂i,j



from each bus j, as well as knowledge of parameter K, as
demonstrated in (A.3). As already mentioned, p̂c provides
an estimate for pc,∗ when σ∗ = σ̂. The values of pcmin(k)
and pcmax(k), which provide lower and upper bounds for
pcset(l), l ≥ k, are respectively updated according to (A.4)–
(A.5), i.e. when pcset is below the considered threshold
then pcmin is increased and vice verca. Furthermore, the
stopping condition in (A.6) ensures that p̂c and pcset satisfy
p̂c(k) − β/K ≤ pcset(k) ≤ p̂c(k), as follows from (A.4)–
(A.5). The latter is important for (6) to be satisfied, as
explained above and shown in Theorem 1 below.

Remark 1: As shown in Theorem 1 below, Algorithm 1
ensures that (6) is satisfied at steady state, which enables
an optimality interpretation to be obtained. Note that (6) is
based on a continuous relaxation of (4) and the corresponding
KKT conditions. This approach is inspired from [14], which
is a study on primary frequency regulation. Compared to the
scheme in [14], Algorithm 1 adopts a different information
structure that is not transiently coupled with the frequency
control dynamics and hence provides support at slower
timescales associated with secondary frequency control. Its
control design enables to overcome the challenges associated
with Problem 1 (see Section II-D).

Below, we demonstrate that Algorithm 1 terminates (i.e.
φ = 1) after a finite number of iterations. Furthermore, we
show that if σ∗ = σ∗, where σ∗ is the value obtained for σ
when Algorithm 1 terminates, then (6) is satisfied at steady
state. The latter allows an optimality interpretation of the
steady state power allocation, in accordance to Proposition
1. The above are demonstrated in the following theorem.

Theorem 1: Algorithm 1 terminates after a finite number
of iterations. Furthermore, if σ∗ = σ∗, then (6) is satisfied
at steady state.

IV. CONVERGENCE ANALYSIS

In this section we provide a detailed description of the
overall dynamical system as a switching system (see e.g.
[21]) and use corresponding tools for its analysis.

In particular, system (1), (2), (3), (5), with on-off con-
trollable loads that switch according to Algorithm 1, can
be described by the states z = (x, σ), where x =
(η, ω, pM , pc, ψ) ∈ Rn, n = 3|N |+|E|+|Ẽ | is the continuous
state, and σ ∈ P |Ñ | the discrete state. We also denote by Λ =
Rn × P |Ñ | the domain where the state z takes values. For
convenience, we use the following compact representation to
describe (1), (2), (3), (5),

ẋ = fσ(x), σ ∈ P |Ñ |, (7)
where fσ : Rn → Rn is given by (1), (2), (3), (5).

Furthermore, we let tk be the time instant where the
kth iteration of Algorithm 1 terminates, satisfying tk+1 ≥
tk, k ≥ 1, assuming that the time for each iteration of
Algorithm 1 is finite. The switching state σ is given by

σ(t) = σ(0), t ∈ [0, t1), (8a)
σ(t) = σ(k), t ∈ [tk, tk+1), (8b)

where σ(k) is the output of the kth iteration of Algorithm
1 and σ(0) the initial value of σ. Note that, as shown in
Theorem 1, Algorithm 1 terminates after a finite number of
iterations, which we denote by k̂, and hence tk̂+1 is not
well-defined. To resolve this, we let tk̂+1 =∞.

Remark 2: Note that although we have not explicitly set
a lower bound in the time between switches, chattering
behavior can be excluded for (7)–(8). The latter follows from
Theorem 1 which guarantees a finite number of iterations
of Algorithm 1 and hence a finite number of switches of
variable σ.

A. Stability analysis

In this section we provide our main convergence result for
system (7)-(8). In particular, we demonstrate that solutions
to (7)-(8) globally converge to the set of its equilibria. Note
that we call a point z∗ = (x∗, σ) an equilibrium of (7) if
fσ(x∗) = 0. Furthermore, we consider the Caratheodory
solutions to (7)-(8) that are frequently used for the analysis
of switching systems [21]. The existence of equilibria and
solutions will be analytically demonstrated in an extended
version of this work.

The following theorem demonstrates the stability of (7)-
(8). In addition, it shows that when the condition on the local
droop gains from Proposition 1 holds, then solutions to (7)-
(8) globally converge to an ε-optimal point of the H-OSC
problem (4).

Theorem 2: Solutions to (7)-(8) globally converge to the
set of its equilibria. In addition, if kj = q−1j , j ∈ N ,
then solutions to (7)-(8) globally converge to a subset of its
equilibria, satisfying ω∗ = 0|N | and pc,∗ ∈ Im(1|N |), that
are ε-optimal to the H-OSC problem (4) with ε = 3β2/2K.

Theorem 2 demonstrates that the implementation of Al-
gorithm 1 does not compromise the stability of the power
network and allows an optimality interpretation of the steady
state power allocation when on-off loads are present.

V. SIMULATION ON THE NPCC 140-BUS SYSTEM

In this section we use the Power System Toolbox [22] to
perform numerical simulations on the Northeast Power Co-
ordinating Council (NPCC) 140-bus system, to numerically
validate our analytic results. The model used by the toolbox
is more detailed than our analytic one, including voltage
dynamics, line resistances, a transient reactance generator
model, and high order turbine governor models3.

The NPCC network consists of 47 generation and 93
load buses and has a total real power of 28.55GW. For
our simulation, we considered a step increase in demand
of magnitude 2 p.u. (base 100MVA) at load buses 2 and
3 at t = 1 second. Furthermore, we considered 500 on-
off loads at each of buses 1 − 20 with magnitudes d and
local costs c selected from uniform distributions with ranges
[0, 0.008]p.u. and [0, 0.1]p.u. respectively. The value of µ,
used in the implementation of Algorithm 1 was also selected
from a uniform distribution with range [0.005, 0.995]. The
initial value of σ was selected such that (6) was satisfied
for some randomly selected value for ρ ∈ P |Ñ |. The system
contains 24 buses with turbine governor generation units of
which 22 were assumed to contribute in secondary frequency
regulation. Their power command droop gains were selected
such that the power allocation among generators and on-off
controllable loads was comparable. In addition, the generator
cost coefficients were selected such that qj = k−1j at all units.

3The simulation details can be found in the data file datanp48 and the
Power System Toolbox manual [22].
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Fig. 2. Frequency response at bus 32 for the following cases: (i) No
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Fig. 3. Cost associated with (4) when Algorithm 1 is implemented
compared to the global minimum cost obtained using the Gurobi optimizer.

The system was tested under two different cases. In case (i)
the system did not include any controllable loads and in case
(ii) on-off loads implementing Algorithm 1 were included.
Each iteration of Algorithm 1 was assumed to require 0.3
seconds. The frequency response for these two cases at a
randomly selected bus is shown on Figure 2. Figure 2 depicts
a smooth frequency response for case (ii), similar to case (i),
despite the additional control layer associated with Algorithm
1. Moreover, it demonstrates that the frequency converges to
its nominal value, in agreement with the presented analysis.

To demonstrate the validity of the optimality analysis, the
obtained results where compared with the optimal solution
to (4) obtained using the Gurobi optimizer [23]. As shown
in Figure 3, the proposed algorithm provides a solution that
converges to the value obtained from the Gurobi optimizer,
which corresponds to the global minimum of (4). In partic-
ular, it was seen that the vector σ̄ provided from Algorithm
1 and the corresponding provided by the Gurobi optimizer
were identical. The latter are in agreement with Theorem 2.

VI. CONCLUSION

We have considered the problem of controlling generation
and on-off loads in power networks such that stability is
guaranteed and a close to optimal power allocation is attained
within the secondary frequency control timeframe. A mixed
integer optimization problem has been considered which
ensures that the secondary frequency control objectives are
satisfied at steady state. For the considered problem, ana-
lytic conditions are derived for generation and on-off loads
such that an ε-optimal allocation is enabled at equilibrium,
providing a non-conservative bound for ε. Furthermore, a

hierarchical control scheme has been proposed such that
the aforementioned conditions are satisfied. The combined
dynamics of the physical system and the controller are jointly
studied as a switching system and analytic convergence and
ε-optimality guarantees are provided. Our results are verified
with numerical simulations on the NPCC 140-bus network,
where a large number of on-off loads has been considered
and an optimality interpretation of the steady state power
allocation was obtained.
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